Geochemistry, Geochronology, Hf Isotope and Tectonic Significance of Late Jurassic Huangdi Pluton in Xiuyan, Liaodong Peninsula
-
摘要: 辽东半岛中生代晚侏罗世岩浆活动较少,研究程度较低.通过对辽宁岫岩县荒地花岗岩岩体进行锆石U-Pb测年、岩石地球化学和锆石Lu-Hf同位素分析来进一步了解辽东半岛晚侏罗世的构造动力学背景,荒地花岗岩的岩浆锆石U-Pb加权平均年龄为161.1±3.6 Ma(MSWD=1.4),表明荒地岩体的形成时代为晚侏罗世,为燕山期岩浆活动的产物.该岩体含白云母等富铝矿物,地球化学数据也显示,该岩体为过铝质高钾钙碱性系列,富集K、Rb、Cs、Ba等大离子亲石元素,亏损Nb、Ti、P等高场强元素,具轻稀土元素富集,重稀土元素亏损的特征,Eu为中等负异常(δEu=0.33~0.80).该花岗岩A/CNK平均值为1.10,CIPW标准矿物中出现刚玉分子(>1%).由此认为该岩体为经历了高程度的结晶分异作用的S型花岗岩.荒地花岗岩CaO/Na2O比值小于0.3,εHf(t)小于0(-36.968~-23.298),表明该岩石由地壳的泥质岩熔融形成.两阶段Hf模式年龄TDMC=2 680~3 568 Ma,表明该岩体源岩的组成物质从地幔储库中脱离的时间为新太古代至古太古代,同时与辽东半岛侏罗纪其他花岗岩进行了比较.综上所述,该岩体形成于古太平洋板块向欧亚大陆俯冲后俯冲角度变大、向更深处俯冲的背景之下.Abstract: Late Jurassic magmatic activity in the Liaodong Peninsula was less and the research degree was lower. In this paper, zircon U-Pb dating, geochemistry and zircon Lu-Hf isotope analysis were carried out to further understand the tectonic dynamics of the Liaodong Peninsula in the Late Jurassic. The U-Pb weighted mean age of magmatic zircons in the Huangdi granite is 161.1±3.6 Ma (MSWD=1.4), indicating that the formation of the Huangdi granite is the Late Jurassic, which is the product of the Yanshanian magmatism. The pluton contains muscovite and other aluminum-rich minerals geochemical data show that the pluton is the peraluminum calcium alkaline series, enriched with LILE such as K, Rb, Cs, and Ba, and depleted HFSE such as Nb, Ti, and P. With the characteristics of light rare earth element enrichment and heavy rare earth element loss, Eu is a moderate negative anomaly (δEu=0.33-0.80).The average A/CNK value of the granite is 1.10, and the corundum molecule (>1%) appears in the CIPW standard mineral. It is considered that the pluton is an S-type granite that has undergone a high degree of crystallization differentiation. The CaO/Na2O ratio of the Huangdi granite is less than 0.3, and the εHf(t) is less than 0 (-36.968 to -23.298), indicating that the rock is formed by the mudstone of the earth's crust. The single-stage Hf mode age is TDM=1 728-2 311 Ma, the two-stage Hf mode age is TDMC = 2 680-3 568 Ma. It is shown that the time when the constituent materials of the source rock of the pluton were separated from the mantle reservoir was Neo-Archean to Ancient Archean.In summary, the pluton is formed in the background of the ancient Pacific plate subduction to the Eurasian continent and the subduction angle becomes larger and submerged deeper.
-
Key words:
- Huangdi pluton /
- North China craton /
- zircon U-Pb age /
- Hf isotope /
- S-type granite /
- geochemistry
-
图 1 大地构造位置图(a)和辽东半岛中生代岩浆岩分布图(b)
图a据赵国春(2009);图b据Wu et al.(2005)
Fig. 1. Geological regional location map of study area (a) and distribution of Mesozoic intrusions in the Liaodong Peninsula(b)
图 4 辽东半岛荒地花岗岩的SiO2⁃K2O图解(a)和A/CNK⁃A/NK图解(b)
图a据Peccerillo and Taylor (1976);b据Shand(1943)
Fig. 4. Plots of SiO2⁃K2O (a) and A/CNK⁃A/NK (b) for Huangdi granites, Liaodong Peninsula
图 5 球粒陨石标准化稀土元素配分曲线(a)和辽东半岛荒地花岗岩的原始地幔标准化微量元素蛛网图(b)
球粒陨石值据Boynton(1984);原始地幔值据Sun and McDonough(1989)
Fig. 5. Chondrite⁃normalized REE patterns (a) and primitive mantle⁃normalized trace element patterns of the granite from the Huangdi pluton in Xiuyan, Liaodong Peninsula (b)
图 10 Rb⁃(Y+Nb)图解(a)、Nb⁃Y图解(b)、Rb⁃(Ta+Yb)图解(c)
syn⁃COLG为同碰撞花岗岩,VAG为火山弧花岗岩,WPG为板内花岗岩,ORG为洋中脊花岗岩;据Pearce et al. (1984)
Fig. 10. Rb⁃Y+Nb diagram(a), Nb⁃Y diagram(b), Rb⁃Ta+Yb diagram(c) of Huangdi granite in Xiuyan, Liaodong Peninsula
表 1 荒地花岗岩的主量元素(%)和微量元素(10-6)分析结果
Table 1. Major (%) and trace (10-6) element concentrations of the granite rocks from Huangdi area
DYN⁃1 B4028⁃1 B6005⁃1 B3088⁃1 SiO2 73.6 73.9 74.6 73.7 TiO2 0.11 0.09 0.11 0.14 Al2O3 14.40 14.30 13.85 14.35 Fe2O3 1.03 1.06 1.42 1.39 MnO 0.02 0.02 0.03 0.03 MgO 0.17 0.15 0.17 0.27 CaO 1.24 0.70 0.89 1.18 Na2O 3.98 3.97 3.76 4.01 K2O 4.08 4.66 4.45 3.89 P2O5 0.03 0.03 0.03 0.03 FeOT 0.93 0.95 1.28 1.25 Total 98.66 98.88 99.31 98.99 K2O/Na2O 1.03 1.17 1.18 0.97 K2O+Na2O 8.06 8.63 8.21 7.90 A/CNK 1.09 1.11 1.10 1.11 A/NK 1.31 1.24 1.26 1.33 Ba 851 576 909 1350 Rb 144.0 211 209 138.5 Sr 378 206 289 495 Zr 75 65 100 134 Nb 8.1 13.4 17.4 10.1 Cr 20 30 30 40 La 26.3 26.8 45.7 46.8 Ce 48.4 51.7 85.9 86.4 Pr 4.98 5.05 8.21 7.76 Nd 16.7 17.9 27.9 26.2 Sm 2.73 3.26 4.66 4.22 Eu 0.58 0.39 0.46 0.98 Gd 2.01 2.64 3.64 2.98 Tb 0.33 0.39 0.63 0.49 Dy 1.94 2.02 3.57 2.58 Ho 0.40 0.36 0.73 0.54 Er 1.26 1.18 2.46 1.78 Tm 0.17 0.18 0.34 0.24 Yb 1.12 1.12 2.45 1.62 Lu 0.13 0.14 0.35 0.24 Y 12.3 11.8 24.8 16.8 Cs 1.00 1.10 2.31 0.75 Ta 0.7 0.9 1.7 1.0 Hf 2.0 2.2 3.4 3.5 ΣREE 107.05 113.13 187 182.83 LREE 99.69 105.1 172.83 172.36 HREE 7.36 8.03 14.17 10.47 LREE/HREE 13.54 13.09 12.20 16.46 (La/Yb)N 15.83 16.13 12.58 19.48 δEu 0.73 0.39 0.33 0.80 Rb/Sr 0.38 1.02 0.72 0.28 Nb/Ta 11.57 14.89 10.24 10.10 CaO/Na2O 0.31 0.18 0.24 0.29 Rb/Sr 0.38 1.02 0.72 0.28 Rb/Ba 0.17 0.37 0.23 0.10 Rb/Nb 17.78 15.75 12.01 13.71 Zr/Hf 37.5 29.5 29.4 38.3 Sr/Ba 1.51 1.31 1.29 1.63 DI 89.69 92.15 90.54 88.69 刚玉 1.26 1.53 1.29 1.47 表 2 荒地白云母二长花岗岩的LA⁃MC⁃ICP⁃MS锆石U⁃Pb分析结果
Table 2. LA⁃MC⁃ICP⁃MS zircon U⁃Pb data of the muscovite monzogranite from Huangdi pluton in Xiuyan, Liaodong Peninsula
测点号 元素含量(×10-6) Th/
U同位素比值 同位素年龄(Ma) Pb Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ DYN⁃1⁃1 25.7 82.9 1 026 0.08 0.050 3 0.002 4 0.170 0.007 0.024 8 0.000 5 209 109 159 6 158 3 DYN⁃1⁃2 171.8 182.1 487 0.37 0.116 8 0.002 2 4.957 0.093 0.307 5 0.003 7 1 907 33 1 812 16 1 728 18 DYN⁃1⁃3 6.9 72.4 198 0.37 0.045 8 0.009 1 0.217 0.048 0.032 8 0.002 0 191 29 200 40 208 12 DYN⁃1⁃5 26.6 100.5 1 044 0.10 0.050 5 0.001 8 0.173 0.006 0.024 9 0.000 4 220 51 162 5 159 2 DYN⁃1⁃8 87.1 52.7 254 0.21 0.135 2 0.008 8 5.800 0.372 0.309 8 0.007 3 2 166 113 1 946 56 1 740 36 DYN⁃1⁃9 57.5 163.3 2 227 0.07 0.049 8 0.001 2 0.177 0.005 0.025 8 0.000 4 187 57 165 4 164 3 DYN⁃1⁃10 3.7 81.4 130 0.62 0.053 3 0.006 8 0.169 0.022 0.023 9 0.000 9 339 294 158 19 152 6 DYN⁃1⁃11 95.7 105.1 351 0.30 0.113 9 0.002 1 3.723 0.069 0.237 2 0.003 0 1 863 33 1 576 15 1 372 16 DYN⁃1⁃14 89.5 162.5 251 0.65 0.117 0 0.002 2 4.700 0.092 0.290 9 0.003 1 1 922 35 1 767 16 1 646 15 DYN⁃1⁃18 40.3 251.4 1 470 0.17 0.051 4 0.001 9 0.182 0.007 0.025 7 0.000 3 261 85 170 6 164 2 DYN⁃1⁃19 6.7 188.5 213 0.89 0.059 4 0.010 5 0.177 0.028 0.025 4 0.001 2 583 391 166 25 162 7 表 3 辽东荒地花岗岩的Hf同位素分析结果
Table 3. Hf isotope analysis results of Huangdi granite in Liaodong Peninsula
测点号 T(Ma) 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf 1σ εHf(t) TDMHf(Ma) TDMC(Ma) DYN⁃1⁃01 158 0.282 018 0.000 81 0.040 30 3.0 -23.298 074 07 1 728 2 680 DYN⁃1⁃02 1 907 0.281 662 0.001 67 0.081 59 33.0 1.181 794 147 2 266 2 471 DYN⁃1⁃03 208 0.281 602 0.001 01 0.049 04 12.4 -36.968 833 13 2 311 3 568 DYN⁃1⁃04 159 0.281 807 0.000 68 0.029 45 2.4 -30.711 580 41 2 010 3 144 DYN⁃1⁃05 2 166 0.281 919 0.000 73 0.034 03 113.0 17.334 503 65 1 859 1 672 DYN⁃1⁃06 164 0.281 960 0.002 63 0.139 92 2.7 -25.411 689 43 1 898 2814 DYN⁃1⁃07 152 0.281 918 0.000 81 0.039 43 5.5 -26.957 914 33 1 866 2 904 DYN⁃1⁃08 1922 0.281 556 0.001 12 0.052 44 34.7 -1.557 603 622 2 380 2 652 DYN⁃1⁃09 162 0.281 929 0.001 78 0.086 19 7.4 -26.460 603 56 1 898 2 879 -
[1] Boyton, W.V., 1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies.Developments in Geochemistry, 2:63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3 [2] Collins, W.J., Richards, S.W., 2008.Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens.Geology, 36:559-562. https://doi.org/10.1130/g24658a.1 [3] Dong, S.W., Zhang, Y.Q., Long, C.X., et al., 2007.Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement.Acta Geologica Sinica, 81(11):1449-1461(in Chinese with English abstract). [4] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 [5] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust Mantle System.Chemical Geology, 120:347-59. https://doi.org/10.1016/0009-2541(94)00145-x [6] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust and Oceanic Crust. Earth and Planetery Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x [7] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [8] Li, S.Z., Hao, D.F., Zhao, G.C., et al., 2004.Geochemical Features and Origin of Dandong Granite.Acta Petrologica Sinica, 20(6):116-122(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200406011 [9] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992.Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton.Geology, 20(4):339-342. [10] Liu, D.Y., Wlide, S.A., Wan, Y.S., et al., 2008.New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton.American Journal of Science, 308(3):200-231. doi: 10.2475-03.2008.02/ [11] Liu, J.L., Ji, M., Sheng, L., et al., 2011.Early Cretaceous Extensional Structures in the Liaodong Peninsula:Structural Associations, Geochronological Constraints and Regional Tectonic Implications.Science China:Earth Sciences, 41(5):618-637(in Chinese). [12] Liu, J.X., Li, S.C., Zhu, K., et al., 2020.Geochronology, Geochemistry and Tectonic Setting of the Guanmenshan Pluton in Benxi, Eastern Liaoning Province.Earth Science, 45(3):869-879(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx202003013 [13] Ludwig, K.R., 2003.Isoplot/Exversion 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, CA. [14] Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., et al., 2008.Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS.Chemical Geology, 255(1-2):231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040 [15] Pearce, J.A., Harris, H.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [16] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [17] Qing, Y., Liang, Y.H., Hu, C.Z., et al., 2013.Confirmation of Aluminous A-Type Granite Emplacement and Its Tectonic Significance during Early Cretaceous in the Laoling Area, South of Jilin Province.Earth Science, 38(4):677-688(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.068 [18] Shand, S.J., 1943.The Eruptive Rocks(2nd Edition).John Wiley, New York. [19] Shen, L., 2013.The Late Mesozoic Tectonic Transition of the Eastern Part of North China Craton: An Example from the Liaodong Peninsula (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [20] Shen, L., Liu, J.L., Hu, L., et al., 2011.The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance. Science China:Earth Sciences, 41(4):437-451(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201110003 [21] Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China.Precambrian Research, 78(1-3):79-94. doi: 10.1016/0301-9268(95)00070-4 [22] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implication for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp. 1989.042.01.19 doi: 10.1144/gsl.sp.1989.042.01.19 [23] Sylvester, P.J., 1989.Post-Collisional Alkaline Granites.The Journal of Geology, 97(3):261-280. https://doi.org/10.12691/jgg-2-2-4 [24] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [25] Taylor, S.R., McLennan, S.M., 1985a.The Continental Crust: Its Composition and Evolution.Oxford, Blackwell, 91-92.https://doi.org/ 10.1016/0031-9201(86)90093-2 [26] Taylor, S.R., McLennan, S.M., 1995b.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262 [27] Wang, G.W., 2019.Petrogeochemistry and Geological Significance of Middle Jurassic Granite in Qingyuan Area, Liaodong (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [28] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [29] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Application in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.researchgate.net/publication/305531916_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology [30] Wu, F.Y., Yang, J.H., Liu, X.M., 2005.Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China.Geological Journal of China Universities, 11(3):305-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003 [31] Wu, F.Y., Yang, J.H., Simon, S.A., et al., 2005.Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China.Chemical Geology, 221(1-2):127-156. doi: 10.1016/j.chemgeo.2005.04.010 [32] Yang, F.C., Song, Y.H., Hao, L.B., et al., 2015.Late Jurassic SHRIMP U-Pb Age and Hf Isotopic Characteristics of Granite from the Sanjiazi Area in Liaodong and Their Geological Significance.Acta Geologica Sinica, 89(10):1773-1782(in Chinese with English abstract). [33] Yang, F.C., Song, Y.H., Yang, J.L., et al., 2018.SHRIMP U-Pb Age and Geochemical Characteristics of Granites in Wulong-Sidaogou Gold Deposit, East Liaoning.Geotectonica et Metallogenia, 42(5):941-954(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201805013 [34] Yang, J.H., Chung, S.L., Wilde, S.L., et al., 2006.Petrogenesis of Post-Orogenic Syenites in the Sulu Orogenic Belt, East China:Geochronological, Geochemical and Nd-Sr Isotopic Evidence.Chemical Geology, 214:99-125. https://doi.org/10.1016/j.chemgeo.2006.05.012 [35] Yang, J.H., Wu, F.Y., 2009.Triassic Magmatism and Its Relation to Decratonization in the Eastern North China Craton. Science China:Earth Sciences, 39(7):910-921(in Chinese). [36] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2005.Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and Their Relationship to Lithospheric Thinning.Chemical Geology, 222:200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006 [37] Yang, J.H., Wu, F.Y., Liu, X.M., et al., 2007.Petrogenesis and Geological Significance of the Jurassic Xiaoheishan Pluton in the Liaodong Peninsula, East China:In-Situ Zircon U-Pb Dating and Hf Isotopic Analysis.Bulletin of Mineralogy, Petrology and Geochemistry, 26(1):30-43(in Chinese with English abstract). [38] Yang, J.H., Wu, F.Y., Luo, Q.H., et al., 2004.Deformation Age of Jurassic Granites in Dandong Area, Eastern China:40Ar/39Ar Geochronological Constrains.Acta Petrologica Sinica, 20(5):1205-1214(in Chinese with English abstract). [39] Zhai, M.G., 2010.Tectonic Evolution and Metallogenesis of North China Craton.Mineral Deposits, 29(1):24-36(in Chinese with English abstract). [40] Zhang, P., Zhao, Y., Kou, L.L., et al., 2019.Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula.Earth Science, 44(10):3297-3313(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201910010 [41] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 [42] Zhao, G.C., 2009.Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton:Key Issues and Discussion.Acta Petrologica Sinica, 25(8):1772-1792(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200908006.htm [43] 董树文, 张岳桥, 龙长兴, 等, 2007.中国侏罗纪构造变革和燕山运动新诠释.地质学报, 81(11):1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001 [44] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [45] 李三忠, 郝德峰, 赵国春, 等, 2004.丹东花岗岩的地球化学特征及其成因.岩石学报, 20(6):116-122. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406011 [46] 刘杰勋, 李世超, 朱凯, 等, 2020.辽东本溪关门山岩体的年代学、地球化学及构造背景.地球科学, 45(3):869-879. doi: 10.3799/dqkx.2019.064 [47] 刘俊来, 纪沫, 申亮, 等, 2011.辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵.中国科学:地球科学, 41(5):618-637. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201105003 [48] 秦亚, 梁一鸿, 胡兆初, 等, 2013.吉南老岭地区早白垩世铝质A型花岗岩的厘定及其构造意义.地球科学, 22(4):677-688. doi: 10.3799/dqkx.2013.068 [49] 申亮, 2013.华北克拉通东部晚中生代构造体制转换-以辽东半岛为例(博士学位论文).北京: 中国地质大学. [50] 申亮, 刘俊来, 胡玲, 等, 2011.辽东半岛大营子拆离断层系及其区域构造意义.中国科学:地球科学, 41(4):437-451. http://d.old.wanfangdata.com.cn/Conference/7241306 [51] 王广伟, 2019.辽东清原地区中侏罗世花岗质侵入岩地球化学特征及地质意义(硕士学位论文).长春: 吉林大学. [52] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706001 [53] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [54] 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [55] 杨凤超, 宋运红, 郝立波, 等, 2015.辽宁三家子地区晚侏罗世花岗岩SHRIMP U-Pb、年龄、Hf同位素特征及地质意义.地质学报, 89(10):1773-1782. doi: 10.3969/j.issn.0001-5717.2015.10.005 [56] 杨凤超, 宋运红, 杨佳林, 等, 2018.辽东五龙-四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义.大地构造与成矿学, 42(5):941-954. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201805013 [57] 杨进辉, 吴福元, 2009.华北东部三叠系岩浆作用和克拉通破坏.中国科学:地球科学, 39(7):910-921. [58] 杨进辉, 吴福元, 柳小明, 等, 2007.辽东半岛小黑山岩体成因及其地质意义:锆石U-Pb年龄和铪同位素证据.矿物岩石地球化学通报, 26(1):30-43. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200701004 [59] 杨进辉, 吴福元, 罗清华, 等, 2004.辽宁丹东地区侏罗纪花岗岩的变形时代:40Ar/39Ar年代学制约.岩石学报, 20(5):1205-1214. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200405016 [60] 翟明国, 2010.华北克拉通的形成演化与成矿作用.矿床地质, 29(1):24-36. doi: 10.3969/j.issn.0258-7106.2010.01.004 [61] 张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129 [62] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609001 [63] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8):1772-1792. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908004