Zonation of Alteration Mineral and Primary Halo in the Wunuer Pb-Zn-Ag-Mo Ore Deposit, Inner Mongolia, NE China
-
摘要: 乌奴耳矿床位于内蒙古东部大兴安岭造山带中段中生代火山岩覆盖区,为近年来新发现的陆相火山岩型多金属矿床.为了对该矿区的进一步深部找矿勘查工作提供围岩蚀变和岩石地球化学信息,对乌奴耳矿床进行了详细的野外地质特征研究、岩石蚀变分带研究和原生晕研究.乌奴耳矿床中存在多期多阶段矿化特征:第1阶段斑岩型钼矿化,主要产于矿床深部的花岗斑岩体内;第2阶段岩浆热液(隐爆角砾岩)型铅锌矿化,主要产于花岗斑岩体顶部及其附近围岩的隐爆角砾岩中;第3阶段浅成低温热液型铅锌银矿化,主要产于浅部张性断裂构造中.矿区内存在至少两期与成矿关系密切的构造事件,张性断裂构造是重要的控矿因素和找矿标志.乌奴耳矿床中具有明显的围岩蚀变分带特征,蚀变矿物分布与已知矿体产状具有较好的对应关系,是重要的找矿标志之一.岩石原生晕异常分布与已知矿体具有较好的对应关系,具有明显的前缘晕-近矿晕-尾晕元素组合分带特征,能够为乌奴耳矿床深部找矿提供可靠信息.综合以上主要找矿信息特征,预测在乌奴耳矿床Ⅱ矿段207勘探线剖面深部有盲矿体存在.Abstract: The Wunuer ore deposit is a newly found terrestrial volcanic type deposit, which is located in the middle segment of the Great Xing'an range where is covered by Mesozoic volcanic rocks. In order to provide information for deep prospecting and exploration in this area, in this study, detailed field deposit geology, alteration mineral zonation and primary halo of wall rocks in the deposit were studied. There are obvious multi-stage mineralization characteristics in the Wunuer deposit, including (1) the first stage porphyry type molybdenum mineralization, which mainly occurs in the apical portion of the granite porphyry deep in the deposit; (2) the second stage magmatic hydrothermal fluid (cryptoexplosive breccia) type lead-zinc mineralization, which mainly occurs in cryptoexplosive breccia in the apical portion of the granite porphyry and surrounding wall rocks; (3) the third stage epithermal type lead-zinc-silver mineralization, which mainly occurs in fractures hosted by wall rock in shallow. We have identified at least two tectonic events closely related to ore forming process, which are important ore-controlling factors and prospecting markers. There is obvious wall rock alteration zone in the Wunuer deposit, and the altered mineral assemblage distribution has a good correspondence with the occurrence of ore body, which is one of the important processing markers. Primary halo anomalies of wall rocks are also well correlated with ore bodies, which show obvious lead-near-tail-halo elements zonation, which can provide reliable information for prospecting in the deep of the Wunuer deposit. Based on the above characteristics of ore prospecting information, it is predicted that there is blind ore body deep in the 207 exploration line in Ⅱ of the Wunuer deposit.
-
Key words:
- Wunuer /
- Inner Mongolia /
- primary halo /
- alteration mineral /
- XRF /
- XRD /
- mineralogy
-
图 1 大兴安岭地区地质、矿产分布
Fig. 1. Geological sketch of the Great Xing'an range, NE China, showing the location and age of the studied deposits
图 2 中国东北地区构造地质图(a)和乌奴耳矿床区域地质图(b)
Fig. 2. Tectonic setting of NE China (a) and regional geological map of the Wunuer deposit area (b)
图 6 乌奴耳矿床Ⅱ矿带207勘探线剖面
剖面位置在图 3中用红色实线标记
Fig. 6. Geological section along 207 exploration line of the Ⅱ ore zone in the Wunuer deposit
表 1 乌奴耳矿床207勘探线岩石地球化学背景值、异常下限
Table 1. Geochemical background and anomaly threshold of the indication elements in 207 exploration line in the Wunuer deposit
元素 Au Ag Cu Pb Zn Mo W As Sb Bi Sn Ni Hg 迭代次数 10 9 8 11 19 11 9 13 10 9 7 9 6 背景值 0.81 0.51 4.89 87.10 202.30 1.39 4.90 0.66 0.23 0.40 2.65 3.04 4.36 异常下限Ca 3.49 2.42 12.89 359.58 552.33 5.12 12.37 2.09 0.37 0.96 3.54 6.27 7.82 异常中带2Ca 6.97 4.83 25.79 719.17 1 104.66 10.23 24.75 4.18 0.74 1.92 7.09 12.53 15.64 异常内带4Ca 13.94 9.66 51.58 1 438.33 2 209.33 20.47 49.49 8.36 1.49 3.85 14.18 25.06 31.28 注:Au、Hg含量单位为10-9,其他元素单位为10-6. 表 2 岩石破碎度赋值规则
Table 2. Values of rating the crushing degree of rocks
破碎等级 破碎度赋值 局部破碎/轻微破碎 1 破碎较强/较严重 2 破碎严重/强烈 3 破碎带 4 极度破碎至泥质/土状 5 表 3 乌奴耳矿床207勘探线各元素相系数
Table 3. Correlation coefficients of metal elements in 207 exploration line in the Wunuer deposit
Au Ag Cu Pb Zn Mo W As Sb Bi Sn Ni Hg Au 1 Ag 0.900 1 Cu 0.689 0.719 1 Pb 0.806 0.846 0.813 1 Zn 0.753 0.802 0.840 0.908 1 Mo 0.663 0.675 0.614 0.666 0.614 1 W 0.637 0.604 0.579 0.604 0.558 0.489 1 As 0.750 0.644 0.671 0.691 0.656 0.532 0.528 1 Sb 0.558 0.520 0.611 0.564 0.644 0.453 0.429 0.624 1 Bi 0.783 0.836 0.589 0.665 0.685 0.641 0.597 0.474 0.469 1 Sn 0.625 0.590 0.568 0.542 0.545 0.627 0.628 0.489 0.537 0.617 1 Ni 0.051 0.084 0.263 -0.037 0.000 0.100 0.294 -0.025 -0.008 0.155 0.304 1 Hg 0.721 0.706 0.747 0.766 0.83 0.555 0.560 0.624 0.681 0.644 0.577 -0.09 1 表 4 乌奴耳矿床R型因子分析特征值、方差贡献以及元素的累计方差贡献
Table 4. Characteristic roots and variance explanation of R-factor analysis of the Wunuer deposit
因子 特征值 方差贡献(%) 累积方差贡献(%) F1 8.168 62.831 62.831 F2 1.311 10.081 72.912 F3 0.747 5.749 78.661 F4 0.588 4.52 83.181 F5 0.504 3.873 87.055 F6 0.471 3.624 90.679 F7 0.392 3.012 93.69 F8 0.261 2.007 95.698 F9 0.195 1.499 97.196 F10 0.137 1.052 98.248 F11 0.101 0.775 99.023 F12 0.069 0.533 99.556 F13 0.058 0.444 100 表 5 乌奴耳矿床R型因子载荷初始矩阵以及正交因子旋转的载荷矩阵
Table 5. Initial and orthometric rotating factor loading matrix of R-factor analysis in the Wunuer deposit
因子载荷初始矩阵 正交因子旋转的载荷矩阵 变量 因子 变量 因子 F1 F2 F1 F2 Au 0.904 -0.041 Au 0.883 0.197 Ag 0.903 -0.015 Ag 0.875 0.222 Cu 0.861 0.068 Cu 0.813 0.291 Pb 0.905 -0.183 Pb 0.921 0.061 Zn 0.901 -0.182 Zn 0.917 0.06 Mo 0.761 0.087 Mo 0.711 0.283 W 0.728 0.335 W 0.615 0.514 As 0.776 -0.189 As 0.798 0.021 Sb 0.71 -0.179 Sb 0.732 0.014 Bi 0.814 0.138 Bi 0.749 0.347 Sn 0.738 0.358 Sn 0.619 0.539 Ni 0.119 0.921 Ni -0.127 0.92 Hg 0.853 -0.235 Hg 0.884 -0.003 注:a旋转在3次迭代后收敛. 表 6 乌奴尔河北岸铅锌矿床207勘探线各钻孔原生晕轴向分带序列表
Table 6. Primary halo axial zoning sequences of each drills in 207 exploration line in the Wunuer deposit
钻孔编号 分带指数法 浓集中心法 ZK20701 Ag Pb Ni Sb Zn Sn Bi As Cu Au Mo W Ag Pb Ni Mo Sb Zn Sn Bi Cu As Au W ZK20702 As W Pb Sn Zn Sb Mo Ni Au Ag Cu Bi Mo Ag Zn Pb Ni W Au Cu Sn As Sb Bi ZK20703 Zn As Sn Mo Ag Pb W Sb Bi Cu Ni Au Zn Mo As Sn Pb W Sb Ag Bi Cu Ni Au IIZK0701 W Au Pb Cu As Sb Zn Ag Bi Mo W Cu Pb As Sb Ag Zn Bi Mo Au ⅡZK0702 Ni Mo Cu Au Bi As Ag Sb W Pb Hg Zn Sn Bi As Au Sb W Ni Hg Pb Mo Cu Ag Zn Sn ⅡZK0712 W Ni Mo Hg Pb Sn Sb Zn Cu Au Ag Bi As Ni W Hg Mo Pb Sn Sb Zn Cu Au Ag As Bi ⅡZK0716 Pb Zn Mo Au As W Hg Ni Sb Sn Ag Bi Cu As W Ni Au Pb Mo Zn Sb Sn Ag Bi Hg Cu 表 7 乌奴耳矿床深部找矿模型表
Table 7. Comprehensive information model of prediction for deep ore processing in the Wunuer deposit
找矿标志 描述 构造 张性断裂构造为主要控矿构造,通常岩石破碎程度越高,矿化越强. 围岩蚀变 萤石、方解石等低温蚀变矿物常位于矿体上盘部位. 高岭石、滑石、叶腊石等中低温蚀变与矿体位置对应.石英、白云母等高温蚀变常位于矿体尾部. 岩石原生晕 As、Sb、Au、Ag等前缘晕元素高值异常区通常位于矿体上盘位置. Cu、Pb、Zn等近矿晕元素高值异常区与矿体位置对应. -
[1] Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. https://doi.org/10.1144/1467-7873/03-019 [2] Cheng, X. K., 2009. Geochemical Anomaly Characteristics and Prospecting Prediction of Shanhu W-Sn Deposit in Guangxi Province (Dissertation). Guilin University of Technology, Guilin (in Chinese with English abstract). [3] Dai, L., 2013. Geochemical Primary Halo and Deep Processing Prediction in the No. I Orebody of Xiasai Ag-Pb-Zn Deposit, Sichuan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [4] Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA-ICP-MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273 [5] Gu, A. L., 2016. Study on the Mineralization Processing and Metallogenic Model of Epithermal-Porphyry Copper-Polymetallic Mineralization System in the Central and Eastern of Great Xing'an Range, China (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [6] Hu, Y. J., 1991. Multivariate Analysis in Geochemistry. China University of Geosciences Press, Wuhan (in Chinese). [7] Huang, F., Liu, C. H., Xie, Y. W., et al., 2014. Characteristics of Fluid Inclusions of the Yili Mo Deposit in Inner Mongolia and Their Geological Significance. Geology and Exploration, 50(3): 445-453 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZKT201403005&dbcode=CJFD&year=2014&dflag=pdfdown [8] Jiang, J. Y., Cheng, J. P., Qi, S. H., 2006. Applied Geochemistry. China University of Geosciences Press, Wuhan (in Chinese). [9] Lai, H., 2010. Study on Petrogeochemical Prospecting and Prediction in Haojiahe Cu Deposit, Moudin (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract). [10] Li, J., Lü, X. B., Chen, C., et al., 2016. Geochronological and Geochemical Characteristics of the Rhyolites in Taerqi of Middle Da Hinggan Mountains and Their Geological Significance. Geological Bulletin of China, 35(6): 906-918 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201606008.htm [11] Li, Q., 2014. Geochemical Characteristics and Deep Processing of the Keyue Pb-Zn-Sb Polymetallic Deposit in Longzi County, South Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [12] Li, S., Zhao, R. D., Song, Y. T., et al., 2018. Reliability Comparison of Correlation, Clustering and Factor Analyses for Lithogeochemistry: Examples of Two Profiles in Galale and Gongqiongzuobo, Tibet. Geology and Exploration, 54(3): 574-583 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201803014.htm [13] Li, T. G., 2016. Metallogenesis of the Jiawula-Chaganbulagen Pb-Zn-Ag Ore Field, Inner Mongolia, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [14] Liao, S. Z., 2018. Discussion on the Application of Rock Alteration in Porphyry Copper Ore Prospecting. World Nonferrous Metals, (5): 134-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-COLO201805081.htm [15] Liu, C. M., 2006. Progress in Studies on Primary Halos of Ore Deposit. Acta Geologica Sinica, 80(10): 1528-1538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200610009.htm [16] Liu, C. M., Ma, S. M., 2007. The Main Achievements of the Study on Primary Halo in the Past 50 Years in China. Computing Techniques for Geophysical and Geochemical Exploration, 29(S1): 215-221 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT2007S1050.htm [17] Liu, H., Huang, H. X., Li, G. M., et al., 2015. Factor Analysis in Geochemical Survey of the Shangxu Gold Deposit, Northern Tibet. Geology in China, 42(4): 1126-1136 (in Chinese with English abstract). http://www.researchgate.net/publication/285219903_Factor_analysis_in_geochemical_survey_of_the_Shangxu_gold_deposit_northern_Tibet [18] Liu, H., Li, G. M., Huang, H. X., et al., 2017. Prospecting Potential Analysis of Deep No. Ⅲ Ore Section in the Shangxu Orogenic Gold Deposit, Bangong Co-Nujiang Metallogenic Belt, Tibet. Acta Geologica Sinica, 91(6): 1245-1258 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201706007&dbcode=CJFD&year=2017&dflag=pdfdown [19] Liu, H., Lü, X. B., Li, C. C., et al., 2013. Metallogenic Conditions and Ore-Searching Prospect at Depth of the Jincheng Gold Ore Deposit in Luoshan County, Henan Province. Geology and Prospecting, 49(2): 265-273 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201302011.htm [20] Mei, W., 2014. Mesozoic Magmatism and Mineralization in Northern Chifeng, Inner Mongolia (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [21] Niu, S. D., Li, S. R., Huizenga, J. M., et al., 2017. Zircon U-Pb Geochronology and Geochemistry of the Intrusions Associated with the Jiawula Ag-Pb-Zn Deposit in the Great Xing'an Range, NE China and Their Implications for Mineralization. Ore Geology Reviews, 86: 35-54. https://doi.org/10.1016/j.oregeorev.2017.02.007 [22] Ouyang, L., 2013. Geochemistry of Primary Halos in the Habuqihanshala Copper Deposit, Xinjiang Province (Dissertation). Central South University, Changsha (in Chinese with English abstract). [23] Pu, C. J., Liu, C. X., Xue, C. D., et al., 2004. Research on Primary Halos of Gaosong Ore Field in Gejiu Tin Mine. Acta Mineralogica Sinica, 24(2): 176-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200402014.htm [24] Qiao, Z., Jiang, Z. Q., Zhang, G. R., et al., 2017. Geophysical-Geochemical Anomaly Characteristics and Prospecting Effect in the Wunuer Lead and Zinc Silver Deposit of Inner Mongolia. Geophysical and Geochemical Exploration, 41(4): 634-640 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201704007.htm [25] Qing, C. S., 2012. The Primary Halo Characteristics and Deep Processing of Dashui Gold Deposit in Maqu, Gansu Province, China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [26] Shao, Y., 1984. Study on Elemental Primary Zoning of Ore Deposits and Its Application in Geochemical Prospecting. Geology and Exploration, 20(2): 47-55 (in Chinese). [27] Shao, Y., 1997. Hydrothermal Deposit Rock Survey (Primary Halo Method) Prospecting. Geological Publishing House, Beijing (in Chinese). [28] Siqin, B. L. G., 2014. Characteristic of Primary Halo and Prediction of Deep Ore-Body of the Xishangwanyangchang Ag Polymetallic Deposit, Inner Mongolia (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [29] Wang, C. M., Carranza, E. J. M., Zhang, S. T., et al., 2013. Characterization of Primary Geochemical Haloes for Gold Exploration at the Huanxiangwa Gold Deposit, China. Journal of Geochemical Exploration, 124: 40-58. https://doi.org/10.1016/j.gexplo.2012.07.011 [30] Wang, S. W., Wang, J. G., Zhang, D., et al., 2009. Geochronological Study on Taipinggou Molybdenum Deposit in Da Hinggan Mountain. Acta Petrologica Sinica, 25(11): 2913-2923 (in Chinese with English abstract). http://www.oalib.com/paper/1472540 [31] Wang, X. D., 2017. Magmatism and Mineralization of Ag- Pb-Zn Polymetallic Deposits in the Lindong District, Inner Mongolia (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [32] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). [33] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [34] Wu, G., 2006. Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Northern Da Hinggan Moutain (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [35] Yang, C., Guo, G. W., Guo, W. L., et al., 2008. Study on the Ore-Forming Material Source of Siwumuchang Gold Deposit in Inner Mongolia. Geology and Resources, 17(1): 26-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200801006.htm [36] Yang, X. P., Jiang, B., Yang, Y. J., 2019. Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area. Earth Science, 44(10): 3237-3251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910006.htm [37] Zhang, C., 2014. Petrogenesis and Tectonic Setting of Volcanic Rocks in Manketouebo Formation from Ta'erqi Area, Central Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [38] Zhang, T. F., Guo, S., Xin, H. T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn- (Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China. Editorial Committee of Earth Science, 44(1): 248-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201901019.htm [39] Zhang, Y. M., Gu, X. X., Cheng, W. B., et al., 2010. The Geochemical Features of Primary Halo and the Evaluation of Deep Mineralization Prospect of Liubagou Gold Deposit, Inner Mongolia. Earth Science Frontiers, 17(2): 209-221 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201002027.htm [40] Zhao, J. N., 2012. Geological and Geochemical Characteristics of Orebody and Deep Ore Exploration for Yangla Ore Deposit, Western Yunnan (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [41] 程小昆, 2009. 广西珊瑚钨锡矿床地球化学异常特征及找矿预测(硕士学位论文). 桂林: 桂林理工大学. [42] 代力, 2013. 四川夏塞银铅锌矿床I号矿体原生晕地球化学及深部预测(硕士学位论文). 北京: 中国地质大学. [43] 古阿雷, 2016. 大兴安岭中东部浅成热液-斑岩铜多金属成矿系统成矿地质过程与成矿模式(博士学位论文). 长春: 吉林大学. [44] 胡以铿, 1991. 地球化学中的多元分析. 武汉: 中国地质大学出版社. [45] 黄凡, 刘翠辉, 谢有炜, 等, 2014. 内蒙古宜里钼矿流体包裹体特征及其地质意义. 地质与勘探, 50(3): 445-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201403005.htm [46] 蒋敬业, 程建萍, 祁士华, 2006. 应用地球化学. 武汉: 中国地质大学出版社. [47] 赖华, 2010. 牟定郝家河铜矿区岩石地球化学找矿预测研究(硕士学位论文). 昆明: 昆明理工大学. [48] 李杰, 吕新彪, 陈超, 等, 2016. 大兴安岭中段塔尔气地区流纹岩年龄、地球化学特征及其地质意义. 地质通报, 35(6): 906-918. doi: 10.3969/j.issn.1671-2552.2016.06.008 [49] 李其, 2014. 藏南隆子县柯月铅锌锑多金属矿床地质特征及深部盲矿预测(硕士学位论文). 成都: 成都理工大学. [50] 李申, 赵润东, 宋岳庭, 等, 2018. 相关性分析、聚类分析、因子分析的可靠性对比: 以嘎拉勒和躬琼左波两条剖面为例. 地质与勘探, 54(3): 574-583. doi: 10.3969/j.issn.0495-5331.2018.03.013 [51] 李铁刚, 2016. 内蒙古甲乌拉-查干布拉根铅锌银矿田成矿作用(博士学位论文). 北京: 中国地质大学. [52] 廖松子, 2018. 试论斑岩型铜矿找矿中围岩蚀变的应用. 世界有色金属, (5): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201805081.htm [53] 刘崇民, 2006. 金属矿床原生晕研究进展. 地质学报, 80(10): 1528-1538. doi: 10.3321/j.issn:0001-5717.2006.10.006 [54] 刘崇民, 马生明, 2007. 我国原生晕研究50年的主要成果. 物探化探计算技术, 29(S1): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT2007S1050.htm [55] 刘洪, 黄瀚霄, 李光明, 等, 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用. 中国地质, 42(4): 1126-1136. doi: 10.3969/j.issn.1000-3657.2015.04.026 [56] 刘洪, 李光明, 黄瀚霄, 等, 2017. 班公湖-怒江成矿带商旭造山型金矿床Ⅲ号矿段深部找矿潜力研究. 地质学报, 91(6): 1245-1258. doi: 10.3969/j.issn.0001-5717.2017.06.006 [57] 刘洪, 吕新彪, 李春诚, 等, 2013. 河南罗山金城金矿床成矿条件与深部找矿前景分析. 地质与勘探, 49(2): 265-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302011.htm [58] 梅微, 2014. 内蒙古赤峰北部地区中生代岩浆作用与成矿研究(博士学位论文). 武汉: 中国地质大学. [59] 欧阳霖, 2013. 新疆哈不欺汉沙拉铜矿原生晕地球化学特征研究(硕士学位论文). 长沙: 中南大学. [60] 普传杰, 刘春学, 薛传东, 等, 2004. 个旧锡矿高松矿田原生晕研究. 矿物学报, 24(2): 176-180. doi: 10.3321/j.issn:1000-4734.2004.02.014 [61] 乔祯, 蒋职权, 张国瑞, 等, 2017. 内蒙古乌奴耳铅锌银矿物化探异常特征及找矿效果. 物探与化探, 41(4): 634-640. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704007.htm [62] 卿成实, 2012. 甘肃玛曲大水金矿原生晕特征及深部找矿预测(硕士学位论文). 成都: 成都理工大学. [63] 邵跃, 1984. 矿床元素原生分带的研究及其在地球化学找矿中的应用. 地质与勘探, 20(2): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198402009.htm [64] 邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿. 北京: 地质出版社. [65] 斯琴毕力格, 2014. 内蒙古西山湾羊场银多金属矿床原生晕特征及深部找矿预测(硕士学位论文). 西安: 长安大学. [66] 王圣文, 王建国, 张达, 等, 2009. 大兴安岭太平沟钼矿床成矿年代学研究. 岩石学报, 25(11): 2913-2923 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911022.htm [67] 王祥东, 2017. 内蒙古林东地区银铅锌多金属矿床成岩成矿作用(博士学位论文). 武汉: 中国地质大学. [68] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [69] 武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用(博士学位论文). 长春: 吉林大学. [70] 杨才, 郭根万, 郭万良, 等, 2008. 内蒙古四五牧场金矿床成矿物质来源研究. 地质与资源, 17(1): 26-29. doi: 10.3969/j.issn.1671-1947.2008.01.005 [71] 杨晓平, 江斌, 杨雅军, 2019. 大兴安岭早白垩世火山岩的时空分布特征. 地球科学, 44(10): 3237-3251. doi: 10.3799/dqkx.2019.080 [72] 张超, 2014. 大兴安岭中段塔尔气地区满克头鄂博组火山岩岩石成因及构造背景(硕士学位论文). 长春: 吉林大学. [73] 张天福, 郭硕, 辛后田, 等, 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约. 地球科学, 44(1): 248-267. doi: 10.3799/dqkx.2018.246 [74] 章永梅, 顾雪祥, 程文斌, 等, 2010. 内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景评价. 地学前缘, 17(2): 209-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002027.htm [75] 赵江南, 2012. 滇西羊拉铜矿矿体地质地球化学特征及深部找矿预测(博士学位论文). 武汉: 中国地质大学.