Southeastward Subduction of North China Block: Insights from Tomographyic Image of the Middle and Lower Yangtze River Metallogenic Belt
-
摘要: 远震层析成像结果所揭示的华北板块东南向俯冲到扬子板块之下对于重新认识长江中下游地区成矿机制具有重要意义.利用来自中国地震台网中心,包括湖北、河南、安徽、江西、浙江、江苏等省级地震台网记录的波形数据对长江中下游地区深部结构进行了远震P波层析成像反演.综合研究结果显示,三叠纪华北与扬子板块俯冲碰撞,华北板块越过郯庐断裂带,向东南俯冲到扬子板块之下.推断板块碰撞的深部缝合线在郯庐断裂带以西位于大别造山带以南,在郯庐断裂带以东位于长江一线.经历后期的中生代构造转换过程,该带发生活化,成为中生代含矿岩浆和流体上升的通道,并形成著名的大型成矿带.Abstract: What the North China block southeastward subducted under the Yangtze plate revealed by the tomography images is important for reunderstanding the metallogenic mechanism in the Middle and Lower reaches of the Yangtze River. In this paper, It determines the 3-D P-wave velocity structure beneath the Middle and Lower Reaches of Yangtze River metallogenic belt by using waveform data recorded by the China Seismic Network Center including Hubei, Henan, Anhui, Jiangxi, Zhejiang and Jiangsu seismic networks. The results show that North China block subducted southeastward under the Yangtze plate in the Triassic period. It is concluded that the deep suture between North China block and Yangtze block is located in the south of Dabie orogenic belt to the west of Tanlu fault and in the Yangtze River to the east of Tanlu fault. After the Late Mesozoic tectonic transformation, the deep suture belt was reactivated and became a channel for the uplift of ore-bearing magma and fluid in Mesozoic, and formed a famous large metallogenic belt.
-
图 1 长江中下游成矿带地区构造简图
据宋传中等(2011).蓝色的圆点为矿床点.LAF.六安断裂;XGF.襄樊-广济断裂;TLF.郯庐断裂
Fig. 1. Sketch map showing the tectonics and distribution of major ore concentration areas in the Mid-Lower reaches of Yangtze River
-
[1] Chang, Y. F., Liu, X. P., Wu, Y. C., 1991.Iron Copper Metallogenic Belt in the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese). [2] Chang, Y. F., Zhou, T. F., Fan, Y., 2017. Review of Exploration and Geological Research Progress in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):3333-3352 (in Chinese with English abstract). http://www.researchgate.net/publication/330636672_Review_of_exploration_and_geological_research_progress_in_the_Middle-Lower_Yangtze_River_Valley_Metallogenic_Belt [3] Chen, L., Zheng, Y. F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction:Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Earth Science, 44(12):4144-4151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912024.htm [4] Chung, S. L., 1999. Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China. The Journal of Geology, 107:301-312. doi: 10.1086/314348 [5] Dong, S. W., Ma, L. C., Liu, G., et al., 2011. On Dynamics of the Metallogenic Belt of Middle-Lower Reaches of Yangtze River, Eastern China. Acta Geologica Sinica, 85(5):612-625 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105004.htm [6] Dong, S. W., Qiu, R. L., 1993. Tectonics and Magmatic Activity in Anqing-Yueshan Area. Geological Publishing House, Beijing, 1-158 (in Chinese). [7] Guo, H. L., Xu, P. F., Zhang, F.Q., 2014. P Wave Velocity Structure of the North China Craton and West Pacific Active Continental Margin:Exploration for Dynamic Processes of Lithospheric Thinning. Chinese Journal of Geophysics, 57:2352-2361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201407029.htm [8] Guo, R. H., Li, S. Z., Suo, Y. H., et al., 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline. Earth Science Frontiers, 24:171-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201704023.htm [9] Hou, Z. Q., Yang, Z. M., 2009.Porphyry Deposits in Continental Settings of China:Geological Characteristics Magmatic-Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12):1779-1817 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200912002.htm [10] Huang, J. L., Zhao, D. P., 2004. Crustal Heterogeneity and Seismotectonics of the Region around Beijing, China. Tectonophysics, 385:159-180. doi: 10.1016/j.tecto.2004.04.024 [11] Jahn, B.M., Chen, B., 2007. Dabieshan UHP Metamorphic Terrane:Sr-Nd-Pb Isotopic Constraint to Pre-Metamorphic Subduction Polarity. Int. Geol. Rev., 49:14-29. doi: 10.2747/0020-6814.49.1.14 [12] Jiang, G. M., Zhang, G. B., Zhao, D., et al., 2015. Mantle Dynamics and Cretaceous Magmatism in East-Central China:Insight from Teleseismic Tomograms. Tectonophysics, 664:256-268. doi: 10.1016/j.tecto.2015.09.019 [13] Li, S.G., 2004. Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains and Continental Collison Process between the North and South China Blocks. Earth Science Frontiers, 11(3):63-70 (in Chinese with English abstract). [14] Li, S. G., Yang, W., 2003. Decoupling of Surface and Subsurface Sutures in the Dabie Orogen and a Continent-Collisional Lithospheric-Wedging Model:Sr-Nd-Pb Isotopic Evidences of Mesozoic Igneous Rocks in Eastern China. Chinese Science Bulletin, 48:831-838. http://d.wanfangdata.com.cn/Periodical/kxtb-e200308024 [15] Li, S. Z., Jahn, B. M., Zhao, S. J., et al., 2017. Triassic Southeastward Subduction of North China Block to South China Block:Insights from New Geological, Geophysical and Geochemical Data. Earth-Science Review, 166:270-285. doi: 10.1016/j.earscirev.2017.01.009 [16] Li, X. H., Li, Z. X., Zheng, X. L., et al., 2013. Revisiting the"C-Type Adakites"of the Lower Yangtze River Belt, Central Eastern China:In-Situ Zircon Hf-O Isotope and Geochemical Constraints. Chemical Geology, 345:1-15. doi: 10.1016/j.chemgeo.2013.02.024 [17] Li, Z. X., 1994. Collision between the North and South China Blocks:A Crustal-Detachment Model for the Suturing in the Region East of the Tanlu Fault. Geology, 22:739-742. doi: 10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2 [18] Liu, B., Li, S. Z., Wang, P. C., et al., 2018. Deep-Seated Structural Styles and Mesozoic Metallogenic Dynamic Model in the Middle-Lower Yangtze Region, China. Acta Petrologica Sinica, 34(3):799-812 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011686.html [19] Luo, S., Yao, H., Li, Q., et al., 2019. High-Resolution 3D Crustal S-Wave Velocity Structure of the Middle-Lower Yangtze River Metallogenic Belt and Implications for Its Deep Geodynamic Setting. Science in China (Series D:Earth Sciences), 49:1394-1412 (in Chinese). doi: 10.1007/s11430-018-9352-9 [20] Lü, Q. T., Dong, S. W., Shi, D. N., et al., 2014. Lithosphere Architecture and Geodynamic Model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A Review from SinoProbe. Acta Petrologica Sinica, 30(4):889-906 (in Chinese with English abstract). http://www.researchgate.net/publication/305535292_Lithosphere_architecture_and_geodynamic_model_of_Middle_and_Lower_Reaches_of_Yangtze_Metallogenic_Belt_A_review_from_SinoProbe [21] Lü, Q. T., Dong, S. W., Tang, J. T., et al., 2015.Multi-Scale and Integrated Geophysical Data Revealing Mineral Systems and Exploring for Mineral Deposits at Depth:A Synthesis from SinoProbe-03. Chinese Journal of Geophysics, 58(12):4319-4343 (in Chinese with English abstract). http://www.researchgate.net/publication/300631761_Understanding_world-class_mineral_systems_and_exploring_for_mineral_deposits_at_depth_using_multi-scale_and_integrated_geophysical_data_A_synthesis_from_SinoProbe [22] Lü, Q. T., Meng, G. X., Yan, J. Y., et al., 2019. Multi-Scale Exploration of Mineral System:Concept and Progress-A Case Study in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt. Geology in China, 46(4):673-689 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201904002.htm [23] Lü, Q. T., Shi, D. N., Liu, Z. D., et al., 2015. Crustal Structure and Geodynamic of the Middle and Lower Reaches of Yangtze Metallogenic Belt and Neighboring Areas:Insights from Deep Seismic Reflection Profiling. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022 [24] Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1):294-314. [25] Pei, R. F., Li, J. W., Wang, Y. L., et al., 2011. Metalligeny of the Tectonomagmatic Emplacing Contact Structural Systems of the Metallogenic Belt in Middle and Lower Reaches of Yangtze. Geology and Resources, 20(6):401-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201106002.htm [26] Qiang, J. K., Wang, X. Y., Tang, J. T., et al., 2014. The Geological Structures along Huainan-Liyang Magnetotelluric Profile:Constraints from MT Data. Acta Petrologica Sinica, 30(4):957-965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404006.htm [27] Song, C. Z., Zhang, H., Ren, S. L., et al., 2011. Transform Tectonic Node of the Middle and Lower Reaches of the Yangtze River and Analysis of Regional Metallogenic Settings. Acta Geologica Sinica, 85(5):778-788 (in Chinese with English abstract). http://www.researchgate.net/publication/285166322_Transform_tectonic_node_of_the_Middle_and_Lower_Reaches_of_the_Yangtze_River_and_analysis_of_regional_metallogenic_settings [28] Sun, W. J., Li, S. Z., Liu, X. M., et al., 2015. Deep Structures and Surface Boundaries among Proto-Tethyan Micro-Blocks:Constraints from Seismic Tomography and Aeromagnetic Anomalies in the Central China Orogen. Tectonophysics, 659:109-121. doi: 10.1016/j.tecto.2015.07.033 [29] Sun, Y., Mang, C. Q., Liu, B., 2017. Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt. Earth Science, 42(6):891-908 (in Chinese with English abstract). http://www.researchgate.net/publication/319455763_Record_of_Late_Yanshanian_Mafic_Magmatic_Activity_in_the_Middle-Lower_Yangtze_River_Metallogenic_Belt [30] Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150:6-25. doi: 10.1016/j.lithos.2012.03.020 [31] Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China:Petrogenesis and Tectonic Setting. Lithos, 104:216-230. doi: 10.1016/j.lithos.2007.12.008 [32] Xu, T., Zhang, Z. J., Tian, X. B., et al., 2014. Crustal Structure beneath the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas:Constraints from Active Source Seismic Experiment along the Lixin to Yixing Profile in East China. Acta Petrologica Sinica, 30(4):918-930 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404003.htm [33] Ying, J. F., Zhang, H. F., Zhou, X. H., et al., 2013. Tectonic Affinity of the Sub-Continental Lithosphere of the Sulu Orogenic Belts:Constraints from Granulite and Peridotites Xenoliths. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3):328-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201303005.htm [34] Zhang, C., Ma, C. Q., Holtz, F., 2010. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China):Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 119:467-484. doi: 10.1016/j.lithos.2010.08.001 [35] Zhang, Y. Q., Dong, S. W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5):613-641 (in Chinese with English abstract). [36] Zhang, Y. Q., Lü, Q. T., Teng, J. W., et al., 2014. Discussion on the Crustal Density Structure and Deep Mineralization Background in the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas:Constraints from the Gravity Inversion. Acta Petrologica Sinica, 30(4):931-940 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404004.htm [37] Zhou, T. F., Fan, Y., Wang, S.W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):3353-3372 (in Chinese with English abstract). http://www.researchgate.net/publication/330637013_Metallogenic_regularity_and_metallogenic_model_of_the_Middle-Lower_Yangtze_River_Valley_Metallogenic_Belt [38] Zhou, T. F., Fan, Y., Yuan, F., et al., 2011. Geochronology and Significance of Volcanic Rocks in the Ning-Wu Basin of China. Science in China (Series D:Earth Science), 41(7):960-971 (in Chinese). http://www.springerlink.com/content/q7070174022622w8/ [39] Zhou, T. F., Wang, S. W., Yuan, F., et al., 2016. Magmatism and Related Mineralization of the Intracontinental Porphyry Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2):271-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201602001.htm [40] 常印佛, 刘湘培, 吴言昌, 1991.长江中下游铁铜成矿带.北京:地质出版社. [41] 常印佛, 周涛发, 范裕, 2017.长江中下游成矿带矿产勘查-科研工作回顾和展望.岩石学报, 33(11):3333-3352. http://d.wanfangdata.com.cn/Periodical/ysxb98201711001 [42] 陈龙, 郑永飞, 2019.长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用.地球科学, 44(12):4144-4151. doi: 10.3799/dqkx.2019.243 [43] 董树文, 马立成, 刘刚, 等, 2011.论长江中下游成矿动力学.地质学报, 85(5):612-625. http://www.cqvip.com/QK/95080X/201105/38046840.html [44] 董树文, 邱瑞龙, 1993.安庆-岳山地区构造作用及岩浆活动.北京:地质出版社, 1-158. [45] 郭慧丽, 徐佩芬, 张福勤, 2014.华北克拉通及东邻西太平洋活动大陆边缘地区的P波速度结构:对岩石圈减薄动力学过程的探讨.地球物理学报, 57:2352-2361. http://www.cnki.com.cn/article/cjfdtotal-dqwx201407029.htm [46] 郭润华, 李三忠, 索艳慧, 等, 2017.华北地块揳入大华南地块和印支期弯山构造.地学前缘, 24:171-184. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201704023.htm [47] 侯增谦, 杨志明, 2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型.地质学报, 83(12):1779-1817. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200912002.htm [48] 李曙光, 2004.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程.地学前缘, 11(3):63-70. http://d.wanfangdata.com.cn/Periodical/dxqy200403008 [49] 刘博, 李三忠, 王鹏程, 等, 2018.长江中下游深部构造及其中生代成矿动力学模式.岩石学报, 34(3):799-812. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803017 [50] 罗松, 姚华建, 李秋生, 等, 2019.长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景.中国科学(D辑:地球科学), 49:1394-1412. http://d.wanfangdata.com.cn/periodical/zgkx-cd201909006 [51] 吕庆田, 董树文, 史大年, 等, 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述.岩石学报, 30(4):889-906. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140401&flag=1 [52] 吕庆田, 董树文, 汤井田, 等, 2015.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展.地球物理学报, 58(12):4319-4343. [53] 吕庆田, 孟贵祥, 严加永, 等, 2019.成矿系统的多尺度探测:概念与进展——以长江中下游成矿带为例.中国地质, 46(4):673-689. [54] 裴荣富, 李进文, 王永磊, 等, 2011.长江中下游成矿带构造岩浆侵位的接触构造体系与成矿.地质与资源, 20(6):401-412. [55] 强建科, 王显莹, 汤井田, 等, 2014.淮南-溧阳大地电磁剖面与地质结构分析.岩石学报, 30(4):957-965. http://www.cqvip.com/QK/94579X/20144/49589231.html [56] 宋传中, 张华, 任升莲, 等, 2011.长江中下游转换构造结与区域成矿背景分析.地质学报, 85(5):778-788. [57] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. doi: 10.3799/dqkx.2017.077 [58] 徐涛, 张忠杰, 田小波, 等, 2014.长江中下游成矿带及邻区地壳速度结构:来自利辛-宜兴宽角地震资料的约束.岩石学报, 30(4):918-930. [59] 英基丰, 张宏福, 周新华, 等, 2013.苏鲁造山带深部岩石圈的属性:来自麻粒岩和橄榄岩捕虏体的制约.矿物岩石地球化学通报, 32(3):328-334. [60] 张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展.地质力学学报, 25(5):613-641. [61] 张永谦, 吕庆田, 滕吉文, 等, 2014.长江中下游及邻区的地壳密度结构与深部成矿背景探讨——来自重力学的约束.岩石学报, 30(4):931-940. [62] 周涛发, 范裕, 王世伟, 等, 2017.长江中下游成矿带成矿规律和成矿模式.岩石学报, 33(11):3353-3372. [63] 周涛发, 范裕, 袁峰, 等, 2011.宁芜(南京-芜湖)盆地火山岩的年代学及其意义.中国科学(D辑:地球科学), 41(7):960-971. [64] 周涛发, 王世伟, 袁峰, 等, 2016.长江中下游成矿带陆内斑岩型矿床的成岩成矿作用.岩石学报, 32(2):271-288.