• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江南造山带东段新元古代登山群年代学及大地构造意义

    张继彪 刘燕学 丁孝忠 张恒 石成龙

    张继彪, 刘燕学, 丁孝忠, 张恒, 石成龙, 2020. 江南造山带东段新元古代登山群年代学及大地构造意义. 地球科学, 45(6): 2011-2029. doi: 10.3799/dqkx.2020.024
    引用本文: 张继彪, 刘燕学, 丁孝忠, 张恒, 石成龙, 2020. 江南造山带东段新元古代登山群年代学及大地构造意义. 地球科学, 45(6): 2011-2029. doi: 10.3799/dqkx.2020.024
    Zhang Jibiao, Liu Yanxue, Ding Xiaozhong, Zhang Heng, Shi Chenglong, 2020. Geochronology of the Dengshan Group in the Eastern Jiangnan Orogen, and Its Tectonic Significance. Earth Science, 45(6): 2011-2029. doi: 10.3799/dqkx.2020.024
    Citation: Zhang Jibiao, Liu Yanxue, Ding Xiaozhong, Zhang Heng, Shi Chenglong, 2020. Geochronology of the Dengshan Group in the Eastern Jiangnan Orogen, and Its Tectonic Significance. Earth Science, 45(6): 2011-2029. doi: 10.3799/dqkx.2020.024

    江南造山带东段新元古代登山群年代学及大地构造意义

    doi: 10.3799/dqkx.2020.024
    基金项目: 

    中国地质调查局地质调查项目 DD20190370

    中国地质调查局地质调查项目 121201111120117

    详细信息
      作者简介:

      张继彪(1992-), 男, 在读博士, 主要从事大地构造学研究

      通讯作者:

      刘燕学

    • 中图分类号: P548;P597

    Geochronology of the Dengshan Group in the Eastern Jiangnan Orogen, and Its Tectonic Significance

    • 摘要: 为探讨江南造山带东段新元古代构造演化机制,对江南造山带东段登山群砂岩及火山岩进行锆石U-Pb年代学及地球化学研究.SHRIMP锆石U-Pb定年显示登山群高山组凝灰岩年龄为855.5±8.2 Ma,叶家组流纹岩年龄为798.1±7.8 Ma.地球化学数据显示高山组砂岩物源区为大陆岛弧,形成于弧后盆地;叶家组火山岩为双峰式火山岩,流纹岩轻稀土富集,重稀土亏损;高FeOt/(FeOt+MgO)和Ga/Al值、低CaO、MgO,εHft)值为7.9~10.9,富集Ba、Th、U等大离子亲石元素和高场强元素,强烈亏损Sr、P、Ti的特征显示其为典型的A型花岗岩,来自初生地壳的部分熔融;玄武岩属拉斑玄武岩系列,具有OIB特征,富集轻稀土及大离子亲石元素,来自软流圈地幔的部分熔融.双峰式火山岩形成于板内伸展背景.年代学及地球化学结果表明新元古代江南造山带东段扬子与华夏板块拼贴时限为855~800 Ma之间.造山结束之后地幔物质上涌,华南板块进入裂谷期.

       

    • 图  1  江南造山带东段区域构造简图

      Fig.  1.  Tectonic map of the eastern Jiangnan orogen

      图  2  华南地区江南造山带东段登山群区域地质简图

      Fig.  2.  Geological sketch map of the Dengshan area in the eastern Jiangnan orogen, South China

      图  3  登山群综合柱状图、野外及显微照片

      a、b.叶家组流纹岩及镜下特征;c、d.叶家组玄武岩及镜下特征;e、f.拔竹坑组底部砾岩;g.高山组凝灰岩镜下特征;h.高山组岩屑砂岩镜下特征;Qz.石英;Pl.长石;Bt.黑云母;Py.辉石;Mt.磁铁矿

      Fig.  3.  Stratigraphy, field photos and section photomicrograph of the Dengshan Group

      图  4  凝灰岩和流纹岩锆石CL图像

      红色圆圈为锆石206Pb/238U年龄分析点,蓝色圆圈为锆石Hf同位素分析点

      Fig.  4.  Cathodoluminescence images of the zircons from tuff and rhyolites

      图  5  高山组凝灰岩和叶家组流纹岩U⁃Pb年龄谐和图

      Fig.  5.  U⁃Pb concordia plots for zircons from Gaoshan and Yejia Formations

      图  6  叶家组流纹岩岩石分类图解

      a.Nb/Y⁃(Zr/TiO2)×10-4分类图解(Winchester and Floyd, 1976);b.SiO2⁃FeOt/MgO分类图解;c.SiO2⁃K2O分类图解;d.SiO2⁃FeOt/(FeOt+MgO)分类图解

      Fig.  6.  Rock classification diagram of the rhyolites in the Yejia Formation

      图  7  叶家组流纹岩及玄武岩稀土元素配分曲线及微量元素蛛网图

      McDonough and Sun(1995)

      Fig.  7.  Chondrite⁃normalized REE patterns and trace elements spider diagram of rhyolites and basalts of Yejia Formation

      图  8  高山组凝灰岩和叶家组流纹岩锆石Hf同位素演化图解

      800 Ma基性岩数据邓奇(2016)

      Fig.  8.  Plots of εHf(t)⁃age for zircon grains from the tuff in the Gaoshan Formation and rhyolite in the Yejia Formation

      图  9  江南造山带中、新元古代地层对比

      高林志等(2014)修改

      Fig.  9.  Correlation of Meso–Neoproterozoic strata in the Jiangnan orogenic belt

      图  10  高山组砂岩Th/Sr⁃Zr/Sc(a)和TiO2⁃Ni(b)物源判别图解

      Floyd et al.(1989)

      Fig.  10.  Source rock discrimination diagrams plots for the Gaoshan Formation sediments.(a) Th/Sr⁃Zr/Sc diagram, (b) TiO2⁃Ni plot

      图  11  高山组砂岩La⁃Th⁃Sc和Th⁃Sc⁃Zr/10判别图解

      Bhatia and Crook (1986);A.大洋岛弧;B.大陆岛弧;C.活动陆缘;D.被动陆缘

      Fig.  11.  La⁃Th⁃Sc and Th⁃Sc⁃Zr/10 diagram of Gaoshan Formation sediments

      图  12  叶家组流纹岩判别图解(据Whalen et al., 1987)

      Fig.  12.  Geochemical discrimination diagrams of Whalen et al.(1987) for the rhyolites in the Yejia Formation

      图  13  叶家组流纹岩及同时期基性岩主微量元素哈克图解

      800 Ma基性岩数据夏林圻等(2009)

      Fig.  13.  Harker diagrams of the rhyolites in the Yejia Formation

      图  14  叶家组流纹岩和玄武岩构造背景判别图解

      (1)Nb⁃Y⁃Ga、Nb⁃Y⁃Ce图解(Eby,1992);(b)Nb⁃Y图解(Pearce et al., 1984);(c)Ti/1 000⁃V图解;(d)Zr⁃Zr/Y图解

      Fig.  14.  Plots of the rhyolites and basalts from Yejia Formation

      图  15  江南造山带东段860~760 Ma构造演化模式

      Yao et al.(2014)修改

      Fig.  15.  Simplified cartoon model for the evolution of the eastern Jiangnan orogen from 860~760 Ma

    • [1] BGMRJX(Bureau of Geology and Mineral Resources Jiangxi Province), 2017.Regional Geology of Jiangxi Province.Geology Publishing House, Beijing(in Chinese).
      [2] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/bf00375292
      [3] Chen, S.B., Xu, Z.F., 1988.U-Pb Zircon Geochronology of Presinian Meta Volcanic Rocks in Northeastern Jiangxi Province, and Its Tectonic Implications.Regional Geology of China, 7(2):91-92(in Chinese).
      [4] Cui, X.Z., Jiang, X.S., Wang, J., et al., 2014.Filling Sequence and Evolution Model of the Neoproterozoic Rift Basin in Central Yunnan Province, South China:Response to the Breakup of Rodinia Supercontinent.Acta Sendimentologica Sinica, 32(3):399-409(in Chinese with English abstract).
      [5] Deng, Q., Wang, J., Wang, Z.J., et al., 2016.Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen.Geotectonica et Metallogenia, 40(4):753-771(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010
      [6] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [7] Ernst, R.E., Desnoyers, D.W., 2004.Lessons from Venus for Understanding Mantle Plumes on Earth.Physics of the Earth and Planetary Interiors, 146(1-2):195-229. https://doi.org/10.1016/j.pepi.2003.10.012
      [8] Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry, 53(1):277-303. https://doi.org/10.2113/0530277
      [9] Floyd, P.A., Winchester, J.A., Park, R.G., 1989.Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland.Precambrian Research, 45(1-3):203-214. https://doi.org/10.1016/0301-9268(89)90040-5
      [10] Gao, L.Z., Dai, C.G., Liu, Y.X., et al., 2010.Zircon SHRIMP U-Pb Dating of Tuff Bed of the Sibao Group and Implication for Its Stratigraphic Significance.Geological Bulletin of China, 29(9):1259-1268(in Chinese with English abstract).
      [11] Gao, L.Z., Yang, M.G., Ding, X.Z., et al., 2008.SHRIMP U-Pb Zircon Dating of Tuff in the Shuangqiaoshan and Heshangshen Groups in South China-Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt.Geological Bulletin of China, 27(10):1744-1758(in Chinese with English abstract).
      [12] Gao, L.Z., Zhang, H., Ding, X.Z., et al., 2014.SHRIMP Zircon U-Pb Dating of the Jiangshan-Shaoxing Faulted Zone in Zhejiang and Jiangxi.Geological Bulletin of China, 33(6):763-775(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201406001
      [13] Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385:219-229. https://doi.org/10.1038/385219a0
      [14] King, P.L., Chappell, B.W., Allen, C.M., et al., 2001.Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite.Austrilan Journal of Earth Sciences, 48(4):501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
      [15] Li, X.H., 1999.U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block:Timing of Neoproterozoic Jinning:Orogeny in SE China and Implications for Rodinia Assembly.Precambrian Research, 97(1-2):43-57. https://doi.org/10.1016/s0301-9268(99)00020-0
      [16] Li, X.H., Li, W.X., Li, Z.X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia.Lithos, 102(1-2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007
      [17] Li, X.H., Li, W.X., Li, Z.X., et al., 2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks.Precambrian Research, 174(1-2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      [18] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a.Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca.825 Ma?Precambrian Research, 122(1-4):45-83. https://doi.org/10.1016/s0301-9268(02)00207-3
      [19] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b.Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume that Broke up Rodinia.Precambrian Research, 122(124):85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      [20] Li, Z.X., Wartho, J.A., Occhipinti, S., et al., 2007.Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia:New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints.Precambrian Research, 159(1-2):79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      [21] Liu, S.F., Peng, S.B., Kusky, T., et al., 2018.Origin and Tectonic Implications of an Early Paleozoic (460-440 Ma) Subduction-Accretion Shear Zone in the Northwestern Yunkai Domain, South China.Lithos, 322:104-128. https://doi.org/10.1016/j.lithos.2018.10.006
      [22] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [23] McLennan, S.M., Hemming, S.R., Taylor, S.R., et al., 1995.Early Proterozoic Crustal Evolution:Geochemical and Nd-Pb Isotopic Evidence from Metasedimentary Rocks, Southwestern North America.Geochimica et Cosmochimica Acta, 59(6):1153-1177. https://doi.org/10.1016/0016-7037(95)00032-u
      [24] Pearce, J., 1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      [25] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [26] Pitcher, W.S., 1983.Granite Type and Tectonic Environment.Mountain Building Processes, 19:40. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201003004
      [27] Shu, L.S., Zhou, G.Q., Shi, Y.S., et al., 1994.Study on the High Pressure Metamorphic Blueschist and Its Late Proterozoic Age in the Eastern Jiangnan Belt.Chinese Science Bulletin, 39:1200-1204.
      [28] Sobolev, A.V., Nikogosian, I.K., 1994.Petrology of Long-Lived Mantle Plume Magmatism:Hawaii, Pacific and Reunion Island, Indian Ocean.Petrology, 2:111-144.
      [29] Takagi, T., Orihashi, Y., Naito, K., et al., 1999.Petrology of a Mantle-Derived Rhyolite, Hokkaido, Japan.Chemical Geology, 160(4):425-445. https://doi.org/10.1016/s0009-2541(99)00111-4
      [30] Tang, Z.C., Wang, F.X., Zhou, H.W., et al., 2020.Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition:Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang.Earth Science, 45(1):180-193(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx202001014
      [31] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179. https://doi.org/10.1016/0024-4937(92)90029-x
      [32] Wang, J.Q., Shu, L.S., Santosh, M., 2017.U-Pb and Lu-Hf Isotopes of Detrital Zircon Grains from Neoproterozoic Sedimentary Rocks in the Central Jiangnan Orogen, South China:Implications for Precambrian Crustal Evolution.Precambrian Research, 294:175-188. https://doi.org/10.1016/j.precamres.2017.03.025
      [33] Wang, M., Dai, C.G., Wang, X.H., et al., 2011.In-Situ Zircon Geochronology and Hf Isotope of Muscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Continental Growth of the Southern China Block.Earth Science Frontiers, 18(5):213-223(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201105021
      [34] Wang, X.C., Li, X.H., Li, W.X., et al., 2007.Ca.825 Ma Komatiitic Basalts in South China:First Evidence for >1 500℃ Mantle Melts by a Rodinian Mantle Plume.Geology, 35(12):1103-1106. https://doi.org/10.1130/g23878a.1
      [35] Wang, X.L., Shu, L.S., Xing, G.F., et al., 2012.Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen:Evidence from ca. 800-760 Ma Volcanic Rocks.Precambrian Research, 222-223:404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      [36] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202
      [37] Winchester, J.A., Floyd, P.A., 1976.Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks.Earth and Planetary Science Letters, 28(3):459-469. https://doi.org/10.1016/0012-821x(76)90207-7
      [38] Xia, L.Q., Xia, Z.C., Li, X.M., et al., 2009.Mid-Neoproterozoic Rift-Related Volcanic Rocks in South China:Geological Records of Rifting and Break-up of the Supercontinent Rodinia.Northwestern Geology, 42(1):1-33(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xbdi200901002.htm
      [39] Yang, M.G., Liu, Y.G., Huang, Z.Z., et al., 2012.Subdivision of Meso-Neoproterozoic Strata in Jiangxi and a Correlation with the Neighboring Areas.Geology in China, 39(1):43-53(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201201005
      [40] Yao, J.L., Shu, L.S., Santosh, M., et al., 2013.Geochronology and Hf Isotope of Detrital Zircons from Precambrian Sequences in the Eastern Jiangnan Orogen:Constraining the Assembly of Yangtze and Cathaysia Blocks in South China.Journal of Asian Earth Sciences, 74:225-243. https://doi.org/10.1016/j.jseaes.2012.08.010
      [41] Yao, J.L., Shu, L.S., Santosh, M., et al., 2014.Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks.Precambrian Research, 243:39-62. doi: 10.1016/j.precamres.2013.12.027
      [42] Yao, J.L., Shu, L.S., Santosh, M., et al., 2015.Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China.Precambrian Research, 262:84-100. https://doi.org/10.1016/j.precamres.2015.02.021
      [43] Yu, J.H., O'Reilly, S.Y., Zhou, M.F., et al., 2012.U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block.Precambrian Research, 222-223:424-449. https://doi.org/10.1016/j.precamres.2011.07.014
      [44] Zeng, W., Zhou, H.W., Zhong, Z.Q., et al., 2005.Single Zircon U-Pb Ages and Their Tectonic Implications of Neoproterozoic Magmatic Rocks in Southeastern Guizhou, China.Geochimica, 34(6):548-556(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200506002
      [45] Zeng, W., Zhou, H.W., Zhong, Z.Q., et al., 2005.Single Zircon U-Pb Ages and Their Tectonic Implications of Neoproterozoic Magmatic Rocks in Southeastern Guizhou, China.Geochimica, 34(6):548-556(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200506002
      [46] Zhang, C.L., Santosh, M., Zou, H.B., et al., 2013.The Fuchuan Ophiolite in Jiangnan Orogen:Geochemistry, Zircon U-Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China.Lithos, 179:263-274. https://doi.org/10.1016/j.lithos.2013.08.015
      [47] Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018.Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China.Earth Science, 43(11):3837-3852(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811004
      [48] Zhang, S.H., Jiang, G.Q., Dong, J., et al., 2008.SHRIMP Zircon U-Pb Ages and Their Tectonic Implications of Wuqiangxi Formation in Banxi Area, South China.Science China:Earth Sciences, 38(12):1496-1503(in Chinese).
      [49] Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013.Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China):Geochronological and Petrogenetic Constraints from Meta-Basalts.Precambrian Research, 231:325-342. https://doi.org/10.1016/j.precamres.2013.03.016
      [50] Zhao, G.C., 2015.Jiangnan Orogen in South China:Developing from Divergent Double Subduction.Gondwana Research, 27(3):1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
      [51] Zhao, J.H., Li, Q.W., Liu, H., et al., 2018.Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator.Earth-Science Reviews, 187:1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      [52] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011.Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny.Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1
      [53] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008.Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China.Precambrian Research, 163(3-4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      [54] Zhou, G.Y., Wu, Y.B., Li, L., et al., 2018.Identification of ca.2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block.Precambrian Research, 314:240-263. https://doi.org/10.1016/j.precamres.2018.06.011
      [55] 陈思本, 徐祖丰, 1988.赣东北前震旦纪变质火山岩的同位素年龄及其地质意义.中国区域地质, 7(2):91-92. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD198802013.htm
      [56] 崔晓庄, 江新胜, 王剑, 等, 2014.滇中新元古代裂谷盆地充填序列及演化模式:对Rodinia超大陆裂解的响应.沉积学报, 32(3):399-409. http://d.old.wanfangdata.com.cn/Periodical/cjxb201403001
      [57] 邓奇, 王剑, 汪正江, 等, 2016.江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约.大地构造与成矿学, 40(4):753-771. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604010
      [58] 高林志, 戴传固, 刘燕学, 等, 2010.黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义.地质通报, 29(9):1259-1267. doi: 10.3969/j.issn.1671-2552.2010.09.001
      [59] 高林志, 杨明桂, 丁孝忠, 等, 2008.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄:对江南新元古代造山带演化的制约.地质通报, 27(10):1744-1758. doi: 10.3969/j.issn.1671-2552.2008.10.017
      [60] 高林志, 张恒, 丁孝忠, 等, 2014.江绍断裂带构造格局的新元古代U-Pb年代学依据.地质通报, 35(6):763-775. doi: 10.3969/j.issn.1671-2552.2014.06.001
      [61] 江西省地质矿产局, 2017.江西省区域地质志.北京:地质出版社
      [62] 唐增才, 汪发祥, 周汉文, 等, 2020.浙西开化地区新元古代(~800 Ma)洋陆俯冲来自活动陆缘弧火山岩序列组合的制约.地球科学, 45(1):180-193. doi: 10.3799/dqkx.2018.244
      [63] 王敏, 戴传固, 王雪华, 等, 2011.贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约.地学前缘, 18(5):213-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201105021
      [64] 夏林圻, 夏祖春, 李向民, 等, 2009.华南新元古代中期裂谷火山岩系:Rodinia超大陆裂谷化-裂解的地质纪录.西北地质, 42(1):1-33. doi: 10.3969/j.issn.1009-6248.2009.01.001
      [65] 杨明桂, 刘亚光, 黄志忠, 等, 2012.江西中新元古代地层的划分及其与邻区对比.中国地质, 39(1):43-53. doi: 10.3969/j.issn.1000-3657.2012.01.005
      [66] 曾雯, 周汉文, 钟增球, 等, 2005.黔东南新元古代岩浆岩单颗粒锆石U-Pb年龄及其构造意义.地球化学, 34(6):548-556. doi: 10.3321/j.issn:0379-1726.2005.06.002
      [67] 张克信, 徐亚东, 何卫红, 等, 2018.中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布.地球科学, 43(11):3837-3852. doi: 10.3799/dqkx.2018.339
      [68] 张世红, 蒋干清, 董进, 等, 2008.华南板溪群五强溪组SHRIMP锆石U-Pb年代学新结果及其构造地层学意义.中国科学:地球科学, 38(12):1496-1503.
    • 加载中
    图(15)
    计量
    • 文章访问数:  1152
    • HTML全文浏览量:  306
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-20
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回