• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    格陵兰岛冰盖消融时空特征(2003~2015年)及其对海平面上升的贡献

    彭桢燃 胡正旺 王林松 陈超 付争妍

    彭桢燃, 胡正旺, 王林松, 陈超, 付争妍, 2021. 格陵兰岛冰盖消融时空特征(2003~2015年)及其对海平面上升的贡献. 地球科学, 46(2): 743-758. doi: 10.3799/dqkx.2020.042
    引用本文: 彭桢燃, 胡正旺, 王林松, 陈超, 付争妍, 2021. 格陵兰岛冰盖消融时空特征(2003~2015年)及其对海平面上升的贡献. 地球科学, 46(2): 743-758. doi: 10.3799/dqkx.2020.042
    Peng Zhenran, Hu Zhengwang, Wang Linsong, Chen Chao, Fu Zhengyan, 2021. Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015. Earth Science, 46(2): 743-758. doi: 10.3799/dqkx.2020.042
    Citation: Peng Zhenran, Hu Zhengwang, Wang Linsong, Chen Chao, Fu Zhengyan, 2021. Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015. Earth Science, 46(2): 743-758. doi: 10.3799/dqkx.2020.042

    格陵兰岛冰盖消融时空特征(2003~2015年)及其对海平面上升的贡献

    doi: 10.3799/dqkx.2020.042
    基金项目: 

    国家自然科学基金面上项目 41874090

    国家自然科学基金面上项目 41774091

    中央高校基本科研业务费专项资金资助项目 CUGL170204

    详细信息
      作者简介:

      彭桢燃(1992-), 男, 硕士研究生, 主要从事时变卫星重力场处理解释以及冰冻圈地表质量平衡方面的研究.ORCID: 0000-0001-8038-3993.E-mail: zhenran.peng@gmail.com

      通讯作者:

      王林松, ORCID: 0000-0002-3980-479X.E-mail: wanglinsong@cug.edu.cn

    • 中图分类号: P731

    Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015

    • 摘要: 研究格陵兰冰盖(GrIS)质量变化异常速率可以帮助了解异常气候事件驱动海平面变化的机制.聚焦于2010~2012年GrIS质量变化的异常速率,及其对海平面指纹(SLF)和相对海平面(RSL)变化的贡献.通过联合2003~2015年GRACE月重力场数据和表面质量平衡(SMB)数据,采用mascon拟合法及网格尺度因子恢复泄漏,获得了6个流域的质量变化时空分布.基于海平面变化方程(SLE)并考虑负荷自吸引效应估算了SLF的空间分布.结果表明,2003~2015年间GrIS总质量变化速率分别为-288±7 Gt/a及-275±1 Gt/a;而在2010~2012年间速率相应地增加至-456±30 Gt/a及-464±38 Gt/a,该时期格陵兰西北海岸及东南沿海地区呈现出大量冰盖融化,其对海平面的贡献变化呈现倒“V”型(即先升后降),而全球平均海平面变化呈现出明显的正“V”型(即先降后升).另外,GrIS融化对海平面的贡献约为31%,造成全球平均RSL增加了0.07 cm/a,而对斯堪的纳维亚及北欧地区的RSL贡献为-0.6 cm/a,GrIS融化造成的远海地区RSL上升速率比全球平均RSL速率高近30%.

       

    • 图  1  格陵兰岛流域

      流域划分据Rignot et al. (2011);NO.北部,NE.东北部,SE.东南部,SW.西南部,CW.中西部,NW.西北部

      Fig.  1.  Greenland drainage basins

      图  2  1960~2011年的累积SMB均方根误差

      Fig.  2.  Root mean square errors of accumulated SMB values during 1960 to 2011

      图  3  GrIS流域的mascons(a)和扩展的mascons的目标源区域(b)

      每个颜色区域代表一个mascon

      Fig.  3.  Mascons for the GrIS drainage basins (a) and the extended mask of six mascons (b)

      图  4  实际和扩展mascon拟合GRACE月系数得到的整个GrIS的质量变化时间序列

      Fig.  4.  Time series for the entire GrIS from the exact and extended mascons to fit monthly GRACE coefficients

      图  5  GRACE计算的GrIS冰盖质量平衡线性趋势

      a.2003~2009年;b.2010~2012年;c.2013~2015年;d.2003~2015年

      Fig.  5.  GRACE-derived linear trends of GrIS ice mass balance

      图  6  RACMO2.3累积SMB(mmWE/a)趋势

      Fig.  6.  The trend of accumulated SMB (mmWE/a) obtained from the RACMO2.3

      图  7  GrIS冰质量变化

      图a~d分别为GrIS实际mascon、北部、东北部和东南部扩展mascon(经尺度因子恢复);图e~h为GrIS、西南部、中西部和西北部的扩展mascon拟合结果.红线为2003年1月到2015年12月GRACE时间序列,蓝线为2003年1月到2015年12月累积SMB异常的时间序列.浅蓝色条带区域代表2010年1月到2012年12月的时间跨度

      Fig.  7.  Ice mass change for GrIS

      图  8  2003年1月至2015年12月期间由GrIS质量变化引起的海平面指纹(SLF)趋势(a)和地球弹性响应对SLF的贡献(b)

      蓝色等值线为平均RSL或重静态(barystatic)海平面当量

      Fig.  8.  Trends in the sea level fingerprint (SLF) due to mass change of GrIS (a) and contributions from the Earth's elastic response (b) from January 2003 to December 2015

      图  9  所有流域的实际mask(a)和扩展mask(b)的区域核函数

      Fig.  9.  Sensitivity kernel for the truly mask (a) and the extended mask (b) of all drainage basins

      图  10  基于不同mask与泄漏恢复方法的格陵兰东北部区域平均质量变化

      Fig.  10.  Regional average mass change in northeastern Greenland based on the optimal averaging kernel and data-driven approach

      图  11  每个子流域(a)和整个GrIS地区(b)的GRACE去除SMB后的残差

      Fig.  11.  Residuals obtained from GRACE after removing SMB for each drainage basin (a) and the entire GrIS (b)

      图  12  格陵兰岛MODIS数据中的平均近地表空气温度

      Fig.  12.  Average near-surface air temperatures from MODIS data in Greenland

      图  13  由2003~2015年测高数据得到的全球平均海平面变化及其分量的贡献

      以上均移除了季节性信号;绿色竖条表示GrIS对总质量变化的贡献率(GRACE数据有效时段内的GrIS与总质量变化的比率)

      Fig.  13.  Global mean sea level (GMSL), total freshwater input from land (without Greenland) and steric sea level changes, and GrIS contribution from altimetry during 2003-2015

      表  1  6个子流域基于扩展mascon拟合法的尺度因子

      Table  1.   Scale factors of six basins derived with the extended mascon fitting approach

      NO NE SE SW CW NW
      NO_extended 0.952 0.014 0.000 0.011 -0.005 0.062
      NE_extended 0.126 1.063 0.059 -0.031 0.056 0.112
      SE_extended -0.007 -0.021 0.954 0.190 0.071 -0.013
      SW_extended 0.012 -0.003 0.071 0.960 -0.098 -0.012
      CW_extended -0.042 0.036 0.151 0.136 1.045 0.050
      NW_extended 0.181 0.049 -0.039 -0.033 -0.008 0.964
      累积尺度因子 1.223 1.138 1.196 1.235 1.061 1.163
      下载: 导出CSV
    • [1] A, G. , Wahr, J. , Zhong, S. J. , 2013. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572. https://doi.org/10.1093/gji/ggs030
      [2] Adhikari, S. , Ivins, E. R. , Larour, E. , 2017. Mass Transport Waves Amplified by Intense Greenland Melt and Detected in Solid Earth Deformation. Geophysical Research Letters, 44(10): 4965-4975. https://doi.org/10.1002/2017gl073478
      [3] Bamber, J. L. , Layberry, R. L. , Gogineni, S. P. , 2001. A New Ice Thickness and Bed Data Set for the Greenland Ice Sheet: 1. Measurement, Data Reduction, and Errors. Journal of Geophysical Research: Atmospheres, 106(D24): 33773-33780. https://doi.org/10.1029/2001jd900054
      [4] Bamber, J. L. , Riva, R. E. M. , Vermeersen, B. L. A. , et al. , 2009. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 324(5929): 901-903. https://doi.org/10.1126/science.1169335
      [5] Beckley, B. D. , Callahan, P. S. , Hancock III, D. W. , et al. , 2017. On the "Cal-Mode" Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11): 8371-8384. https://doi.org/10.1002/2017jc013090
      [6] Boening, C. , Willis, J. K. , Landerer, F. W. , et al. , 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012gl053055
      [7] Bolch, T. , Sandberg Sørensen, L. , Simonsen, S. B. , et al. , 2013. Mass Loss of Greenland's Glaciers and Ice Caps 2003-2008 Revealed from ICESat Laser Altimetry Data. Geophysical Research Letters, 40(5): 875-881. https://doi.org/10.1002/grl.50270
      [8] Box, J. E. , Fettweis, X. , Stroeve, J. , et al. , 2012. Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers. The Cryosphere, 6(4): 821-839. https://doi.org/10.5194/tc-6-821-2012
      [9] Chen, G. D. , Zhang, S. J. , 2019. Elevation and Volume Change Determination of Greenland Ice Sheet Based on ICESat Observations. Chinese Journal of Geophysics, 62(7): 2417-2428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201907006.htm
      [10] Cheng, M. K. , Tapley, B. D. , Ries, J. C. , 2013. Deceleration in the Earth's Oblateness. Journal of Geophysical Research: Solid Earth, 118(2): 740-747. https://doi.org/10.1002/jgrb.50058
      [11] Dziewonski, A. M. , Anderson, D. L. , 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
      [12] Ettema, J. , van den Broeke, M. R. , van Meijgaard, E. , et al. , 2009. Higher Surface Mass Balance of the Greenland Ice Sheet Revealed by High-Resolution Climate Modeling. Geophysical Research Letters, 36(12): L12501. https://doi.org/10.1029/2009gl038110
      [13] Farrell, W. E. , 1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics, 10(3): 761-797. https://doi.org/10.1029/rg010i003p00761
      [14] Farrell, W. E. , Clark, J. A. , 1976. On Postglacial Sea Level. Geophysical Journal International, 46(3): 647-667. https://doi.org/10.1111/j.1365-246x.1976.tb01252.x
      [15] Fasullo, J. T. , Boening, C. , Landerer, F. W. , et al. , 2013. Australia's Unique Influence on Global Sea Level in 2010-2011. Geophysical Research Letters, 40(16): 4368-4373. https://doi.org/10.1002/grl.50834
      [16] Forsberg, R. , Sørensen, L. , Simonsen, S. , 2017. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38: 89-104. https://doi.org/10.1007/s10712-016-9398-7
      [17] Gardner, A. S. , Moholdt, G. , Cogley, J. G. , et al. , 2013. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134): 852-857. https://doi.org/10.1126/science.1234532
      [18] Hall, D. K. , Comiso, J. C. , DiGirolamo, N. E. , et al. , 2013. Variability in the Surface Temperature and Melt Extent of the Greenland Ice Sheet from MODIS. Geophysical Research Letters, 40(10): 2114-2120. https://doi.org/10.1002/grl.50240
      [19] Hanna, E. , Huybrechts, P. , Cappelen, J. , et al. , 2011. Greenland Ice Sheet Surface Mass Balance 1870 to 2010 Based on Twentieth Century Reanalysis, and Links with Global Climate Forcing. Journal of Geophysical Research: Atmospheres, 116(D24): D24121. https://doi.org/10.1029/2011jd016387
      [20] Howat, I. M. , Smith, B. E. , Joughin, I. , et al. , 2008. Rates of Southeast Greenland Ice Volume Loss from Combined ICESat and ASTER Observations. Geophysical Research Letters, 35(17): L17505. https://doi.org/10.1029/2008gl034496
      [21] Hurkmans, R. T. W. L. , Bamber, J. L. , Davis, C. H. , et al. , 2014. Time-Evolving Mass Loss of the Greenland Ice Sheet from Satellite Altimetry. The Cryosphere, 8: 1725-1740. https://doi.org/10.5194/tc-8-1725-2014
      [22] Jacob, T. , Wahr, J. , Pfeffer, W. T. , et al. , 2012. Recent Contributions of Glaciers and Ice Caps to Sea Level Rise. Nature, 482(7386): 514-518. https://doi.org/10.1038/nature10847
      [23] Jentzsch, G., 1997. Earth Tides and Ocean Tidal Loading. In: Wilhelm, H., Zürn, W., Wenzel, H. G., eds., Tidal Phenomena. Springer, Heidelberg.
      [24] Khan, S. A. , Wahr, J. , Bevis, M. , et al. , 2010. Spread of Ice Mass Loss into Northwest Greenland Observed by GRACE and GPS. Geophysical Research Letters, 37(6): L06501. https://doi.org/10.1029/2010gl042460
      [25] Liu, L. , Khan, S. A. , van Dam, T. , et al. , 2017. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading. Journal of Geophysical Research: Solid Earth, 122(1): 677-691. https://doi.org/10.1002/2016jb013494
      [26] Lythe, M. B. , Vaughan, D. G. , 2001. BEDMAP: A New Ice Thickness and Subglacial Topographic Model of Antarctica. Journal of Geophysical Research: Solid Earth, 106(B6): 11335-11351. https://doi.org/10.1029/2000jb900449
      [27] Milne, G. A. , Mitrovica, J. X. , Davis, J. L. , 1999. Near-Field Hydro-Isostasy: The Implementation of a Revised Sea-Level Equation. Geophysical Journal International, 139(2): 464-482. https://doi.org/10.1046/j.1365-246x.1999.00971.x
      [28] Mitrovica, J. X. , Tamisiea, M. E. , Davis, J. L. , et al. , 2001. Recent Mass Balance of Polar Ice Sheets Inferred from Patterns of Global Sea-Level Change. Nature, 409(6823): 1026-1029. https://doi.org/10.1038/35059054
      [29] Nghiem, S. V. , Hall, D. K. , Mote, T. L. , et al. , 2012. The Extreme Melt across the Greenland Ice Sheet in 2012. Geophysical Research Letters, 39(20): L20502. https://doi.org/10.1029/2012gl053611
      [30] Noël, B. , van de Berg, W. J. , Machguth, H. , et al. , 2016. A Daily, 1 km Resolution Data Set of Downscaled Greenland Ice Sheet Surface Mass Balance (1958-2015). The Cryosphere, 10(5): 2361-2377. https://doi.org/10.5194/tc-10-2361-2016
      [31] Noël, B. , van de Berg, W. J. , van Wessem, J. M. , et al. , 2018. Modelling the Climate and Surface Mass Balance of Polar Ice Sheets Using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12(3): 811-831. https://doi.org/10.5194/tc-12-811-2018
      [32] Peltier, W. R. , Andrews, J. T. , 1976. Glacial-Isostatic Adjustment-I. The Forward Problem. Geophysical Journal of the Royal Astronomical Society, 46(3): 605-646. https://doi.org/10.1111/j.1365-246x.1976.tb01251.x
      [33] Ran, J. , Ditmar, P. , Klees, R. , et al. , 2018. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach. Journal of Geodesy, 92(3): 299-319. https://doi.org/10.1007/s00190-017-1063-5
      [34] Rignot, E. , Velicogna, I. , van den Broeke, M. R. , et al. , 2011. Acceleration of the Contribution of the Greenland and Antarctic Ice Sheets to Sea Level Rise. Geophysical Research Letters, 38(5): L05503. https://doi.org/10.1029/2011gl046583
      [35] Rodell, M. , Houser, P. R. , Jambor, U. , et al. , 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381
      [36] Schrama, E. J. O. , Wouters, B. , Rietbroek, R. , 2014. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data. Journal of Geophysical Research: Solid Earth, 119(7): 6048-6066. https://doi.org/10.1002/2013jb010923
      [37] Shepherd, A. , Ivins, E. R. , A, G. , et al. , 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111): 1183-1189. https://doi.org/10.1126/science.1228102
      [38] Sutterley, T. C. , Velicogna, I. , Csatho, B. , et al. , 2014. Evaluating Greenland Glacial Isostatic Adjustment Corrections Using GRACE, Altimetry and Surface Mass Balance Data. Environmental Research Letters, 9(1): 014004. https://doi.org/10.1088/1748-9326/9/1/014004
      [39] Swenson, S. , Chambers, D. , Wahr, J. , 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007jb005338
      [40] Swenson, S. , Wahr, J. , 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): 2193. doi: 10.1029/2001JB000576/full
      [41] Syed, T. H. , Famiglietti, J. S. , Rodell, M. , et al. , 2008. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resources Research, 44(2): W02433. https://doi.org/10.1029/2006wr005779
      [42] Tamisiea, M. E. , Hill, E. M. , Ponte, R. M. , et al. , 2010. Impact of Self-Attraction and Loading on the Annual Cycle in Sea Level. Journal of Geophysical Research Atmospheres: Oceans, 115(C7): C07004. https://doi.org/10.1029/2009jc005687
      [43] Tapley, B. D. , Bettadpur, S. , Ries, J. C. , et al. , 2004. GRACE Measurements of Mass Variability in the Earth System. Science, 305(5683): 503-505. https://doi.org/10.1126/science.1099192
      [44] van Angelen, J. H. , van den Broeke, M. R. , Wouters, B. , et al. , 2014. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surveys in Geophysics, 35(5): 1155-1174. https://doi.org/10.1007/s10712-013-9261-z
      [45] van den Broeke, M. R. , Bamber, J. , Ettema, J. , et al. , 2009. Partitioning Recent Greenland Mass Loss. Science, 326(5955): 984-986. https://doi.org/10.1126/science.1178176
      [46] van den Broeke, M. R. , Enderlin, E. M. , Howat, I. M. , et al. , 2016. On the Recent Contribution of the Greenland Ice Sheet to Sea Level Change. The Cryosphere, 10(5): 1933-1946. https://doi.org/10.5194/tc-10-1933-2016
      [47] Velicogna, I. , Sutterley, T. C. , van den Broeke, M. R. , 2014. Regional Acceleration in Ice Mass Loss from Greenland and Antarctica Using GRACE Time-Variable Gravity Data. Geophysical Research Letters, 41(22): 8130-8137. https://doi.org/10.1002/2014gl061052
      [48] Velicogna, I. , Wahr, J. , 2006. Acceleration of Greenland Ice Mass Loss in Spring 2004. Nature, 443(7109): 329-331. https://doi.org/10.1038/nature05168
      [49] Velicogna, I. , Wahr, J. , 2013. Time-Variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data. Geophysical Research Letters, 40(12): 3055-3063. https://doi.org/10.1002/grl.50527
      [50] Vishwakarma, B. D. , Devaraju, B. , Sneeuw, N. , 2016. Minimizing the Effects of Filtering on Catchment Scale GRACE Solutions. Water Resources Research, 52(8): 5868-5890. https://doi.org/10.1002/2016wr018960
      [51] Vishwakarma, B. D. , Horwath, M. , Devaraju, B. , et al. , 2017. A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11): 9824-9844. https://doi.org/10.1002/2017wr021150
      [52] Wahr, J. M., 2007. Time Variable Gravity from Satellites. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/b978-044452748-6.00176-0
      [53] Wang, L. S. , Chen, C. , Ma, X. , et al. , 2018. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE. Chinese Journal of Geophysics, 61(7): 2679-2690(in Chinese with English abstract). http://www.researchgate.net/publication/328824612_Sea_level_fingerprints_of_ice_sheet_melting_and_its_impacts_on_monitoring_results_of_GRACE
      [54] Wang, L. S. , Khan, S. A. , Bevis, M. , et al. , 2019. Downscaling GRACE Predictions of the Crustal Response to the Present-Day Mass Changes in Greenland. Journal of Geophysical Research: Solid Earth, 124(5): 5134-5152. https://doi.org/10.1029/2018jb016883
      [55] WCRP Global Sea Level Budget Group, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
      [56] Yang, K. , 2013. The Progress of Greenland Ice Sheet Surface Ablation Research. Journal of Glaciology and Geocryology, 35(1): 101-109(in Chinese with English abstract). http://www.researchgate.net/publication/260230405_The_Progress_of_Greenland_Ice_Sheet_Surface_Ablation_Research
      [57] Zhang, Q. Q. , Pan, Y. , Gong, H. L. , et al. , 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909014.htm
      [58] Zwally, H. J. , Li, J. , Brenner, A. C. , et al. , 2011. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming: 2003-07 versus 1992-2002. Journal of Glaciology, 57(201): 88-102. https://doi.org/10.3189/002214311795306682
      [59] 陈国栋, 张胜军, 2019. 利用ICESat数据确定格陵兰冰盖高程和体积变化. 地球物理学报, 62(7): 2417-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907006.htm
      [60] 王林松, 陈超, 马险, 等, 2018. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响. 地球物理学报, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
      [61] 杨康, 2013. 格陵兰冰盖表面消融研究进展. 冰川冻土, 35(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301013.htm
      [62] 张青全, 潘云, 宫辉力, 等, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  975
    • HTML全文浏览量:  215
    • PDF下载量:  99
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-27
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回