Genesis and Rapid Uplift-Erosion Characteristic of Hongshan Syenite Complex in Wuan, Hebei, China
-
摘要: 为了解洪山正长岩杂岩体的源区和成因,以及其形成过程中伴随的地表快速隆升-剥蚀现象,在详细野外地质调查的基础上,采用岩石学、地球化学、U-Pb年代学和锆石Lu-Hf同位素研究.获得洪山正长岩杂岩体内粗粒辉石正长岩和粗面岩锆石U-Pb定年结果分别为125.6±1.2 Ma和121.9±2.3 Ma,粗粒正长岩年龄介于二者之间;岩体属于高硅、富碱、富铝、贫镁、Mg#较低的准铝质-过铝质碱性岩,经历了大量地壳流体的改造;粗粒辉石正长岩锆石普遍发育年龄相近的核-边结构,核部εHf(t)为-5.0~-8.4,具有较高的U、Th、Pb含量,边部与同时期的粗面岩锆石特征一致εHf(t)为-11.3~-14.4,U、Th、Pb含量较低,表明锆石结晶初期岩浆具有地壳来源的特征;喷出相的粗面岩直接覆盖在中心相的粗粒正长岩上,这一现象说明洪山正长岩杂岩体形成过程中伴随了地表的快速隆升-剥蚀.洪山正长岩杂岩体的形成过程与拆沉作用关系密切,是华北克拉通减薄作用在地表浅部的响应.Abstract: In order to understand the source and genesis of the Hongshan syenite complex, and the rapid surface uplift-erosion phenomenon accompanying its formation, on the basis of detailed field geological surveys, petrology and geochemistry, U-Pb chronology and zircon Lu-Hf isotope studies were used. The result show that:the U-Pb dating of coarse pyroxene syenite and trachyte zircon in the Hongshan syenite complex yields age of 125.6±1.2 Ma and 121.9±2.3 Ma, respectively. Coarse syenite's age is between 125.6±1.2 Ma and 121.9±2.3 Ma, The rock belongs to high-silicon, alkali-rich, aluminum-rich, magnesium-depleted, and low-Mg# metaluminous-peraluminous alkaline rocks, that have undergone a lot of crustal fluid transformation; coarse pyroxene syenite. Coarse-grained pyroxene syenite zircon has a similar core-edge structure of common developmental age. The core εHf (t) is -5.0 to -8.4, which has a high U, Th, and Pb content. The edges are consistent with the zircon characteristics of the trachyte at the same period, εHf (t)=-11.3 to -14.4, and low content of U, Th, and Pb, which indicates that the magma in the early stage of crystallization of zircon has the characteristics of crustal origin. the coarse-faced rocks of the ejected facies are directly covered on the coarse-grained ortho rocks of the central facies. This phenomenon indicates that the formation process of Hongshan syenite complex was accompanied by rapid uplift and erosion of the surface. The formation process of the Hongshan syenite complex is closely related to demolition, which is the response of the North China Craton thinning in the shallow surface.
-
Key words:
- syenite complex /
- Mesozoic /
- zircon U-Pb chronology /
- geochemistry /
- Lu-Hf isotope /
- uplift-erosion /
- craton thinning
-
图 1 华北克拉通基底构造单元划分图(a)和邯邢地区区域地质图(b)
1.第四系;2.白垩纪火山岩地层;3.三叠纪沉积地层;4.二叠纪沉积地层;5.石炭纪沉积地层;6.奥陶纪沉积地层;7.前寒武变质地层;8.正长岩;9.二长岩;10.二长闪长岩;11.闪长岩;12.角闪闪长岩;13.橄榄辉长岩;14.辉橄岩;图a据Zhao et al.(2005);图b据张波等(2020b)
Fig. 1. Tectonic subdivision of the North China Craton (a) and geological map of the Handan-Xingtai area(b)
图 7 洪山正长岩杂岩体TAS图解(a)和AR-SiO2碱度率关系图解(b)
图a据Bas et al.(1986); 图b据Wright(1969);AR=w(Al2O3+CaO+K2O)+w(Na2O)/w(Al2O3)+w(CaO- K2O-Na2O),当1.0 < K2O/Na2O < 2.5时,K2O+Na2O用2 Na2O来代替
Fig. 7. TAS diagram (a) and AR-SiO2 diagram of the Hongshan syenite complex
图 8 洪山正长岩杂岩体A/CNK-A/NK关系图解
Fig. 8. A/CNK-A/NK diagram of the Hongshan syenite complex
图 9 洪山正长岩杂岩体球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石和原始地幔标准化值来自Sun and McDonough(1989); 华北克拉通上地壳、下地壳稀土和微量数据来自Yang et al.(2008)
Fig. 9. Chondrite-normalized REE patterns (a) and primitive mantle-normalize spider diagram (b) of the Hongshan syenite complex
表 1 洪山正长岩杂岩体锆石Lu-Hf同位素分析结果
Table 1. Zircon Lu-Hf isotopic compositions of the Hongshan syenite complex
点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 辉石正长岩(HS8-9) 02边a 120 0.015 350 0.000 534 0.282 322 0.000 025 -15.9 -13.3 1 297 2 318 -0.98 09幔b 126 0.030 764 0.001 100 0.282 357 0.000 034 -14.7 -12.0 1 267 2 218 -0.97 12 128 0.013 302 0.000 464 0.282 295 0.000 026 -16.9 -14.1 1 332 2 381 -0.99 13 126 0.022 695 0.000 805 0.282 375 0.000 029 -14.0 -11.3 1 232 2 174 -0.98 15 126 0.016 351 0.000 574 0.282 317 0.000 026 -16.1 -13.4 1 305 2 326 -0.98 17 125 0.033 420 0.001 185 0.282 368 0.000 032 -14.3 -11.6 1 255 2 190 -0.96 20 127 0.014 098 0.000 490 0.282 355 0.000 031 -14.7 -12.0 1 250 2 227 -0.99 21边c 125 0.058 072 0.001 915 0.282 451 0.000 038 -11.4 -8.8 1 160 1 973 -0.94 26核c 122 0.055 290 0.001 842 0.282 462 0.000 045 -11.0 -8.4 1 142 1 948 -0.94 27核b 117 0.073 324 0.002 435 0.282 477 0.000 034 -10.4 -8.0 1 139 1 909 -0.93 28边d 120 0.019 150 0.000 703 0.282 312 0.000 029 -16.3 -13.7 1 316 2 343 -0.98 29核d 128 0.075 022 0.002 503 0.282 557 0.000 032 -7.6 -5.0 1 024 1 696 -0.92 30幔d 124 0.024 476 0.000 835 0.282 337 0.000 033 -15.4 -12.7 1 286 2 274 -0.97 31核a 130 0.035 815 0.001 217 0.282 430 0.000 030 -12.1 -9.4 1 168 2 027 -0.96 粗面岩(HS8-25) 04 245 0.021 908 0.000 813 0.282 645 0.000 029 -4.5 0.8 855 1 375 -0.98 05 120 0.035 530 0.001 351 0.282 462 0.000 030 -11.0 -8.4 1 127 1 952 -0.96 10 2 498 0.017 085 0.000 641 0.281 372 0.000 026 -49.5 5.5 2 600 2 687 -0.98 11 2 498 0.023 036 0.000 811 0.281 412 0.000 026 -48.1 6.6 2 557 2 607 -0.98 12 260 0.026 863 0.000 990 0.282 581 0.000 025 -6.8 -1.2 949 1 529 -0.97 16 1 854 0.013 062 0.000 454 0.281 661 0.000 024 -39.3 1.5 2 197 2 497 -0.99 17 118 0.025 139 0.000 930 0.282 468 0.000 024 -10.8 -8.2 1 106 1 940 -0.97 21 2 529 0.019 641 0.000 666 0.281 368 0.000 025 -49.7 6.0 2 607 2 674 -0.98 23 121 0.020 208 0.000 818 0.282 379 0.000 038 -13.9 -11.3 1 227 2 168 -0.98 25 120 0.017 713 0.000 711 0.282 293 0.000 031 -16.9 -14.4 1 343 2 392 -0.98 -
[1] Bas, L., Maitre, L., Streckeisen, A. L., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [2] Chen, B., Jahn, B.M., Arakawa, Y., et al., 2004. Petrogenesis of the Mesozoic Intrusive Complexes from the Southern Taihang Orogen, North China Craton:Elemental and Sr-Nd-Pb Isotopic Constraints. Contributions to Mineralogy and Petrology, 148(4):489-501. https://doi.org/10.1007/s00410-004-0620-0 [3] Chen, B., Tian, W., Jahn, B.M., et al., 2008. Zircon SHRIMP U-Pb Ages and In-Situ Hf Isotopic Analysis for the Mesozoic Intrusions in South Taihang, North China Craton:Evidence for Hybridization between Mantle-Derived Magmas and Crustal Components. Lithos, 102(1-2):118-137. https://doi.org/10.1016/j.lithos.2007.06.012 [4] Deng, J.F., Mo, X.X., Zhao, H.L., et al., 2004. A New Model for the Dynamic Evolution of Chinese Lithosphere:'Continental Roots-Plume Tectonics'. Earth-Science Reviews, 65(3-4):223-275. https://doi.org/10.1016/j.earscirev.2003.08.001 [5] Institute of Regional Geology and Mineral Resources Survey in Hebei Province, 2017. The Regional Geology of China, Hebei Province. Geological Publishing House, Beijing, 135-248(in Chinese). [6] Huang, F.S., Xue, S.Z., 1990. Petrology and Geochemistry of the Han-Xing Intrusive Complex:Implications for Its Origin. Acta Petrologica Sinica, 6(4):40-45(in Chinese with English abstract). [7] Huo, Y.A., Su, S.G., Yang, Y.B., et al., 2019. The Evidence for Lithospheric Thinning of Mesozoic North China Craton:Taking Guzhen Intrusive Complex as an Example. Acta Petrologica Sinica, 35(4):989-1014(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.04.02 [8] Gao, S., Zhang, J. F., Xu, W. L., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 19(54):3367-3378. https://doi.org/10.1007/s11434-009-0395-9 http://www.springerlink.com/content/v2556212u2422025/ [9] Lesher, C.E., 1990. Decoupling of Chemical and Isotopic Exchange during Magma Mixing. Nature, 344(6263):235-237. https://doi.org/10.1038/344235a0 [10] Li, Q.L., 2016. "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3):405-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201603001 [11] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [12] Mo, X.X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5):1487-1493(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm [13] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://www.researchgate.net/publication/284476910_Granitoids_and_crustal_growth_in_the_east-Kunlun_Orogenic_Belt [14] Niu, Y.L., Liu, Y., Xue, Q.Q., et al., 2015. Exotic Origin of the Chinese Continental Shelf:New Insights into the Tectonic Evolution of the Western Pacific and Eastern China since the Mesozoic. Chinese Science Bulletin, 60(18):1598-1616. https://doi.org/10.1007/s11434-015-0891-z [15] Sun, J.F., Zhang, J.H., Yang, J.H., et al., 2019. Tracing Magma Mixing and Crystal-Melt Segregation in the Genesis of Syenite with Mafic Enclaves:Evidence from In-Situ Zircon Hf-O and Apatite Sr-Nd Isotopes. Lithos, 334:42-57. https://doi.org/10.1016/j.lithos.2019.03.011 [16] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [17] Sun, Y., Xiao, L., Zhan, Q.Y., et al., 2015. Petrogenesis of the Kuangshancun and Hongshan Intrusive Complexes from the Handan-Xingtai District:Implications for Iron Mineralization Associated with Mesozoic Magmatism in the North China Craton. Journal of Asian Earth Sciences, 113:1162-1178. https://doi.org/10.1016/j.jseaes.2015.08.003 [18] Wright, J.B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4):370-384. https://doi.org/10.1017/S0016756800058222 [19] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [20] Wu, F.Y., Yang, J.H., Liu, X.M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003 [21] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2):105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 [22] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2):143-173. https://doi.org/10.1016/S0009-2541(02)00018-9 [23] Xu, W.L., Yang, D.B., Pei, F.P., et al., 2009. Petrogenesis of Fushan High-Mg# Diorites from the Southern Taihang Mts. in the Central North China Craton:Resulting from Interaction of Peridotite-Melt Derived from Partial Melting of Delaminated Lower Continental Crust. Acta Petrologica Sinica, 25(8):1947-1961(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908019 [24] Xu, X.W., Bai, L.X., Wei, L.M., et al., 2019. Discussion on Initiation Time of the Latest Tectonic Movement in Break-up Region of the North China Craton. Earth Science, 44(5):1647-1660(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201905018 [25] Xu, Y.G., 2001. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel Beneath the Sino-Korean Craton in China:Evidence, Timing and Mechanism. Physics and Chemistry of the Earth Part A:Solid Earth and Geodesy, 26(9-10):747-757. https://doi.org/10.1016/S1464-1895(01)00124-7 [26] Xu, Y.G., Li, H.Y., Pang, C. J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Chinese Science Bulletin, 54(19):3379-3396. https://doi.org/10.1007/s11434-009-0346-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e200919004 [27] Yan, G.H., Cai, J.H., Ren, K.X., et al., 2007. Intraplate Extensional Magmatism of North China Craton and Break-up of Three Super Continents and Their Deep Dynamics. Geological Journal of China Universities, 13(2):161-174(in Chinese with English abstract). http://www.researchgate.net/publication/290813400_Intraplate_extensional_magmatism_of_North_China_Craton_and_break-up_of_three_supercontinents_and_their_deep_dynamics [28] Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2008. Petrogenesis of an Alkali Syenite-Granite-Rhyolite Suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton:Geochronological, Geochemical and Nd-Sr-Hf Isotopic Evidence for Lithospheric Thinning. Journal of Petrology, 49(2):315-351. https://doi.org/10.1093/petrology/egm083 [29] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x [30] Zhang, B., Su, S.G., Mo, X.X., et al., 2020a. Magmatic Response to Lithospheric Thinning of the North China Craton:Evidence from Porphyritic Aegirite-bearing Syenite in Wu'an, Hebei, China. Earth Science Frontiers, 27(3):168-181(in Chinese with English abstract). [31] Zhang, B., Su, S.G., Wang, G.D., et al., 2020b. Mineral Chemistry of Clinopyroxene from the Hongshan Syenite Complex in Wu'an, Hebei, China:Implication for Magma Evolution. Geology in China, 47(3):782-797(in Chinese with English abstract). [32] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2005. Geochemical Constraints on the Origin of Mesozoic Alkaline Intrusive Complexes from the North China Craton and Tectonic Implications.Lithos, 81(1-4):297-317. https://doi.org/10.1016/j.lithos.2004.12.015 [33] Zhang, Z.Z., Gu, L.X., Wu, C.Z., et al., 2006. Weiya Quartz Syenite in Early Indosinina from Eastern Tianshan Mountains:Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 22(5):1135-1149(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026606507 [34] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [35] Zhao, G.C., Zhai, M.G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications. Gondwana Research, 23(4):1207-1240. https://doi.org/10.1016/j.gr.2012.08.016 [36] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere. Science China:Earth Sciences, 61(4):353-385. https://doi.org/10.1007/s11430-017-9160-3 [37] Zhou, L., Chen, B., 2005. The Genesis and Significance of Hongshan Syenite in Southern Taihang:SHRIMP Age, Chemical Composition and Sr-Nd Isotopes Characteristics. Progress in Natural Science, 15 (11):1357-1365(in Chinese). [38] Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62(9):1340-1350. https://doi.org/10.1007/s11430-018-9356-y [39] Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10):1565-1587. https://doi.org/10.1007/s11430-012-4516-y [40] 黄福生, 薛绥洲, 1990.邯邢侵入体中幔源超镁铁质岩包体的发现及其矿物地球化学特征.岩石学报, 6(4):40-45. doi: 10.3321/j.issn:1000-0569.1990.04.004 [41] 河北省区域地质矿产调查研究所, 2017.中国区域地质志·河北志.北京:地质出版社, 135-248. [42] 霍延安, 苏尚国, 杨誉博, 等, 2019.中生代华北克拉通岩石圈减薄的证据——以河北武安固镇杂岩体为例.岩石学报, 35(4):989-1014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201904002 [43] 李秋立, 2016.离子探针锆石U-Pb定年的"高U效应".矿物岩石地球化学通报, 35(3):405-412. doi: 10.3969/j.issn.1007-2802.2016.03.001 [44] 莫宣学, 2019.岩浆作用与地球深部过程.地球科学, 44(5):1487-1493. doi: 10.3799/dqkx.2019.972 [45] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [46] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [47] 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [48] 许文良, 杨德彬, 裴福萍, 等, 2009.太行山南段符山高镁闪长岩的成因——拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果.岩石学报, 25(8):1947-1961. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908019 [49] 徐锡伟, 白鸾曦, 魏雷鸣, 等, 2019.华北克拉通破坏区最新构造运动起始时间讨论.地球科学, 44(5):1647-1660. doi: 10.3799/dqkx.2019.978 [50] 阎国翰, 蔡剑辉, 任康绪, 等, 2007.华北克拉通板内拉张性岩浆作用与三个超大陆裂解及深部地球动力学.高校地质学报, 13(2):161-174. doi: 10.3969/j.issn.1006-7493.2007.02.003 [51] 张波, 苏尚国, 莫宣学. 2020a.华北克拉通减薄的岩浆岩响应:来自河北武安洪山含霓石斑状正长岩的证据.地学前缘, 27(3):168-181. [52] 张波, 苏尚国, 王国栋, 等, 2020b.河北武安洪山正长岩杂岩体中单斜辉石矿物成分特征与岩浆演化过程.中国地质, 47(3):782-797. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi202003017 [53] 张遵忠, 顾连兴, 吴昌志, 等, 2006.东天山印支早期尾亚石英正长岩:成岩作用及成岩意义.岩石学报, 22(5):1135-1149. http://d.wanfangdata.com.cn/Periodical/ysxb98200605007 [54] 周凌, 陈斌, 2005.南太行洪山正长岩体的成因和意义:锆石SHRIMP年代学, 化学成分和Sr-Nd同位素特征.自然科学进展, 15(11):1357-1365. doi: 10.3321/j.issn:1002-008X.2005.11.013 -
dqkx-45-7-2571-Table1-2.doc