• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义

    徐畅 王岳军 钱鑫 张玉芝 余小清

    徐畅, 王岳军, 钱鑫, 张玉芝, 余小清, 2020. 苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义. 地球科学, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
    引用本文: 徐畅, 王岳军, 钱鑫, 张玉芝, 余小清, 2020. 苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义. 地球科学, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
    Xu Chang, Wang Yuejun, Qian Xin, Zhang Yuzhi, Yu Xiaoqing, 2020. Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications. Earth Science, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
    Citation: Xu Chang, Wang Yuejun, Qian Xin, Zhang Yuzhi, Yu Xiaoqing, 2020. Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications. Earth Science, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030

    苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义

    doi: 10.3799/dqkx.2020.030
    基金项目: 

    国家自然科学基金项目 41830211

    国家自然科学基金项目 U1701641

    国家重点研发计划项目 2016YFC0600303

    广东省基础与应用基础研究基金 2018B030312007

    广东省基础与应用基础研究基金 2019B1515120019

    详细信息
      作者简介:

      徐畅(1996-), 男, 硕士研究生, 从事岩石大地构造和岩石地球化学的研究.ORCID:0000-0001-9590-9329.E-mail:xuch33@mail2.sysu.edu.cn

      通讯作者:

      钱鑫, E-mail:qianx3@mail.sysu.edu.cn

    • 中图分类号: P545

    Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications

    • 摘要: 苏门答腊岛位于巽他大陆西南缘,被中苏门答腊构造带分隔为东、西苏门答腊两地体.其中东苏门答腊地体的基底年龄和构造归属均未得到很好地约束.在东苏门答腊北部Takengon地区新识别出的花岗片麻岩进行了锆石U-Pb年代学、原位Hf同位素和全岩地球化学研究.年代学结果表明该套花岗片麻岩的206Pb/238U加权平均年龄为442 ±5 Ma(MSWD=1.03),代表其结晶年龄.锆石的εHft)介于-1.3至-7.8之间.地球化学研究表明,样品富SiO2(69.97%~74.30%)和Al2O3(13.90%~15.93%),相对贫TiO2(0.48%~0.61%)、MgO(0.54%~0.93%)和CaO(0.11%~0.25%).样品具高的A/CNK值(2.58~3.06)和CIPW刚玉体积百分含量(10.0%~11.4%),具有S型花岗岩的特征.其轻重稀土分异明显,富集LILE(Rb、Th、U),亏损HFSE(Nb、Ta、Ti).地球化学研究表明Takengon花岗片麻岩是变沉积岩部分熔融形成的.该套花岗片麻岩的发现证实了在东苏门答腊地块发育有前志留世基底岩石,其形成与原特提斯洋的演化有关.

       

    • 图  1  区域构造简图(a)和苏门答腊北部地质简图与采样点位置(b)

      Wang et al.(2016, 2018)修改

      Fig.  1.  Simplified geological map with tectonic frame of the region (a) and simplified geological map of northern Sumatra (b)

      图  2  苏门答腊Takengon花岗片麻岩样品野外照片(a)和显微照片(b, c)

      Q.石英;Kfs.钾长石;Ms.白云母

      Fig.  2.  Outcrop (a) and micrographic photos (b, c) of granitic gneissic samples from Takengon in Sumatra

      图  3  苏门答腊Takengon花岗片麻岩代表性锆石颗粒的阴极发光图像及其206Pb/238U年龄和εHf(t)值

      Fig.  3.  Cathodoluminescence (CL) image of representative zircon grains with their 206Pb/238U ages and εHf (t) values from the Takengon granitic gneissic samples in Sumatra

      图  4  Takengon花岗片麻岩的锆石U-Pb年龄谐和图和加权平均年龄图(a)、锆石U-Th图解(b)和锆石稀土元素球粒陨石标准化图解(c)

      Fig.  4.  Concordia and weighted mean age diagram of zircon U versus Pb data (a), Th-U diagram of zircon trace elements data (b) and chondrite-normalized REE diagram of zircons (c) for the representative samples of Takengon granitic gneissic

      图  5  苏门答腊Takengon花岗片麻岩样品的QAP图解(a)、CaO-FeOT+MgO-Al2O3-(Na2O+K2O)图解(b)、FeOT/MgO-10 000×Ga/Al图解(c)和10000×Ga/Al-(Zr+Nb+Ce+Y)图解(d)

      Fig.  5.  QAP diagram (a), CaO-FeOT+MgO-Al2O3-(Na2O+K2O) diagram (b), FeOT/MgO-10 000×Ga/Al diagram (c) and 10 000×Ga/Al-(Zr+Nb+Ce+Y) diagram (d) diagrams for the Takengon granitic gneissic samples in Sumatra

      图  6  苏门答腊Takengon花岗片麻岩的稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石标准化数据据Sun and McDonough(1989);原始地幔标准化数据据Taylor and McLennan(1985);滇西北和喜马拉雅早古生代花岗岩数据据Chen et al.(2007), 张泽明等(2008), Liu et al.(2009), 时超等(2010)Zhang et al.(2012)

      Fig.  6.  The patterns of the chondrite-normalized REE diagram (a) and primitive mantle-normalized trace elements spidergram (b) for the Takengon granitic gneissic in Sumatra

      图  7  苏门答腊Takengon花岗片麻岩样品的Rb/Sr-Rb/Ba图解(a)和稀土元素部分熔融模拟(b)

      Lachlan褶皱带和喜马拉雅强过铝花岗岩数据和端元混合曲线据Sylvester (1998); 南羌塘平均上地壳沉积岩数据据Gao et al. (1998),元素配分系数和矿物含量百分比数据据Hanson (1980);(a)中底图转引自Wang et al. (2016)

      Fig.  7.  Rb/Sr versus Rb/Ba (a) and simulation of partial melting for REE (b) for the Takengon granitic gneissic samples in Sumatra

      图  8  苏门答腊Takengon花岗片麻岩的锆石εHf(t)-年龄图解(a、b)

      苏门答腊碎屑锆石数据据Zhang et al.(2018);滇缅泰板块早古生代花岗质岩石数据据Chen et al.(2007)Liu et al.(2009)董美玲等(2012)Wang et al.(2013)蔡志慧等(2013)邢晓婉等(2015)康欢等(2016)崔晓琳等(2017)

      Fig.  8.  Zircon εHf (t) versus age diagram of Takengon granitic gneiss in Sumatra (a, b)

      图  9  滇缅泰板块早古生代花岗质岩石年龄及构造背景

      图中数据参考文献见Chen et al.(2007)Liu et al.(2009)董美玲等(2012)李再会等(2012)刘琦胜等(2012)熊昌利等(2012)Wang et al.(2013)蔡志慧等(2013)邢晓婉等(2015)Shi et al.(2016)康欢等(2016)崔晓琳等(2017)

      Fig.  9.  Summary of age and tectonic settings data of the Early Paleozoic granitic rocks in the Sibumasu block

      表  1  苏门答腊Takengon花岗片麻岩样品全岩主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major and trace elements analytical results for the Takengon granitic gneissic samples in Sumatra

      样品号 18SM-23-3 18SM-23-4 18SM-23-5 18SM-23-6 18SM-23-7
      SiO2 71.80 69.97 70.12 74.30 71.14
      TiO2 0.53 0.61 0.48 0.58 0.53
      Al2O3 14.62 15.76 13.93 13.90 15.26
      Fe2O3T 3.54 3.80 5.20 3.65 3.65
      MnO 0.04 0.05 0.06 0.02 0.07
      MgO 0.61 0.85 0.93 0.54 0.55
      CaO 0.18 0.24 0.25 0.11 0.17
      Na2O 0.10 0.10 0.10 0.02 0.09
      K2O 4.77 4.68 4.25 3.97 4.79
      P2O5 0.15 0.17 0.15 0.07 0.15
      LOI 3.44 3.62 3.83 3.08 3.58
      Total 99.80 99.85 99.31 100.24 99.97
      A/CNK 2.58 2.77 2.66 3.06 2.70
      A/NK 2.71 2.98 2.89 3.20 2.85
      Sc 8.04 10.1 8.40 8.57 7.74
      V 48.0 60.0 45.0 51.0 48.0
      Cr 18.0 22.0 17.0 36.0 16.0
      Co 4.63 5.57 5.36 7.12 4.99
      Ni 4.62 5.55 7.18 5.81 5.16
      Ga 18.9 23.8 18.5 19.7 19.8
      Rb 167 202 167 147 173
      Sr 27.2 14.0 27.1 52.3 24.0
      Y 26.1 35.2 31.9 28.8 32.8
      Zr 207 229 201 238 202
      Nb 13.2 16.6 12.2 13.9 13.4
      Cs 8.70 11.6 12.6 5.03 7.00
      Ba 634 539 598 711 554
      La 32.4 33.2 28.8 46.0 45.1
      Ce 66.4 70.2 60.1 94.6 91.1
      Pr 8.29 8.81 7.62 11.8 11.4
      Nd 31.3 33.7 28.9 44.4 42.1
      Sm 5.89 6.88 5.96 7.97 8.23
      Eu 0.84 0.88 0.88 0.88 1.04
      Gd 5.43 6.54 5.78 6.94 7.30
      Tb 0.91 1.16 1.00 1.08 1.19
      Dy 5.39 7.19 6.05 6.04 6.86
      Ho 1.11 1.52 1.29 1.25 1.39
      Er 3.31 4.58 3.95 3.77 4.10
      Tm 0.54 0.72 0.64 0.58 0.63
      Yb 3.51 4.73 4.18 3.91 4.12
      Lu 0.53 0.74 0.65 0.59 0.61
      Hf 7.46 8.40 7.11 8.66 7.28
      Ta 1.32 1.60 1.24 1.17 1.40
      Pb 2403 2737 3041 1239 1316
      Th 16.5 18.0 15.7 13.6 16.1
      U 3.41 3.31 2.78 3.48 2.33
      下载: 导出CSV
    • [1] Barber, A.J., 2000.The Origin of the Woyla Terranes in Sumatra and the Late Mesozoic Evolution of the Sundaland Margin.Journal of Asian Earth Sciences, 18(6):713-738.https://doi.org/10.1016/s1367-9120(00)00024-9 doi: 10.1016/S1367-9120(00)00024-9
      [2] Barber, A.J., Crow, M.J., 2009.Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys.Island Arc, 18(1):3-20. doi: 10.1111/j.1440-1738.2008.00631.x
      [3] Blichert-Toft, J., Albarede, F., 1997.The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. doi: 10.1016/S0012-821X(97)00040-X
      [4] Booi, M., van Waveren, I.M., van Konijnenburg-van Cittert, J.H.A., et al., 2008.New Material of Macralethopteris from the Early Permian Jambi Flora (Middle Sumatra, Indonesia) and Its Palaeoecological Implications.Review of Palaeobotany and Palynology 152(3-4):101-112. https://doi.org/10.1016/j.revpalbo.2008.04.009
      [5] Brookfield, M.E., 1993.The Himalayan Passive Margin from Precambrian to Cretaceous Times.Sedimentary Geology, 84 (1-4):1-35. https://doi.org/10.1016/0037-0738(93)90042-4
      [6] Cai, Z.H., Xu, Z.Q., Duan, X.D., et al., 2013.Early Stage of Early Paleozoic Orogenic Event in Western Yunnan Province, Southeastern Margin of Tibet Plateau.Acta Petrologica Sinica, 29(6):2123-2140(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306019
      [7] Chen, F.K., Li, X.H., Wang, X.L., et al., 2007.Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China.International Journal of Earth Sciences, 96:1179-1194. doi: 10.1007/s00531-006-0146-y
      [8] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections.Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b
      [9] Claisse, F., Blanchette, J.S., 2007.Physics and Chemistry of Borate Fusion for X Ray Fluorescence Spertroscopists.East China University of Science and Technology Press, Shanghai(in Chinese).
      [10] Cui, X.L., Deng, J., Zhang, D., et al., 2017.Chronological and Geochemical Characteristics of the Early Silurian Metamorphic Granites in Tengchong Block, Western Yunnan and Their Implications.Acta Petrologica Sinica, 33(7):2085-2098(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707008
      [11] de Bievre, P., Taylor, P.D.P., 1993.Table of the Isotopic Compositions of the Elements.International Journal of Mass Spectrometry and Ion Processes, 123(2):149-166.https://doi.org/10.1016/0168-1176(93)87009-h doi: 10.1016/0168-1176(93)87009-H
      [12] Dong, M.L., Dong, G.C., Mo, X.X., et al., 2012.Geochronology and Geochemistry of the Early Palaeozoic Granitoids in Baoshan Block, Western Yunnan and Their Implications.Acta Petrologica Sinica, 28(5):1453-1464(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205009
      [13] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975.https://doi.org/10.1016/s0016-7037(98)00121-5 doi: 10.1016/S0016-7037(98)00121-5
      [14] Griffin, W.L., Powell, W.J., Pearson, N.J., et al., 2008.GLITTER:Data Reduction Software for Laser Ablation ICP-MS Laser Ablatio-ICP-MS in the Earth Sciences.Mineralogical Association of Canada, Short Curse Series, 40:204-207. http://ci.nii.ac.jp/naid/20001269558
      [15] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8
      [16] Hanson, G.N., 1980.Rare Earth Elements in Petrogenetic Studies of Igneous Systems.Annual Review of Earth and Planetary Sciences, 8(1):371-406. https://doi.org/10.1146/annurev.ea.08.050180.002103
      [17] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. doi: 10.1039/c2ja30078h
      [18] Huang, C.W., Li, H., Lai, C.K., 2019.Genesis of the Binh Do Pb-Zn Deposit in Northern Vietnam:Evidence from H-O-S-Pb Isotope Geochemistry.Journal of Earth Science, 30(4):679-688. doi: 10.1007/s12583-019-0872-2
      [19] Ji, W.H., Chen, S.J., Zhao, Z.M., et al., 2009.Discovery of the Cambiran Volcanic Rocks in the Xainza Area, Gangdese Orogenic Belt, Tibet, China and Its Significance.Geological Bulletin of China, 28(9):1350-1354(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909026
      [20] Kang, H., Li, D.P., Chen, Y.L., et al., 2016.Origin and Tectonic Implications of the Early Paleozoic High-Si Granite in the Eastern Baoshan Block, Yunnan.Geoscience, 30(5):1026-1037(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201605008
      [21] Li, Z.H., Lin, S.L., Cong, F., et al., 2012.U-Pb Ages of Zircon from Metamorphic Rocks of the Gaoligongshan Group in Western Yunnan and Its Tectonic Significance.Acta Petrologica Sinica, 28(5):1529-1541(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205015
      [22] Lin, S.L., Cong, F., Gao, Y.J., et al., 2012.LA-ICP-MS Zircon U-Pb Age of Gneiss from Gaoligong Mountain Group on the Southeastern Margin of Tengchong Block in Western Yunnan Province.Geological Bulletin of China, 31(2-3):258-263(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202008
      [23] Liu, Q.S., Ye, P.S., Wu, Z.H., 2012.SHRIMP Zircon U-Pb Dating and Petrogeochemistry of Ordovician Granite Bodies in the Southern Segment of Gaoligong Mountain, Western Yunnan Province.Geological Bulletin of China, 31(2-3):250-257(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202007
      [24] Liu, S., Hu, R.Z., Gao, S., et al., 2009.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Age and Origin of Early Palaeozoic I-Type Granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China.Journal of Asian Earth Sciences, 36(2-3):168-182.https://doi.org/10.1016/s0016-7037(98)00121-5 doi: 10.1016/j.jseaes.2009.05.004
      [25] Ludwig, K.R., 2001.Using Isoplot/EX, Version 2.49: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronological Center Special Publication, Berkeley, 1-55.
      [26] Ma, C., Tang, Y.J., Ying, J.F., 2019.Magmatism in Subduction Zones and Growth of Continental Crust.Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm
      [27] McCarthy, A.J., Jasin, B., Haile, N.S., 2001.Middle Jurassic Radiolarian Chert, Indarung, Padang District, and Its Implications for the Tectonic Evolution of Western Sumatra, Indonesia.Journal of Asian Earth Sciences, 119(1-2):31-44.https://doi.org/10.1016/s1367-9120(00)00009-2 http://www.sciencedirect.com/science/article/pii/S1367912000000092
      [28] Metcalfe, I., 1996.Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Journal of the Geological Society of Australia, 43(6):605-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/08120099608728282
      [29] Metcalfe, I., 2000.The Bentong-Raub Suture Zone.Journal of Asian Earth Sciences, 18(6):691-712.https://doi.org/10.1016/s1367-9120(00)00043-2 doi: 10.1016/S1367-9120(00)00043-2
      [30] Miller, C., Thoni, M., Frank, W., et al., 2001.The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine, 138(3):237-251.https://doi.org/10.1017/s0016756801005283 doi: 10.1017/S0016756801005283
      [31] Qian, X., Wang, Y.J., Feng, Q.L., et al., 2016.Petrogenesis and Tectonic Implication of the Late Triassic Post-Collisional Volcanic Rocks in Chiang Khong, NW Thailand.Lithos, 248-251:418-431. https://doi.org/10.1016/j.lithos.2016.01.024
      [32] Scherer, E., Munker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293:1766-1766. doi: 10.1126/science.293.5536.1766
      [33] Shi, C., Li, R.S., He, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Dating for Gneissic Garnet-Bearing Biotite Granodiorite in the Yadong Area, Southern Tibet, China and Its Geological Significance.Geological Bulletin of China, 29(12):1745-1753(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012003
      [34] Shi, Y.R., Lawford, A.J., Wu, Z.H., et al., 2016.Age and Origin of Early Paleozoic and Mesozoic Granitoids in Western Yunnan Province, China:Geochemistry, SHRIMP Zircon Ages, and Hf-in-Zircon Isotopic Compositions.Journal of Geology, 24(5):617-630. http://adsabs.harvard.edu/abs/2016JG....124..617S
      [35] Sláma, J., Kostler, J., Condon, D.J., et al., 2008.Pleŝovice:A New Natural Reference Material for U-Pb and Hf Isotopic Analysis.Chemical Geology, 249(1-2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
      [36] Stampfli, G.M., Hochard, C., Vérard, C., et al., 2013.The Formation of Pangea.Tectonophysics, 593:1-19. https://doi.org/10.1016/j.tecto.2013.02.037
      [37] Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [38] Sylvester, P.J, 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3
      [39] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution.Oxford Press Blackwell, Oxford.
      [40] Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica, 63(3-4):553-556.https://doi.org/10.1016/s0016-7037(98)00274-9 http://www.onacademic.com/detail/journal_1000035464940710_94bc.html
      [41] Wang, Y.J., Yang, T.X., Zhang, Y.Z., et al., 2020.Late Paleozoic Back-Arc Basin in the Indochina Block:Constraints from the Mafic Rocks in the Nan and Luang Prabang Tectonic Zones, Southeast Asia.Journal of Asian Earth Sciences, 195:104333. https://doi.org/10.1016/j.jseaes.2020.104333
      [42] Wang, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Magmatic Zircons from I-, S-and A-Type Granitoids in Tibet:Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study.Journal of Asian Earth Sciences, 53:59-66. doi: 10.1016/j.jseaes.2011.07.027
      [43] Wang, Y.J., He, H.Y., Cawood, P.A., et al., 2016.Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications.Lithos, 266-267:264-286. https://doi.org/10.1016/j.lithos.2016.09.012
      [44] Wang, Y.J., Qian, X., Cawood, P.A., et al., 2018.Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments.Earth-Science Reviews, 186:195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
      [45] Wang, Y.J., Xing, X.W., Cawood, P.A., et al., 2013.Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana.Lithos, 182-183:67-85. doi: 10.1016/j.lithos.2013.09.010
      [46] Watson, E.B., Wark, E.D.A., Thomas, E.J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contrib Mineral Petrol, 151:413-433. doi: 10.1007/s00410-006-0068-5
      [47] Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geost and Newslett, 19(1):1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
      [48] Xie, C.M., Song, Y.H., Wang, M., et al., 2019.Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau:Detrital Zircon U-Pb Geochronological Evidence.Earth Science, 44(7):2224-2233(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907003.htm
      [49] Xing, X.W., Zhang, Y.Z., Wang, Y.J., et al., 2015.Zircon U-Pb Geochronology and Hf Isotopic Composition of the Ordovician Granitic Gneisses in Ximeng Area, West Yunnan Province.Geotectonica et Metallogenia, 39(3):470-480(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201503012
      [50] Xiong, C.L., Jia, X.C., Yang, X.J., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Ordovician Mengmao Monzogranite in Longling Area of Western Yunnan Province and Its Tectonic Setting.Geological Bulletin of China, 31(2-3):277-286(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202010
      [51] Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12(in Chinese with English abstract). http://www.researchgate.net/publication/283961080_Pan-African_and_Early_Paleozoic_orogenic_events_in_the_Himalaya_terrane_Inference_from_SHRIMP_U-Pb_zircon_ages
      [52] Yang, X.J., Jia, X.C., Xiong, C.L., et al., 2012.LA-ICP-MS Zircon U-Pb Age of Metamorphic Basic Volcanic Rock in Gongyanghe Group of Southern Gaoligong Mountain, Western Yunnan Province, and Its Geological Significance.Geological Bulletin of China, 31(2-3):264-276(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202009
      [53] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth Planetary Science, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [54] Zhang, X.R., Chung, S.L., Lai, Y.M., et al., 2018.Detrital Zircons Dismember Sibumasu in East Gondwana.Journal of Geophysical Research:Solid Earth, 123(7):6098-6110.https://doi.org/10.1029/2018jb015780 doi: 10.1029/2018JB015780
      [55] Zhang, Y.Z., Wang, Y.J., Srithai, B., et al., 2016.Petrogenesis for the Chiang Dao Permian High-Iron Basalt and Its Implication on the Paleotethyan Ocean in NW Thailand.Journal of Earth Science, 27(3):425-434. https://doi.org/10.1007/s12583-015-0646-4
      [56] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002
      [57] Zhang, Z.M., Wang, J.L., Shen, K., et al., 2008.Paleozoic and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet.Acta Petrologica Sinica, 24(7):1627-1637(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807019
      [58] Zhao, G.C., Wang, Y.J., Huang, B.C., et al., 2018.Geological Reconstructions of the East Asian Blocks:From the Break up of Rodinia to the Assembly of Pangea.Earth-Science Reviews, 186:262-286. doi: 10.1016/j.earscirev.2018.10.003
      [59] Zhong, D.L., Wu, G.Y., Ji, J.Q., et al., 1998.Discovery of the Ophiolite in Southeastern Yunnan, China.Chinese Science Bulletin, 43:1365-1370. doi: 10.1360/csb1998-43-13-1365
      [60] 蔡志慧, 许志琴, 段向东, 等, 2013.青藏高原东南缘滇西早古生代早期造山事件.岩石学报, 29(6):2123-2140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306019
      [61] Claisse, F., Blanchette, J.S., 2007.硼酸盐熔融的物理与化学:献给X射线荧光光谱学工作者.上海:华东理工大学出版社.
      [62] 崔晓琳, 邓军, 张铎, 等, 2017.滇西腾冲地块高黎贡山群早志留世变质花岗岩体的年代学、地球化学特征及意义.岩石学报, 33(7):2085-2098. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707008
      [63] 董美玲, 董国臣, 莫宣学, 等, 2012.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义.岩石学报, 28(5):1453-1464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205009
      [64] 计文化, 陈守建, 赵振明, 等, 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 28(9):1350-1354. doi: 10.3969/j.issn.1671-2552.2009.09.026
      [65] 康欢, 李大鹏, 陈岳龙, 等, 2016.云南保山东缘早古生代高Si花岗岩的成因及构造意义.现代地质, 30(5):1026-1037. doi: 10.3969/j.issn.1000-8527.2016.05.008
      [66] 李再会, 林仕良, 丛峰, 等, 2012.滇西高黎贡山群变质岩的锆石年龄及其构造意义.岩石学报, 28(5):183-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205015
      [67] 林仕良, 丛峰, 高永娟, 等, 2012.滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 31(2-3):258-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202008
      [68] 刘琦胜, 叶培盛, 吴中海, 2012.滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征.地质通报, 31(2-3):250-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202007
      [69] 马超, 汤艳杰, 英基丰, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026
      [70] 时超, 李荣社, 何世平, 等, 2010.藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义.地质通报, 29(12):1745-1753. doi: 10.3969/j.issn.1671-2552.2010.12.003
      [71] 解超明, 宋宇航, 王明, 等, 2019.冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据.地球科学, 44(7):2224-2233. doi: 10.3799/dqkx.2019.024
      [72] 邢晓婉, 张玉芝, 王岳军, 等, 2015.西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义.大地构造与成矿学, 39(3):470-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201503012
      [73] 熊昌利, 贾小川, 杨学俊, 等, 2012.滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境.地质通报, 31(2-3):277-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202010
      [74] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501001
      [75] 杨学俊, 贾小川, 熊昌利, 等, 2012.滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 31(2-3):264-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202009
      [76] 张泽明, 王金丽, 沈昆, 等, 2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据.岩石学报, 24(7):1627-1637. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200807020.htm
    • dqkx-45-6-2077-Table1-3.pdf
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  715
    • HTML全文浏览量:  129
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-12-21
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回