Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015
-
摘要: 研究格陵兰冰盖(GrIS)质量变化异常速率可以帮助了解异常气候事件驱动海平面变化的机制.聚焦于2010~2012年GrIS质量变化的异常速率,及其对海平面指纹(SLF)和相对海平面(RSL)变化的贡献.通过联合2003~2015年GRACE月重力场数据和表面质量平衡(SMB)数据,采用mascon拟合法及网格尺度因子恢复泄漏,获得了6个流域的质量变化时空分布.基于海平面变化方程(SLE)并考虑负荷自吸引效应估算了SLF的空间分布.结果表明,2003~2015年间GrIS总质量变化速率分别为-288±7 Gt/a及-275±1 Gt/a;而在2010~2012年间速率相应地增加至-456±30 Gt/a及-464±38 Gt/a,该时期格陵兰西北海岸及东南沿海地区呈现出大量冰盖融化,其对海平面的贡献变化呈现倒“V”型(即先升后降),而全球平均海平面变化呈现出明显的正“V”型(即先降后升).另外,GrIS融化对海平面的贡献约为31%,造成全球平均RSL增加了0.07 cm/a,而对斯堪的纳维亚及北欧地区的RSL贡献为-0.6 cm/a,GrIS融化造成的远海地区RSL上升速率比全球平均RSL速率高近30%.Abstract: Studing the abnormal mass change rate of Greenland ice sheet (GrIS) can help us understand the drivers of sea level change due to the abnormal climate events. Therefore, in this paper it focuses on the anomalous rate of GrIS mass change in 2010-2012 and its contributions to SLF and relative sea level (RSL) changes. By combining the 2003-2015 GRACE monthly gravity field data and surface mass balance (SMB) data, the spatio-temporal distributions of the mass change of the six extended sub-basins are estimated based on the mascon fitting and the grid scale factors. Afterwards, it obtains the spatial distribution of the SLF based on the sea level equation (SLE) and considering the self-attraction and loading effect. The results indicate that during 2003-2015, the total mass change rates of GrIS were -288±7 Gt/a and -275±1 Gt/a as derived from scaled GRACE and SMB results respectively; and the trend increased to -456±30 Gt/a and -464±38 Gt/a correspondingly during 2010-2012, when the northwest coast and the southeast coast showed a large number of melting. And the contributions of GrIS to sea level showed an inverted "V" type (i.e., first rise and then fall), while the global mean sea level change showed a distinct positive "V" type (i.e., first drop and then rise). Between 2003 and 2015, GrIS contributed approximately 31% of total terrestrial water reserves (converted to sea level rise), and a global average RSL increased by 0.07 cm/a, while the contribution to the RSL of Scandinavia and the Nordic region was -0.6 cm/a. In addition, the far-field RSL rising rate due to the melting of GrIS is nearly 30% higher than the global average. Meanwhile, in this paper it proves that the far-filed peak increase is less dependent on the accurate pattern of the self-attraction and loading.
-
Key words:
- GRACE /
- SMB /
- Greenland ice sheet /
- anomaly melting /
- sea level fingerprints /
- marine hydrology
-
图 1 格陵兰岛流域
流域划分据Rignot et al. (2011);NO.北部,NE.东北部,SE.东南部,SW.西南部,CW.中西部,NW.西北部
Fig. 1. Greenland drainage basins
表 1 6个子流域基于扩展mascon拟合法的尺度因子
Table 1. Scale factors of six basins derived with the extended mascon fitting approach
NO NE SE SW CW NW NO_extended 0.952 0.014 0.000 0.011 -0.005 0.062 NE_extended 0.126 1.063 0.059 -0.031 0.056 0.112 SE_extended -0.007 -0.021 0.954 0.190 0.071 -0.013 SW_extended 0.012 -0.003 0.071 0.960 -0.098 -0.012 CW_extended -0.042 0.036 0.151 0.136 1.045 0.050 NW_extended 0.181 0.049 -0.039 -0.033 -0.008 0.964 累积尺度因子 1.223 1.138 1.196 1.235 1.061 1.163 -
[1] A, G. , Wahr, J. , Zhong, S. J. , 2013. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572. https://doi.org/10.1093/gji/ggs030 [2] Adhikari, S. , Ivins, E. R. , Larour, E. , 2017. Mass Transport Waves Amplified by Intense Greenland Melt and Detected in Solid Earth Deformation. Geophysical Research Letters, 44(10): 4965-4975. https://doi.org/10.1002/2017gl073478 [3] Bamber, J. L. , Layberry, R. L. , Gogineni, S. P. , 2001. A New Ice Thickness and Bed Data Set for the Greenland Ice Sheet: 1. Measurement, Data Reduction, and Errors. Journal of Geophysical Research: Atmospheres, 106(D24): 33773-33780. https://doi.org/10.1029/2001jd900054 [4] Bamber, J. L. , Riva, R. E. M. , Vermeersen, B. L. A. , et al. , 2009. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 324(5929): 901-903. https://doi.org/10.1126/science.1169335 [5] Beckley, B. D. , Callahan, P. S. , Hancock III, D. W. , et al. , 2017. On the "Cal-Mode" Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11): 8371-8384. https://doi.org/10.1002/2017jc013090 [6] Boening, C. , Willis, J. K. , Landerer, F. W. , et al. , 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012gl053055 [7] Bolch, T. , Sandberg Sørensen, L. , Simonsen, S. B. , et al. , 2013. Mass Loss of Greenland's Glaciers and Ice Caps 2003-2008 Revealed from ICESat Laser Altimetry Data. Geophysical Research Letters, 40(5): 875-881. https://doi.org/10.1002/grl.50270 [8] Box, J. E. , Fettweis, X. , Stroeve, J. , et al. , 2012. Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers. The Cryosphere, 6(4): 821-839. https://doi.org/10.5194/tc-6-821-2012 [9] Chen, G. D. , Zhang, S. J. , 2019. Elevation and Volume Change Determination of Greenland Ice Sheet Based on ICESat Observations. Chinese Journal of Geophysics, 62(7): 2417-2428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201907006.htm [10] Cheng, M. K. , Tapley, B. D. , Ries, J. C. , 2013. Deceleration in the Earth's Oblateness. Journal of Geophysical Research: Solid Earth, 118(2): 740-747. https://doi.org/10.1002/jgrb.50058 [11] Dziewonski, A. M. , Anderson, D. L. , 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7 [12] Ettema, J. , van den Broeke, M. R. , van Meijgaard, E. , et al. , 2009. Higher Surface Mass Balance of the Greenland Ice Sheet Revealed by High-Resolution Climate Modeling. Geophysical Research Letters, 36(12): L12501. https://doi.org/10.1029/2009gl038110 [13] Farrell, W. E. , 1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics, 10(3): 761-797. https://doi.org/10.1029/rg010i003p00761 [14] Farrell, W. E. , Clark, J. A. , 1976. On Postglacial Sea Level. Geophysical Journal International, 46(3): 647-667. https://doi.org/10.1111/j.1365-246x.1976.tb01252.x [15] Fasullo, J. T. , Boening, C. , Landerer, F. W. , et al. , 2013. Australia's Unique Influence on Global Sea Level in 2010-2011. Geophysical Research Letters, 40(16): 4368-4373. https://doi.org/10.1002/grl.50834 [16] Forsberg, R. , Sørensen, L. , Simonsen, S. , 2017. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38: 89-104. https://doi.org/10.1007/s10712-016-9398-7 [17] Gardner, A. S. , Moholdt, G. , Cogley, J. G. , et al. , 2013. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134): 852-857. https://doi.org/10.1126/science.1234532 [18] Hall, D. K. , Comiso, J. C. , DiGirolamo, N. E. , et al. , 2013. Variability in the Surface Temperature and Melt Extent of the Greenland Ice Sheet from MODIS. Geophysical Research Letters, 40(10): 2114-2120. https://doi.org/10.1002/grl.50240 [19] Hanna, E. , Huybrechts, P. , Cappelen, J. , et al. , 2011. Greenland Ice Sheet Surface Mass Balance 1870 to 2010 Based on Twentieth Century Reanalysis, and Links with Global Climate Forcing. Journal of Geophysical Research: Atmospheres, 116(D24): D24121. https://doi.org/10.1029/2011jd016387 [20] Howat, I. M. , Smith, B. E. , Joughin, I. , et al. , 2008. Rates of Southeast Greenland Ice Volume Loss from Combined ICESat and ASTER Observations. Geophysical Research Letters, 35(17): L17505. https://doi.org/10.1029/2008gl034496 [21] Hurkmans, R. T. W. L. , Bamber, J. L. , Davis, C. H. , et al. , 2014. Time-Evolving Mass Loss of the Greenland Ice Sheet from Satellite Altimetry. The Cryosphere, 8: 1725-1740. https://doi.org/10.5194/tc-8-1725-2014 [22] Jacob, T. , Wahr, J. , Pfeffer, W. T. , et al. , 2012. Recent Contributions of Glaciers and Ice Caps to Sea Level Rise. Nature, 482(7386): 514-518. https://doi.org/10.1038/nature10847 [23] Jentzsch, G., 1997. Earth Tides and Ocean Tidal Loading. In: Wilhelm, H., Zürn, W., Wenzel, H. G., eds., Tidal Phenomena. Springer, Heidelberg. [24] Khan, S. A. , Wahr, J. , Bevis, M. , et al. , 2010. Spread of Ice Mass Loss into Northwest Greenland Observed by GRACE and GPS. Geophysical Research Letters, 37(6): L06501. https://doi.org/10.1029/2010gl042460 [25] Liu, L. , Khan, S. A. , van Dam, T. , et al. , 2017. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading. Journal of Geophysical Research: Solid Earth, 122(1): 677-691. https://doi.org/10.1002/2016jb013494 [26] Lythe, M. B. , Vaughan, D. G. , 2001. BEDMAP: A New Ice Thickness and Subglacial Topographic Model of Antarctica. Journal of Geophysical Research: Solid Earth, 106(B6): 11335-11351. https://doi.org/10.1029/2000jb900449 [27] Milne, G. A. , Mitrovica, J. X. , Davis, J. L. , 1999. Near-Field Hydro-Isostasy: The Implementation of a Revised Sea-Level Equation. Geophysical Journal International, 139(2): 464-482. https://doi.org/10.1046/j.1365-246x.1999.00971.x [28] Mitrovica, J. X. , Tamisiea, M. E. , Davis, J. L. , et al. , 2001. Recent Mass Balance of Polar Ice Sheets Inferred from Patterns of Global Sea-Level Change. Nature, 409(6823): 1026-1029. https://doi.org/10.1038/35059054 [29] Nghiem, S. V. , Hall, D. K. , Mote, T. L. , et al. , 2012. The Extreme Melt across the Greenland Ice Sheet in 2012. Geophysical Research Letters, 39(20): L20502. https://doi.org/10.1029/2012gl053611 [30] Noël, B. , van de Berg, W. J. , Machguth, H. , et al. , 2016. A Daily, 1 km Resolution Data Set of Downscaled Greenland Ice Sheet Surface Mass Balance (1958-2015). The Cryosphere, 10(5): 2361-2377. https://doi.org/10.5194/tc-10-2361-2016 [31] Noël, B. , van de Berg, W. J. , van Wessem, J. M. , et al. , 2018. Modelling the Climate and Surface Mass Balance of Polar Ice Sheets Using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12(3): 811-831. https://doi.org/10.5194/tc-12-811-2018 [32] Peltier, W. R. , Andrews, J. T. , 1976. Glacial-Isostatic Adjustment-I. The Forward Problem. Geophysical Journal of the Royal Astronomical Society, 46(3): 605-646. https://doi.org/10.1111/j.1365-246x.1976.tb01251.x [33] Ran, J. , Ditmar, P. , Klees, R. , et al. , 2018. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach. Journal of Geodesy, 92(3): 299-319. https://doi.org/10.1007/s00190-017-1063-5 [34] Rignot, E. , Velicogna, I. , van den Broeke, M. R. , et al. , 2011. Acceleration of the Contribution of the Greenland and Antarctic Ice Sheets to Sea Level Rise. Geophysical Research Letters, 38(5): L05503. https://doi.org/10.1029/2011gl046583 [35] Rodell, M. , Houser, P. R. , Jambor, U. , et al. , 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381 [36] Schrama, E. J. O. , Wouters, B. , Rietbroek, R. , 2014. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data. Journal of Geophysical Research: Solid Earth, 119(7): 6048-6066. https://doi.org/10.1002/2013jb010923 [37] Shepherd, A. , Ivins, E. R. , A, G. , et al. , 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111): 1183-1189. https://doi.org/10.1126/science.1228102 [38] Sutterley, T. C. , Velicogna, I. , Csatho, B. , et al. , 2014. Evaluating Greenland Glacial Isostatic Adjustment Corrections Using GRACE, Altimetry and Surface Mass Balance Data. Environmental Research Letters, 9(1): 014004. https://doi.org/10.1088/1748-9326/9/1/014004 [39] Swenson, S. , Chambers, D. , Wahr, J. , 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007jb005338 [40] Swenson, S. , Wahr, J. , 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): 2193. doi: 10.1029/2001JB000576/full [41] Syed, T. H. , Famiglietti, J. S. , Rodell, M. , et al. , 2008. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resources Research, 44(2): W02433. https://doi.org/10.1029/2006wr005779 [42] Tamisiea, M. E. , Hill, E. M. , Ponte, R. M. , et al. , 2010. Impact of Self-Attraction and Loading on the Annual Cycle in Sea Level. Journal of Geophysical Research Atmospheres: Oceans, 115(C7): C07004. https://doi.org/10.1029/2009jc005687 [43] Tapley, B. D. , Bettadpur, S. , Ries, J. C. , et al. , 2004. GRACE Measurements of Mass Variability in the Earth System. Science, 305(5683): 503-505. https://doi.org/10.1126/science.1099192 [44] van Angelen, J. H. , van den Broeke, M. R. , Wouters, B. , et al. , 2014. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surveys in Geophysics, 35(5): 1155-1174. https://doi.org/10.1007/s10712-013-9261-z [45] van den Broeke, M. R. , Bamber, J. , Ettema, J. , et al. , 2009. Partitioning Recent Greenland Mass Loss. Science, 326(5955): 984-986. https://doi.org/10.1126/science.1178176 [46] van den Broeke, M. R. , Enderlin, E. M. , Howat, I. M. , et al. , 2016. On the Recent Contribution of the Greenland Ice Sheet to Sea Level Change. The Cryosphere, 10(5): 1933-1946. https://doi.org/10.5194/tc-10-1933-2016 [47] Velicogna, I. , Sutterley, T. C. , van den Broeke, M. R. , 2014. Regional Acceleration in Ice Mass Loss from Greenland and Antarctica Using GRACE Time-Variable Gravity Data. Geophysical Research Letters, 41(22): 8130-8137. https://doi.org/10.1002/2014gl061052 [48] Velicogna, I. , Wahr, J. , 2006. Acceleration of Greenland Ice Mass Loss in Spring 2004. Nature, 443(7109): 329-331. https://doi.org/10.1038/nature05168 [49] Velicogna, I. , Wahr, J. , 2013. Time-Variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data. Geophysical Research Letters, 40(12): 3055-3063. https://doi.org/10.1002/grl.50527 [50] Vishwakarma, B. D. , Devaraju, B. , Sneeuw, N. , 2016. Minimizing the Effects of Filtering on Catchment Scale GRACE Solutions. Water Resources Research, 52(8): 5868-5890. https://doi.org/10.1002/2016wr018960 [51] Vishwakarma, B. D. , Horwath, M. , Devaraju, B. , et al. , 2017. A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11): 9824-9844. https://doi.org/10.1002/2017wr021150 [52] Wahr, J. M., 2007. Time Variable Gravity from Satellites. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/b978-044452748-6.00176-0 [53] Wang, L. S. , Chen, C. , Ma, X. , et al. , 2018. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE. Chinese Journal of Geophysics, 61(7): 2679-2690(in Chinese with English abstract). http://www.researchgate.net/publication/328824612_Sea_level_fingerprints_of_ice_sheet_melting_and_its_impacts_on_monitoring_results_of_GRACE [54] Wang, L. S. , Khan, S. A. , Bevis, M. , et al. , 2019. Downscaling GRACE Predictions of the Crustal Response to the Present-Day Mass Changes in Greenland. Journal of Geophysical Research: Solid Earth, 124(5): 5134-5152. https://doi.org/10.1029/2018jb016883 [55] WCRP Global Sea Level Budget Group, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018 [56] Yang, K. , 2013. The Progress of Greenland Ice Sheet Surface Ablation Research. Journal of Glaciology and Geocryology, 35(1): 101-109(in Chinese with English abstract). http://www.researchgate.net/publication/260230405_The_Progress_of_Greenland_Ice_Sheet_Surface_Ablation_Research [57] Zhang, Q. Q. , Pan, Y. , Gong, H. L. , et al. , 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909014.htm [58] Zwally, H. J. , Li, J. , Brenner, A. C. , et al. , 2011. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming: 2003-07 versus 1992-2002. Journal of Glaciology, 57(201): 88-102. https://doi.org/10.3189/002214311795306682 [59] 陈国栋, 张胜军, 2019. 利用ICESat数据确定格陵兰冰盖高程和体积变化. 地球物理学报, 62(7): 2417-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907006.htm [60] 王林松, 陈超, 马险, 等, 2018. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响. 地球物理学报, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm [61] 杨康, 2013. 格陵兰冰盖表面消融研究进展. 冰川冻土, 35(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301013.htm [62] 张青全, 潘云, 宫辉力, 等, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153