The Cambrian Terreneuvian-Series 2 Sedimentary Environment of Central-Southern Area of Hunan and Jiangxi
-
摘要: 为解决华南湘赣中、南部纽芬兰统-第二统沉积环境一直存在的深、浅海之争,通过对8条剖面岩石学特征、放射虫分布和岩相调查,结合地球化学数据等,分析了古水深等沉积环境特征.研究发现,湘赣中部娄底、邵阳、衡阳、萍乡地区可见疑似放射虫化石的分布,化石应沉积于当时的海盆中心区,且Si以生物来源为主.全区广泛发育弱水动力的水平层理,杂砂岩Td平均值为5.94,δ30Si平均值为0.1‰.本区牛蹄塘组、香楠组和牛角河组可划分5种岩相类型、3种岩相组合(海底扇中扇亚相、海底扇外扇亚相、陆隆亚相).结合主量、微量和稀土元素数据等综合分析,认为湘赣中、南部纽芬兰统-第二统沉积时期海水滞留缺氧,以半深海陆坡-陆隆环境为主,东南部略浅.Abstract: In order to solve the dispute-"deep sea" or "shallow sea" about the Cambrian Terreneuvian-Series 2 sedimentary environment of central-southern area of Hunan and Jiangxi, this paper further analyzed sedimentary environment such as paleo-water depth by investigating the petrological characteristics, radiolarian distribution and lithofacies of eight sections for these strata. According to the investigation, suspected radiolarians found in Loudi, Shaoyang, Hengyang and Pingxiang areas were deposited in the basin center and the source of Si in these strata are biogenic. Horizontal beddings representing weak hydrodynamic force are developed in central and southern parts of Hunan and Jiangxi; the average value of Td of the greywacke is 5.94; the average value of δ30Si is 0.1‰; five types of lithofacies and three types of lithofacies associations (middle fan subfacies of submarine fan, outer fan subfacies of submarine fan, and continental rise subfacies). Taking major element, trace element and REE contents into consideration, we think that the sea water of the central-southern area of Hunan and Jiangxi was stagnant; the study area was a continental slope-rise with a bathyal environment in the Cambrian Terreneuvian-Series 2, relatively shallow in the southeast.
-
Key words:
- South China /
- Cambrian /
- radiolarians /
- siliceous slate /
- bathyal environment /
- sedimentology
-
图 2 湖南、江西寒武系纽芬兰统-第二统剖面图
地层剖面来源于湖南省地质调查院(2012); 江西省地质调查院(2013)
Fig. 2. The Cambrian Terreneuvian-Series 2 sections in Hunan and Jiangxi Provinces
图 3 湖南、江西寒武系纽芬兰统-第二统岩石地层
据湖南省地质调查院(2012); 江西省地质调查院(2013)
Fig. 3. The Cambrian Terreneuvian-Series 2 lithostratigraphy of Hunan and Jiangxi
图 12 湖南牛蹄塘组硅质岩类Al-Fe-Mn图解
底图据文献Adachi et al.(1986)
Fig. 12. Al-Fe-Mn diagram for the siliceous rocks of the Niutitang Formation in Hunan Province
图 14 湘赣纽芬兰统-第二统硅质岩、硅质板岩、碳质硅岩、碳硅质板岩NASC(北美页岩)标准化稀土模式曲线图
标准化数据据文献McLennan(1989)
Fig. 14. NASC-normalized distribution patterns of the rare earth elements of the chert, siliceous slate, carbonaceous silicalite, and carbonaceous-siliceous slate from the Terreneuvian-Series 2 of Hunan and Jiangxi
图 15 湘赣寒武系纽芬兰统-第二统泥质板岩、碳质板岩、碳质页岩NASC(北美页岩)标准化稀土模式曲线
标准化数据据文献McLennan(1989)
Fig. 15. NASC-normalized distribution patterns of the rare earth elements of the argillaceous slate, carbonaceous slate, and carbonaceous shale from the Terreneuvian-Series 2 in Hunan and Jiangxi
图 16 湘赣寒武系纽芬兰统-第二统杂砂岩NASC(北美页岩)标准化稀土模式曲线图(据McLennan, 1989)
Fig. 16. NASC-normalized distribution patterns of the rare earth elements of the greywacke from the Terreneuvian–Series 2 in Hunan and Jiangxi(modified from McLennan, 1989)
图 17 湘赣粤寒武系纽芬兰统-第二统杂砂岩综合结构系数(红点处)与成熟度阶段、成熟度体系和沉积环境之间的关系
Pied.山麓(al.洪积,g1.冰川,cv.陆地火山);Bra.辫状河(bs.心滩,ch.河道);Mea曲流河(pb.河漫滩,洪泛平原,eo.风成,ch.边滩,河道);Del.三角洲(ud.上三角洲,ld.下三角洲);Lak.湖泊(hl.潮湿湖,al.干旱湖);Shr.海滩(du.海岸砂丘,fr.前滨,br.后滨,cl.塌坍带,mo.浮冰沉积);Int.潮间带(st.砂质潮坪,tch.潮沟,mt.泥质潮坪);Sbt.潮下带(lg.潟湖,of.开阔海);Sdb.砂坝;Cs.大陆架(ab.沿岸流,bi.生物堆积带,tm.风暴沉积带,mv.海底火山带);Ds.深海(tb.浊积带,mv.海底火山带,ct.等深流带);a.石英颗粒 > 80%;b.长石颗粒 > 25%;c.岩屑颗粒 > 25%,d.颗粒具单向排列趋势;e.颗粒具双向排列趋势;f.颗粒无定向任意排列;g.标准样号的薄片编
Fig. 17. The relationship between Td of the greywacke from the Terreneuvian-Series 2 in Hunan and Jiangxi (red point), stage and system of maturation and sedimentary environment
图 18 湘赣中、南部纽芬兰统-第二统杂砂岩K2O/Na2O-SiO2(a)及SiO2/Al2O3-K2O/Na2O(b)构造环境判别图解
Fig. 18. Tectonic setting discrimination diagram of K2O/Na2O-SiO2(a) and SiO2/Al2O3-K2O/Na2O (b) of the Cambrian Terreneuvian-Series 2 greywacke in central-southern area of Hunan and Jiangxi
图 19 湘赣中、南部纽芬兰统-第二统杂砂岩(a)和泥板岩(b)的稀土元素配分模式
球粒陨石标准化参数据Taylor et al.(1985);典型大地构造环境的稀土数据选自Bhatia and Crook (1986)
Fig. 19. Chondrite-normalized distribution patterns of the rare earth elements of the Cambrian Terreneuvian-Series 2 greywacke (a) and argillaceous slate (b) in central-southern area of Hunan and Jiangxi
图 20 湘赣中、南部纽芬兰统-第二统杂砂岩主量元素判断函数限定物源区特征的图解
Fig. 20. Source area diagrams of discriminant functions of major element compositions of the Cambrian Terreneuvian-Series 2 greywacke in central-southern area of Hunan and Jiangxi
表 1 湘赣粤寒武系纽芬兰统-第二统杂砂岩综合结构系数
Table 1. Td of the Cambrian Terreneuvian-Series 2 graywackes from Hunan, Jiangxi and Guangdong
地层 地区 样品号 So Pφ Po Td 值 平均值 寒武系纽芬兰统-第二统 研究区南部 连州 15-6-3 0.51 0.81 2.71 4.90 4.02 15-7-3 0.44 0.69 2.43 4.12 15-11 0.49 0.79 1.72 3.35 15-13 0.50 0.90 1.97 3.63 江华 1-4 0.42 0.88 2.75 3.48 1-8 0.54 0.92 2.62 3.76 1-13 0.50 0.80 2.71 4.23 1-14 0.61 0.74 2.82 5.67 1-15 0.53 0.74 1.78 3.09 研究区中部 崇义至于都 27-1-2 0.64 0.81 3.00 5.91 7.63 27-2 0.60 0.72 3.34 7.42 27-3 0.72 0.75 3.05 8.34 27-4 0.54 0.75 3.02 6.67 27-9 0.53 0.82 2.87 8.17 27-10 0.53 0.79 2.65 8.88 32-3a 0.71 0.78 3.43 8.03 研究区北部 井冈山 34-4-2 0.50 0.94 4.62 8.41 6.60 34-5-2 0.55 0.86 3.97 7.30 34-6 0.56 0.85 4.74 11.50 34-7 0.53 0.82 4.08 5.82 34-9 0.43 0.85 3.95 5.04 34-11 0.47 0.82 3.86 5.82 萍乡 14-7-2 0.64 0.99 2.98 4.03 14-8-3 0.55 0.83 3.35 4.90 表 2 湘赣中、南部寒武系纽芬兰统-第二统硅质岩、硅质板岩δ30Si测试值
Table 2. The δ30Si value of the Cambrian Terreneuvian-Series 2 siliceous rocks from the central-southern area of Hunan and Jiangxi
样品号 δ30Si(‰) 11-33-1 -0.50 11-33-2 -0.22 11-47-1 -0.30 11-47-2 -0.40 11-43-1 -0.30 11-43-2 -0.30 11-44-1 -0.50 11-44-2 -0.30 11-45-1 -0.50 11-45-2 -0.50 11-48-1 -0.40 11-48-2 -0.50 11-50-1 -0.10 11-50-2 -0.10 11-52 -0.10 No.11
平均值-0.34 42-30-1 -0.20 42-30-3 0.01 42-43 0.10 42-48 0.10 42-49 0.10 42-51 -0.10 42-1 -0.10 42-3 -0.20 42-41 0.20 42-42 0.10 42-44 0.10 42-45 -0.10 42-46 0.10 42-47 0.10 42-50 0.10 No.42
平均值0.02 14-35 0.10 14-36 0.10 14-37 0.10 14-38 0.10 14-39 -0.20 No.14
平均值0.04 -
[1] Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1/2):125-148. https://doi.org/10.1016/0037-0738(86)90075-8 http://www.sciencedirect.com/science/article/pii/0037073886900758 [2] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/bf00375292 doi: 10.1007/BF00375292 [3] Cheng, M., Li, C., Zhou, L., et al., 2017. Transient Deep-Water Oxygenation in the Early Cambrian Nanhua Basin, South China. Geochimica et Cosmochimica Acta, 210:42-58. https://doi.org/10.1016/j.gca.2017.04.032 [4] Cui, K.X., Zhen, Y.Y., 1987. Study on the Sedimentary Environments of the Sinian and Cambrian Phosphorite in South China. Acta Sedimentologica Sinica, 5(1):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198701000.htm [5] Dongye, M.X., 1992. Progress of the Phosphorite Research and Its Theory of Biomineralization. Acta Sedimentologica Sinica, 4(3):96-103 (in Chinese with English abstract). [6] Frank, A. B., Klaebe, R. M., Xu, L. G., et al., 2019. Redox Fluctuations during the Ediacaran-Cambrian Transition, Nanhua Basin, South China:Insights from Cr Isotope and REE+Y Data. Chemical Geology, 525:321-333. https://doi.org/10.1016/j.chemgeo.2019.07.031 [7] Geology Survey Institute of Hunan Province, 2012. Regional Geology of Hunan Province. Geological Publishing House, 124-152 (in Chinese). [8] Geology Survey Institute of Jiangxi Province, 2013. Regional Geology of Jiangxi Province. Geological Publishing House, 92-118 (in Chinese). [9] He, W.H., Tang, T.T., Le, M.L., et al., 2014. Sedimentary and Tectonic Evolution of Nanhua-Permian in South China. Earth Science, 39(8):929-953 (in Chinese with English abstract). [10] Li, T.D., 2006. Lithospheric Tectonic Units of China. Geology in China, 33(4):700-709 (in Chinese with English abstract). [11] Li, T.D., Xiao, Q.H., Pan, G.T., et al., 2019. A Consideration about the Development of Ocean Plate Geology. Earth Science, 44(5/6):1441-1451(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201905003 [12] Li, Z. X., Li, X. H., Li, W. X., et al., 2008. Was Cathaysia Part of Proterozoic Laurentia?:New Data from Hainan Island, South China. Terra Nova, 20(2):154-164. https://doi.org/10.1111/j.1365-3121.2008.00802.x [13] Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5/6):772-793. https://doi.org/10.1130/b30021.1 http://adsabs.harvard.edu/abs/2010GSAB..122..772L [14] McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes. In:Lipin, B.R., Mckay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, 21:169-200. http://ci.nii.ac.jp/naid/10008805387 [15] McManus, J., Berelson, W. M., Klinkhammer, G. P., et al., 1998. Geochemistry of Barium in Marine Sediments:Implications for Its Use as a Paleoproxy. Geochimica et Cosmochimica Acta, 62(21/22):3453-3473. https://doi.org/10.1016/s0016-7037(98)00248-8 http://www.sciencedirect.com/science/article/pii/S0016703798002488 [16] Murray, R. W., Buchholtz Ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California:Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55(7):1875-1895. https://doi.org/10.1016/0016-7037(91)90030-9 [17] Murray, R. W., Jones, D. L., Brink, M. R., 1992. Diagenetic Formation of Bedded Chert:Evidence from Chemistry of the Chert-Shale Couplet. Geology, 20(3):271. http://pubs.geoscienceworld.org/gsa/geology/article-pdf/20/3/271/3514245/i0091-7613-20-3-271.pdf [18] Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006. The Geochemical Evidences and Tectonic Significance of Neoproterozoic Ophiolote in Yunkai Area, Western Guangdong Province, China. Acta Geologica Sinica, 80(6):814-825(in Chinese with English abstract). [19] Peng, Z.Q., Tian, W., Miao, F.B., et al., 2019. Geological Features and Favorable Area Prediction of Shale Gas in Lower Cambrian Niutitang Formation of Xuefeng Ancient Uplift and Its Periphery.Earth Science, 44(10):3512-3528 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201910022 [20] Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5):635-650. https://doi.org/10.1086/629071 [21] Shimizu, H., Masuda, A., 1977. Cerium in Chert as an Indication of Marine Environment of Its Formation. Nature, 266(5600):346-348. https://doi.org/10.1038/266346a0 [22] Shu, L.S., Yu, J.H., Jia, D., et al., 2008. Early Paleozoic Orogenic Belt in the Eastern Segment of South China. Geological Bulletin of China, 27(10):1581-1593(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200810002.htm [23] Song, T.R., Ding, T.P., 1989. δ30Si New Experiments Applied to Sedimentary Facies Analysis. Chinese Science Bulletin, (18):1408-1411 (in Chinese with English abstract). [24] Song, T.R., 1991. Comprehensive Textural Coefficient of Arenaceous Rocks and Analysis of Sedimentary Environments. Acta Petrologica et Mineralogica, 10(3):210-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW199103003.htm [25] Taylor, S.R., Mclennan, S.H., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 117-140. [26] Thassanapak, H., Udchachon, M., Burrett, C., et al., 2017. Geochemistry of Radiolarian Cherts from a Late Devonian Continental Margin Basin, Loei Fold Belt, Indo-China Terrane. Journal of Earth Science, 28(1):29-50. https://doi.org/10.1007/s12583-017-0738-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e201701003 [27] Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007. Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4):404-416. https://doi.org/10.1016/j.gr.2006.10.003 [28] Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic:Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6):1-16. https://doi.org/10.1029/2010tc002750 http://www.zhangqiaokeyan.com/open-access_resources_thesis/010007432044.html [29] Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D., 1996. The Whole-Rock Cerium Anomaly:A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1/2):43-53. https://doi.org/10.1016/0037-0738(95)00020-8 http://www.sciencedirect.com/science/article/pii/0037073895000208 [30] Xu, Y. J., Cawood, P. A., Asscser, D., et al., 2014. Linking South China to Northern Australia and India on the Margin of Gondwana:Constraints from Detrital Zircon U-Pb and Hf Isotopes in Cambrian Strata. Tectonics, 32(6):1547-1558. https://doi.org/10.1002/tect.20099 [31] Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2):65-108. https://doi.org/10.1016/0037-0738(87)90017-0 http://www.sciencedirect.com/science/article/pii/0037073887900170 [32] Yao, W. H., Li, Z. X., Li, W. X., et al., 2015. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4):1449-1465. https://doi.org/10.1016/j.gr.2014.10.018 [33] Yin, L., Li, J., Tian, H., et al., 2018. Rhenium-Osmium and Molybdenum Isotope Systematics of Black Shales from the Lower Cambrian Niutitang Formation, SW China:Evidence of a Well Oxygenated Ocean at Ca. 520 Ma. Chemical Geology, 499:26-42. https://doi.org/10.1016/j.chemgeo.2018.08.016 [34] Zhang, K., Feng, Q. L., 2019. Early Cambrian Radiolarians and Sponge Spicules from the Niujiaohe Formation in South China. Palaeoworld, 28(3):234-242. https://doi.org/10.1016/j.palwor.2019.04.001 [35] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2):206-233 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201502004 [36] Zhang, Y., Qi, F.C., Zhang, Z.L., et al., 2015.Geochemical Characteristics and Genesis Analysis of the Silurian Siliceous Rock in Diebu. Journal of East China Institute of Technology(Natural Science), 38(4):375-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201504007 [37] Zheng, N., Li, T. D., Cheng, M. W., 2019. Middle-Upper Ordovician Radiolarians in Hunan and Jiangxi Provinces, South China:Implications for the Sedimentary Environment and Nature of the Nanhua Basin. Journal of Asian Earth Sciences, 179:261-275. https://doi.org/10.1016/j.jseaes.2019.05.001 [38] Zheng, N., Li, T.D., Cheng, M.W., 2018. Origin of Siliceous Rocks in the Middle-Upper Ordovician Yanxi Formation, Hunan Province and Duiershi Formation, Jiangxi Province in South China. Earth Science Frontiers, 25(4):86-98 (in Chinese with English abstract). [39] Zheng, N., Song, T.R., Li, T.D., et al., 2012. The Discovery of the Lower Cambrian and Middle Ordovician Radiolarian in the South China Orogenic Belt. Geology in China, 39(1), 260-265 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201201027.htm [40] Zhu, H.F., Zhang, Y.C., Qin, D.Y., et al., 1990. On sedimentary Characteristics and Tectonic Environment for the Basins of Early Palaeozoic in Zhe-Wan-Gan-Min Regions (Provinces of Zhejiang-Anhui-Jingxi-Fujian). Experimental Petroleum Geology, 12(2):121-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199002002.htm [41] 崔克信, 甄勇毅, 1987.华南震旦纪和寒武纪磷块岩沉积环境探讨.沉积学报, 5(1):1-9. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198701000.htm [42] 东野脉兴, 1992.磷块岩研究进展与磷块岩生物成矿说.沉积学报, 4(3):96-103. http://www.cnki.com.cn/Article/CJFDTotal-cjxb199203011.htm [43] 湖南省地质调查院, 2012.湖南省地质志.北京:地质出版社, 124-152. [44] 何卫红, 唐婷婷, 乐明亮, 等, 2014.华南南华纪-二叠纪沉积大地构造演化.地球科学, 39(8):929-953. doi: 10.3799/dqkx.2014.087 [45] 江西省地质调查院, 2013.江西省地质志.北京:地质出版社, 92-118. [46] 李廷栋, 2006.中国岩石圈构造单元.中国地质, 33(4):700-709. doi: 10.3969/j.issn.1000-3657.2006.04.002 [47] 李廷栋, 肖庆辉, 潘桂堂, 等, 2019.关于发展洋板块地质学的思考.地球科学, 44(5):1441-1451. doi: 10.3799/dqkx.2019.970 [48] 彭松柏, 金振民, 付建明, 等.2006.云开地区新元古代蛇绿岩的地球化学证据及其构造意义.地质学报, 80(6):814-825. doi: 10.3321/j.issn:0001-5717.2006.06.004 [49] 彭中勤, 田巍, 苗凤彬, 等, 2019.雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测.地球科学, 44(10):3512-3528. doi: 10.3799/dqkx.2019.956 [50] 舒良树, 于津海, 贾东, 等, 2008.华南东段早古生代造山带研究.地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 [51] 宋天锐, 丁悌平, 1989.硅质岩中同位素(δ30Si)应用于沉积相分析的新尝试.科学通报, (10):783-788. http://www.cnki.com.cn/Article/CJFD1989-KXTB198918013.htm [52] 宋天锐, 1991.砂屑岩的综合结构系数与沉积环境分析.岩石矿物学杂志, 10(3):210-220. http://www.cqvip.com/Main/Detail.aspx?id=642482 [53] 张克信, 潘桂堂, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. doi: 10.3799/dqkx.2015.016 [54] 张岩, 漆富成, 张字龙, 等, 2015.迭部志留系硅质岩地球化学特征及成因分析.东华理工大学学报(自然科学版), 38(4):375-460. doi: 10.3969/j.issn.1674-3504.2015.04.007 [55] 郑宁, 宋天锐, 李廷栋, 等, 2012.华南造山带下寒武统和中奥陶统发现放射虫.中国地质, 39(1):260-265. doi: 10.3969/j.issn.1000-3657.2012.01.026 [56] 郑宁, 李廷栋, 程木伟, 2018.湘赣中、上奥陶统烟溪组、对耳石组硅质岩成因.地学前缘, 25(4):86-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201804008 [57] 朱洪发, 张渝昌, 秦德余, 等, 1990.论浙皖赣闽地区早古生代盆地沉积特征及其构造环境.石油实验地质, 12(2):121-134. http://www.cnki.com.cn/Article/CJFDTotal-SYSD199002002.htm -
dqkx-45-7-2629-Table1-3.doc