Superimposed Structure and Evolution of Two-Stage Foreland Basin in Gulf of Papua
-
摘要: 巴布亚湾受澳大利亚板块与太平洋板块高速斜向汇聚的控制,经历了复杂的中、新生代构造演化.前人对巴布亚湾盆地结构构造特征的研究多是局部的、分散的,关于盆地的形成时间和动力学机制仍存在争议.利用覆盖全盆的钻井约束的高精度2D、3D地震资料,精细地刻画了盆地的结构和构造特征,揭示了巴布亚湾发育潘多拉和奥雷两期叠置的前陆盆地.潘多拉前陆盆地是形成于渐新世不整合面之上的晚渐新世-中中新世微型前陆盆地,走向为NNE.奥雷前陆盆地是发育在复杂的裂谷边缘之上的早中新世-现今的周缘前陆盆地,沿着弧形的巴布亚半岛延伸480 km;盆地走向在148°E发生转变,由西部的NW向转为东部的近EW向.潘多拉微前陆盆地被奥雷前陆盆地向南逐渐超覆的沉积地层覆盖,两个前陆盆地走向相互垂直,垂向上形成叠置结构.阐明了巴布亚湾新生代经历三期挤压事件及两期叠置的前陆盆地的形成演化,解决了盆地结构及区域构造演化认识的不足,理清了复杂陆缘环境从伸展到挤压多期构造事件的时序及动力学机制,为澳大利亚板块北缘的板块构造重建提供了盆内证据.Abstract: The Gulf of Papua has undergone complex evolution due to the oblique and rapid converging between the Australian and Pacific plates in boundary zone. However, since previous studies on the basin structural characteristics of the Gulf of Papua are mostly local and dispersed, the formation time and dynamics mechanism of the basin are still controversial. In this paper, the structural characteristics of the basin are described by using the high-precision 2D and 3D seismic data with drilling constraints covering the whole basin. It is revealed that there are two superposed foreland basins of Pandora and Aure foreland basins in the Gulf of Papua. The Pandora foreland basin is a Late Oligocene-Middle Miocene micro-foreland basin formed on the unconformity of the Oligocene trending NNE. The Aure foreland basin is an Early Miocene-Present peripheral foreland basin developed on the complex rift margin, extending 480 km along the curved Papua peninsula. The basin trend changes from NW in the west to near EW in the east at longitude 148°E. The Pandora micro-foreland basin is covered by sedimentary strata of the Aure foreland basin that gradually onlaps southward. The two foreland basins strike perpendicular to each other and form a superimposed structure vertically. This study elucidates the evolution of the two superimposed foreland basins of the Gulf of Papua, which underwent three-stage extrusion event in the Cenozoic, solving the lack of understanding of basin structure and regional tectonic evolution. In this paper, the temporal sequence and dynamic mechanism of the multi-stage tectonic events in the complex continental margin from extensional to compressional are clarified, providing evidence for plate tectonic reconstruction in the northern margin of the Australian Plate.
-
Key words:
- superimposed structure /
- tectonic evolution /
- extrusion /
- strike-slip /
- foreland basin /
- Gulf of Papua /
- structural geology
-
图 2 巴布亚湾盆地地层综合柱状图
岩性据Ott and Mann (2015)和Bulois et al.(2018)
Fig. 2. Simplified stratigraphic column of the basin in the Gulf of Papua
图 10 新几内亚晚渐新世碰撞示意图
Fig. 10. Schematic map of New Guinea during the collision in the Late Oligocene
-
[1] Abers, G. A., 2001. Evidence for Seismogenic Normal Faults at Shallow Dips in Continental Rifts. Geological Society, London, Special Publications, 187(1): 305-318. https://doi.org/10.1144/gsl.sp.2001.187.01.15 [2] Bailly, V., Pubellier, M., Ringenbach, J. C., et al., 2009. Deformation Zone 'Jumps' in a Young Convergent Setting: The Lengguru Fold-and-Thrust Belt, New Guinea Island. Lithos, 113(1-2): 306-317. https://doi.org/10.1016/j.lithos.2009.08.013 [3] Baldwin, S. L., Fitzgerald, P. G., Webb, L. E., 2012. Tectonics of the New Guinea Region. Annual Review of Earth and Planetary Sciences, 40(1): 495-520. https://doi.org/10.1146/annurev-earth-040809-152540 [4] Baldwin, S. L., Monteleone, B. D., Webb, L. E., et al., 2004. Pliocene Eclogite Exhumation at Plate Tectonic Rates in Eastern Papua New Guinea. Nature, 431(7006): 263-267. https://doi.org/10.1038/nature02846 [5] Bulois, C., Pubellier, M., Chamot-Rooke, N., et al., 2018. Successive Rifting Events in Marginal Basins: The Example of the Coral Sea Region (Papua New Guinea). Tectonics, 37(1): 3-29. https://doi.org/10.1002/2017tc004783 [6] Dong, H. W., Xu, Z. Q., Cao, H., et al., 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804002.htm [7] Gaina, C., Müller, D., 2007. Cenozoic Tectonic and Depth/Age Evolution of the Indonesian Gateway and Associated Back-Arc Basins. Earth-Science Reviews, 83(3-4): 177-203. https://doi.org/10.1016/j.earscirev.2007.04.004 [8] Gaina, C., Müller, R. D., Royer, J. Y., et al., 1999. Evolution of the Louisiade Triple Junction. Journal of Geophysical Research: Solid Earth, 104(B6): 12927-12939. https://doi.org/10.1029/1999jb900038 [9] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4 [10] Harrington, L., Zahirovic, S., Flament, N., et al., 2017. The Role of Deep Earth Dynamics in Driving the Flooding and Emergence of New Guinea since the Jurassic. Earth and Planetary Science Letters, 479: 273-283. https://doi.org/10.1016/j.epsl.2017.09.039 [11] Holm, R. J., Rosenbaum, G., Richards, S. W., 2016. Post 8 Ma Reconstruction of Papua New Guinea and Solomon Islands: Microplate Tectonics in a Convergent Plate Boundary Setting. Earth-Science Reviews, 156: 66-81. https://doi.org/10.1016/j.earscirev.2016.03.005 [12] Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804(in Chinese with English abstract). http://www.researchgate.net/publication/346932749_Magmatic_record_of_continuous_Neo-Tethyan_subduction_after_initial_India-Asia_collision_in_the_central_part_of_southern_Tibet [13] Joshima, M., Okuda, Y., Murakami, F., et al., 1986. Age of the Solomon Sea Basin from Magnetic Lineations. Geo-Marine Letters, 6(4): 229-234. https://doi.org/10.1007/bf02239584 [14] Jr Winn, R. D., Pousai, P., 2010. Synorogenic Alluvial-Fan-Fan-Delta Deposition in the Papuan Foreland Basin: Plio-Pleistocene Era Formation, Papua New Guinea. Australian Journal of Earth Sciences, 57(5): 507-523. https://doi.org/10.1080/08120099.2010.492909 [15] Liu, X., Guo, J. H., 2014. Structural Evolution of Papua Basin. Journal of Yangtze University (Natural Science Edition), 11(26): 12-15(in Chinese). [16] Luo, Z. Q., Yang, H. Z., Liu, T. S., et al., 2012. Distinct Tectonic Evolutions and Its Effect on Hydrocarbon Accumulation of the Papuan Basin. Earth Science, 37(Suppl. 1): 143-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1016.htm [17] Lus, W. Y., McDougall, I., Davies, H. L., 2004. Age of the Metamorphic Sole of the Papuan Ultramafic Belt Ophiolite, Papua New Guinea. Tectonophysics, 392(1-4): 85-101. https://doi.org/10.1016/j.tecto.2004.04.009 [18] Mahoney, L., Hill, K., McLaren, S., et al., 2017. Complex Fold and Thrust Belt Structural Styles: Examples from the Greater Juha Area of the Papuan Fold and Thrust Belt, Papua New Guinea. Journal of Structural Geology, 100: 98-119. https://doi.org/10.1016/j.jsg.2017.05.010 [19] Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 [20] Ott, B., Mann, P., 2015. Late Miocene to Recent Formation of the Aure-Moresby Fold-Thrust Belt and Foreland Basin as a Consequence of Woodlark Microplate Rotation, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 16(6): 1988-2004. https://doi.org/10.1002/2014gc005668 [21] Pigram, C. J., Davies, H. L., 1987. Terranes and the Accretion History of the New Guinea Orogen. BMR Journal of Australian Geology & Geophysics, 10: 193-211. [22] Pigram, C. J., Davies, P. J., Feary, D. A., et al., 1989. Tectonic Controls on Carbonate Platform Evolution in Southern Papua New Guinea: Passive Margin to Foreland Basin. Geology, 17(3): 199. https://doi.org/10.1130/0091-7613(1989)0170199:tcocpe>2.3.co;2 doi: 10.1130/0091-7613(1989)0170199:tcocpe>2.3.co;2 [23] Pigram, C.J., Symonds, P.A., 1993. Eastern Papuan Basin: A New Model for the Tectonic Development, and Implications for Petroleum Prospectivity. Petroleum Exploration and Development in Papua New Guinea: Proceedings of the 2nd PNG Petroleum Convention, Port Moresby. [24] Ratschbacher, L., Frisch, W., Linzer, H. G., et al., 1991a. Lateral Extrusion in the Eastern Alps, Part 2: Structural Analysis. Tectonics, 10(2): 257-271. https://doi.org/10.1029/90tc02623 [25] Ratschbacher, L., Merle, O., Davy, P., et al., 1991b. Lateral Extrusion in the Eastern Alps, Part 1: Boundary Conditions and Experiments Scaled for Gravity. Tectonics, 10(2): 245-256. https://doi.org/10.1029/90tc02622 [26] Schellart, W. P., Lister, G. S., Toy, V. G., 2006. A Late Cretaceous and Cenozoic Reconstruction of the Southwest Pacific Region: Tectonics Controlled by Subduction and Slab Rollback Processes. Earth-Science Reviews, 76(3-4): 191-233. https://doi.org/10.1016/j.earscirev.2006.01.002 [27] Schellart, W. P., Spakman, W., 2015. Australian Plate Motion and Topography Linked to Fossil New Guinea Slab below Lake Eyre. Earth and Planetary Science Letters, 421: 107-116. https://doi.org/10.1016/j.epsl.2015.03.036 [28] Spakman, W., Hall, R., 2010. Surface Deformation and Slab-Mantle Interaction during Banda Arc Subduction Rollback. Nature Geoscience, 3(8): 562-566. https://doi.org/10.1038/ngeo917 [29] Tapponnier, P., Peltzer, G., le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2 [30] Tcherepanov, E. N., Droxler, A. W., Lapointe, P., et al., 2010. Siliciclastic Influx and Burial of the Cenozoic Carbonate System in the Gulf of Papua. Marine and Petroleum Geology, 27(2): 533-554. https://doi.org/10.1016/j.marpetgeo.2009.09.002 [31] Tregoning, P., Gorbatov, A., 2004. Evidence for Active Subduction at the New Guinea Trench. Geophysical Research Letters, 31(13): L13608. https://doi.org/10.1029/2004gl020190 [32] Tregoning, P., Jackson, R. J., McQueen, H., et al., 1999. Motion of the South Bismarck Plate, Papua New Guinea. Geophysical Research Letters, 26(23): 3517-3520. https://doi.org/10.1029/1999gl010840 [33] van Ufford, A. Q., Cloos, M., 2005. Cenozoic Tectonics of New Guinea. AAPG Bulletin, 89(1): 119-140. https://doi.org/10.1306/08300403073 [34] Weissel, J. K., Watts, A. B., 1979. Tectonic Evolution of the Coral Sea Basin. Journal of Geophysical Research: Solid Earth, 84(B9): 4572-4582. https://doi.org/10.1029/jb084ib09p04572 [35] Whattam, S. A., Malpas, J., Ali, J. R., et al., 2008. New SW Pacific Tectonic Model: Cyclical Intraoceanic Magmatic Arc Construction and Near-Coeval Emplacement along the Australia-Pacific Margin in the Cenozoic. Geochemistry, Geophysics, Geosystems, 9(3): Q03021. https://doi.org/10.1029/2007gc001710 [36] Yu, X., Han, X. Q., Qiu, Z. Y., et al., 2019. Definition of Northwest Indian Ridge and Its Geologic and Tectonic Signatures. Earth Science, 44(2): 626-639(in Chinese with English abstract). http://www.researchgate.net/publication/332558029_Definition_of_Northwest_Indian_Ridge_and_Its_Geologic_and_Tectonic_Signatures [37] 董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701 [38] 黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180 [39] 刘湘, 郭建华, 2014. 巴布亚盆地构造演化研究. 长江大学学报(自然科学版), 11(26): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201426004.htm [40] 骆宗强, 阳怀忠, 刘铁树, 等, 2012. 巴布亚盆地构造差异演化及其对油气成藏的控制. 地球科学, 37(增刊1): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S1016.htm [41] 余星, 韩喜球, 邱中炎, 等, 2019. 西北印度洋脊的厘定及其地质构造特征. 地球科学, 44(2): 626-639. doi: 10.3799/dqkx.2018.136