Deep Structural Characteristics of Pengguan Complex in Longmenshan Fault Zone Derived from Seismic Reflective Profile
-
摘要: 彭灌杂岩位于龙门山断裂带中段,是龙门山区域地质构造重要组成部分.通过对一条穿过彭灌杂岩中部的深地震反射剖面进行分析解释,描述该区域彭灌杂岩深部结构特征及形成机制.地震反射剖面分析表明彭灌杂岩在纵深上存在分层结构,且彭灌杂岩存在底界面,在该区域表现出无根特征,参考岩体层倾向推断原岩应来自现位置西北方向更深部;同时剖面能量图上映秀-北川深部断裂位置发育在彭灌杂岩体不同分层间隙,未破坏彭灌杂岩主岩体深部结构,彭灌杂岩体浅部的断层发育与龙门山地表断裂系统一致,表明彭灌杂岩成岩时间早于龙门山构造运动;综合岩性及成岩时间推断彭灌杂岩源于现有位置的西北方向大陆基底,由印支期板块运动中松潘陆块基底物质多期次上涌形成,并在喜山运动期受到西北方向应力推覆隆起到达目前位置.Abstract: Pengguan complex is located in the middle part of Longmenshan fault zone, which is an important part of Longmenshan regional tectonics. In this paper, the deep seismic reflection profile through the long axis of Pengguan complex is analyzed and interpreted, and the deep structural characteristics and formation mechanism of Pengguan complex are described. The analysis of seismic reflection profile shows that Pengguan complex is stratified in depth, with a bottom interface, and Pengguan complex shows rootless characteristics. Based on the analysis of its structural characteristics, it can be inferred that the in-situ rocks come from deeper and more western locations. The development of faults in the shallow part of Pengguan complex is consistent with the surface fault system of Longmenshan Mountain, which indicates that the diagenesis time of Pengguan complex is earlier than that of Longmenshan tectonic movement. At the same time, the Yingxiu-Beichuan fault in the deep part of the section energy map develops stratified gaps in different stages of Pengguan complex rock mass, which means it did not destroy the deep structure of Pengguan complex main rock mass. Referring to lithology and diagenetic time, it is inferred that Pengguan complex originated from the Songpan block basement material which was upwelled by compression during the Indosinian movement, the basement magma upwelled several times during the plate movement, and was uplifted by stress nappe in the northwest direction during the Himalayan movement to its present position.
-
图 1 工区构造带主体区域地质及测线位置
图 1改自李海兵等(2009). F1.汶川‒茂县断裂;F2.映秀‒北川断裂;F3.安县‒灌县断裂;WFSD-1.汶川科钻一号井;WSFD-2.汶川科钻2号井
Fig. 1. Geological and line location map of the main area of the structural belt in the work area
图 5 区域地质填图与截取10 s的反射能量剖面断层构造示意
a.测线对应区域地质构造图(参考李海兵等, 2009);b.龙门山断裂带彭灌杂岩区域断裂特征图
Fig. 5. Mapping of geological structures and diagram of 10 s reflection profile with fault structure intercepted
-
[1] Burchfiel, B. C., Chen, Z., Yupinc, L., et al., 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review, 37(8): 661-735. https://doi.org/10.1080/00206819509465424 [2] Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703-706. https://doi.org/10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 doi: 10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 [3] Cui, J. W., Lin, W. R., Wang, L. J., et al., 2014. Determination of Three-Dimensional In Situ Stresses by Anelastic Strain Recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 619/620: 123-132. https://doi.org/10.1016/j.tecto.2013.09.013 [4] Feng, Y. Y., Yu, C. Q., Fan, Z. G., et al., 2016. Fine Crustal Structure of the Lushan Area Derived from Seismic Reflection Profiling. Chinese Journal of Geophysics, 59(9): 3248-3259 (in Chinese with English abstract). [5] Gao, Y., Shi, Y. T., Chen, A. G., 2018. Crustal Seismic Anisotropy and Compressive Stress in the Eastern Margin of the Tibetan Plateau and the Influence of the Ms8.0 Wenchuan Earthquake. Chinese Science Bulletin, 63(19): 1934-1948 (in Chinese). doi: 10.1360/N972018-00317 [6] Gao, Y., Wang, Q., Zhao, B., et al., 2013. A Rupture Blank Zone in Middle South Part of Longmenshan Faults: Effect after Lushan Ms7.0 Earthquake of 20 April 2013 in Sichuan, China. Science in China (Series D: Earth Sciences), 43(6): 1038-1046 (in Chinese). doi: 10.1007/s11430-014-4827-2 [7] Hu, Y. X., Liu, X. R., Xu, H., et al., 2010. Multiple Linear Regression Models to Predict the Uniaxial Compressive Strength and the Elastic Modulus of Pengguan Complex. Journal of Geotechnical Investigation & Surveying, 38(12): 15-21 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GCKC201012006.htm [8] Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M = 7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837 [9] Jia, S. X., Liu, B. J., Xu, Z. F., et al., 2014. The Crustal Structures of the Central Longmenshan along and Its Margins as Related to the Seismotectonics of the 2008 Wenchuan Earthquake. Science in China (Series D: Earth Sciences), 44(3): 497-509 (in Chinese). doi: 10.1007/s11430-013-4744-9 [10] Kong, L. Y., Mao, X. W., Chen, C., et al., 2017. Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block. Earth Science, 42(4): 485-501 (in Chinese with English abstract). [11] Li, H. B., Wang, Z. X., Fu, X. F., et al., 2009. Slip Characteristics, Maximum Slip and Tectonic Significance of the Surface Rupture Zone of Wenchuan Earthquake (Ms 8.0) on 12 May 2008. Quaternary Research, 29(3): 387-402 (in Chinese with English abstract). [12] Li, H., Xu, Z., Niu, Y., et al., 2014a. Structural and Physical Property Characterization in the Wenchuan Earthquake Fault Scientific Drilling Project -Hole 1 (WFSD-1). Tectonophysics, 619/620: 86-100. http://doi.org/10.1016/j.tecto.2013.08.022 [13] Li, Y., Li, H. B., Zhou, R. J., et al., 2014b. Crustal Thickening or Isostatic Rebound of Orogenic Wedge Deduced from Tectonostratigraphic Units in Indosinian Foreland Basin, Longmen Shan, China. Tectonophysics, 619/620: 1-12. https://doi.org/10.1016/j.tecto.2013.05.031 [14] Li, Y., Yan, Z. K., Liu, S. G., et al., 2014c. Migration of the Carbonate Ramp and Sponge Buildup Driven by the Orogenic Wedge Advance in the Early Stage (Carnian) of the Longmen Shan Foreland Basin, China. Tectonophysics, 619/620: 179-193. https://doi.org/10.1016/j.tecto.2013.11.011 [15] Lin, F., Yu, T., 1998. Microstructure and Deformation Condition of Tectonite in Suopodian Fracture Zone in Pengguan Complex. Acta Geologica Sichuan, 18(2): 18-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB802.003.htm [16] Lin, J. H., Liu, C. P., 2009. Study on the Forming Model of Pengguan Complex of the Longmenshan Orogenic Belt. Petroleum Geology and Recovery Efficiency, 16(4): 41-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH200819002.htm [17] Lin, M. B., Ma, Y. W., 1995. A Discussion on the Tectonic Characteristics of Peng-Guan Complex in Longmen Mountains. Journal of Chengdu University of Technology, (1): 42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG501.005.htm [18] Liu, C. P., Lin, J. H., 2008. Study on the Forming Model of Pengguan Complex of the Longmenshan Orogenic Belt. Inner Mongolia Petrochemical Industry, 34(19): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH200819002.htm [19] Ma, X. J., Wu, Z. L., Jiang, C. S., 2014. 'Repeating Earthquakes' Associated with the WFSD-1 Drilling Site. Tectonophysics, 619/620: 44-50. https://doi.org/10.1016/j.tecto.2013.07.017 [20] Ma, Y. W., Wang, G. Z., Hu, X. W., 1996. Tectonic Deformation of Pengguan Complex as a Nappe. Acta Geologica Sichuan, 16(2): 110-114 (in Chinese with English abstract). [21] Ma, Y. W., Yang, J., 2001. Tectonic Deformation of the Nappe Tectonic in the Middle Longmen Mountains. Journal of Chengdu University of Technology, 28(3): 236-240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200103003.htm [22] Nadeau, R. M., McEvilly, T. V., 1999. Fault Slip Rates at Depth from Recurrence Intervals of Repeating Microearthquakes. Science, 285(5428): 718-721. https://doi.org/10.1126/science.285.5428.718 [23] Niu, L., Zhou, Y. S., Yao, W. M., et al., 2018. Experiments on the Strength of Pengguan Complex under High Temperature and High Pressure and Its Implication to Seismogenic Mechanism of the Wenchuan Earthquake. Chinese Journal of Geophysics, 61(5): 1728-1740 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201805006.htm [24] Royden, L. H., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788 [25] Sibson, R. H., 1992. Implications of Fault-Valve Behaviour for Rupture Nucleation and Recurrence. Tectonophysics, 211(1-4): 283-293. https://doi.org/10.1016/0040-1951(92)90065-e [26] Tao, X. F., 1992. The Microstructural Characteristics of Yingxiu Thrust Fault in Pen-Guan District, Sichuan. Journal of Chengdu University of Technology (Science & Technology Editon), (1): 18-24, T001 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG199201002.htm [27] Wang, H., 2015. Study on Seismic Fault Mechanism of Longmen Shan Tectonic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [28] Wang, X. B., Zhang, G., Fang, H., et al., 2014. Crust and Upper Mantle Resistivity Structure at Middle Section of Longmenshan, Eastern Tibetan Plateau. Tectonophysics, 619/620: 143-148. https://doi.org/10.1016/j.tecto.2013.09.011 [29] Wu, C., 2014. Deep Geological Structure of Longmen Shan Tectonic Belt and Its Restriction on Surface Rupture Zone of Wenchuan Earthquake (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [30] Wu, C., Li, H. B., Leloup, P. H., et al., 2014. High-Angle Fault Responsible for the Surface Ruptures along the Northern Segment of the Wenchuan Earthquake Fault Zone: Evidence from the Latest Seismic Reflection Profiles. Tectonophysics, 619/620: 159-170. https://doi.org/10.1016/j.tecto.2013.09.015 [31] Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/g25462a.1 [32] Xue, Z. H., Martelet, G., Lin, W., et al., 2017. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights from Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling. Tectonics, 36(12): 3110-3134. https://doi.org/10.1002/2017tc004754 [33] Yang, S. F., Chen, H. L., Gong, G. H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905008.htm [34] Yang, Z. Y., Qiu, R. X., Qin, S. K., et al., 2009. The Proterozoic VMS Copper Deposit in Longmen Mountain Area of Chuanxi: Evidence from Sulphide Trace Element and Sulfur Isotope. Geological Science and Technology Information, 28(4): 59-64 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzkjqb200904010 [35] Yong, L., Allen, P. A., Densmore, A. L., et al., 2003. Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research, 15(1): 117-138. https://doi.org/10.1046/j.1365-2117.2003.00197.x [36] Zhang, F. X., Wu, Q. J., Li, Y. H., et al., 2018. Seismic Tomography of Eastern Tibet: Implications for the Tibetan Plateau Growth. Tectonics, 37(9): 2833-2847. https://doi.org/10.1029/2018tc004977 [37] Zhang, P., Zhou, Z. Y., Xu, C. H., et al., 2008. Geochemistry of Pengguan Complex in the Longmenshan Region, Western Sichuan Province, SW China: Petrogenesis and Tectonic Implications. Geotectonica et Metallogenia, 32(1): 105-116 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801015.htm [38] Zhang, Z. M., Ding, H. X., Dong, X., et al., 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905016.htm [39] 冯杨洋, 于常青, 范柱国, 等, 2016. 从反射地震剖面中认识芦山地区的地壳精细结构和构造. 地球物理学报, 59(9): 3248-3259. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201609010.htm [40] 高原, 石玉涛, 陈安国, 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响. 科学通报, 63(19): 1934-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201819010.htm [41] 高原, 王琼, 赵博, 等, 2013. 龙门山断裂带中南段的一个破裂空段: 芦山地震的震后效应. 中国科学(D辑: 地球科学), 43(6): 1038-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306012.htm [42] 胡元鑫, 刘新荣, 徐慧, 等, 2010. 彭灌杂岩单轴抗压强度和弹性模量的多元线性回归预测模型. 工程勘察, 38(12): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201012006.htm [43] 嘉世旭, 刘保金, 徐朝繁, 等, 2014. 龙门山中段及两侧地壳结构与汶川地震构造. 中国科学(D辑: 地球科学), 44(3): 497-509. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403010.htm [44] 孔令耀, 毛新武, 陈超, 等, 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485-501. doi: 10.3799/dqkx.2017.039 [45] 李海兵, 王宗秀, 付小方, 等, 2009. 2008年5月12日汶川地震(Ms8.0)地表破裂带的分震同震滑移特征、最大滑移量及构造意义. 第四纪研究, 29(3): 387-402. doi: 10.3969/j.issn.1001-7410.2009.03.001 [46] 林仿, 余团, 1998. 龙门山彭灌杂岩体中梭坡店断裂带显微构造及变形环境分析. 四川地质学报, 18(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB802.003.htm [47] 林娟华, 刘春平, 2009. 龙门山造山带彭灌杂岩体形成模式. 油气地质与采收率, 16(4): 41-43. doi: 10.3969/j.issn.1009-9603.2009.04.012 [48] 林茂炳, 马永旺, 1995. 论龙门山彭灌杂岩体的构造属性. 成都理工学院学报, (1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG501.005.htm [49] 刘春平, 林娟华, 2008. 龙门山造山带彭灌杂岩体形成模式研究. 内蒙古石油化工, 34(19): 1-4. doi: 10.3969/j.issn.1006-7981.2008.19.001 [50] 马永旺, 王国芝, 胡新伟, 1996. "彭灌杂岩"推覆体的构造变形特征. 四川地质学报, 16(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB602.004.htm [51] 马永旺, 杨尽, 2001. 龙门山中段推覆构造的变形特征. 成都理工学院学报, 28(3): 236-240. doi: 10.3969/j.issn.1671-9727.2001.03.003 [52] 牛露, 周永胜, 姚文明, 等, 2018. 高温高压条件下彭灌杂岩的强度对汶川地震发震机制的启示. 地球物理学报, 61(5): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805006.htm [53] 陶晓风, 1992. 四川彭灌地区映秀断裂带的显微构造特征. 成都地质学院学报, (1): 18-24, T001. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199201002.htm [54] 王焕, 2015. 龙门山构造带地震断裂机制研究(博士学位论文). 北京: 中国地质科学院. [55] 吴婵, 2014. 龙门山构造带深部地质结构及其对汶川地震地表破裂带的制约(博士学位论文). 北京: 中国地质科学院. [56] 杨树锋, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973 [57] 杨钻云, 邱仁轩, 秦术凯, 等, 2009. 川西龙门山地区元古代VMS铜矿床: 硫化物微量元素和硫同位素证据. 地质科技情报, 28(4): 59-64. doi: 10.3969/j.issn.1000-7849.2009.04.010 [58] 张沛, 周祖翼, 许长海, 等, 2008. 川西龙门山彭灌杂岩地球化学特征: 岩石成因与构造意义. 大地构造与成矿学, 32(1): 105-116. doi: 10.3969/j.issn.1001-1552.2008.01.014 [59] 张泽明, 丁慧霞, 董昕, 等, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040