Zircon U-Pb Dating and Geochemistry of Late Carboniferous Pyroxene Peridotite in Dong Ujimqi Inner Mongolia and Its Tectonic Significance
-
摘要: 目前关于内蒙古东乌旗晚古生代花岗岩中辉石橄榄包体的精确年代学及其构造意义不清,直接制约了该区晚古生代地幔性质及构造演化的探讨.对东乌旗新发现的辉石橄榄岩进行了岩相学、全岩地球化学和锆石U-Pb定年研究.结果表明,辉石橄榄岩主要由橄榄石、角闪石、斜方辉石及少量斜长石、黑云母、单斜辉石组成;锆石U-Pb年龄为317.8±1.6 Ma,属晚石炭世.地球化学数据显示,岩石SiO2含量为40.28%~44.50%、MgO含量为23.42%~29.44%、Na2O+K2O含量为1.00%~2.12%(小于3.5%),具有低m/f比值(3.13~3.86)和高FeOT含量(11.18%~14.70%)、高Mg#值(75.60~79.26),属铁质超镁铁岩和拉斑玄武岩系列.岩石稀土总量较高(∑REE=31.98×10-6~72.60×10-6),轻稀土(LREE)相对于重稀土(HREE)富集,(La/Yb)N=3.56~7.72,Eu异常不明显(δEu=0.79~1.65),球粒陨石标准化稀土元素配分模式表现为右倾型.岩石富集大离子亲石元素Rb、Sr、K等,相对亏损高场强元素Nb、Ta,具明显的Nb、Ta、Ti负异常;其形成于受俯冲流体改造的岩石圈地幔的减薄作用,并且岩浆在演化过程中遭受了地壳物质的同化混染作用.Abstract: The precise chronology and tectonic significance of pyroxene peridotite in Late Paleozoic granites in Dong Ujimqi, Inner Mongolia are still unclear, which will directly restrict the discussion of the properties and tectonic evolution in the study area. In this paper, petrography analysis, geochemistry and zircon U-Pb dating for the newly discovered pyroxene peridotite were studied. The analysis results show that main rock forming minerals are olivine, hornblende, orthopyroxene, and small amounts of plagioclase, biotite and clinopyroxene. The weighted average age obtained is 317.8±1.6 Ma, indicating that the intrusion was formed in the Late Carboniferous. Geochemical data show that, samples have SiO2 content of 40.28%-44.50%, MgO content of 23.42%-29.44% and Na2O+K2O content of 1.00%-2.12%, have low m/f ratio (3.13-3.86), high FeOT content (11.18%-14.70%) and Mg# (75.60-79.26), and belong to the series of ferrous ultramafic rocks and tholeiites. These rocks have high REE (31.98×10-6-72.60×10-6), enrichment in LREE and relatively depletion in HREE, (La/Yb)N=3.56-7.72, slightly Eu anomalies (δEu=0.79-1.65).The standardized distribution pattern of REE chondrites is right-leaning. The rocks are enriched in LILE (Rb, Sr, K) and depleted in HFSE (Nb, Ta), and there are obvious negative anomalies of Nb, Ta and Ti. Thus, we consider that the pyroxene peridotite had been formed in extensional tectonics from partial melting of the Sp-peridotite, which was modified by the subducted slab-derived fluid.
-
Key words:
- pyroxene peridotite /
- Late Carboniferous /
- U-Pb age /
- Dong Ujimqi /
- geochemistry /
- geochronology
-
图 1 中亚造山带(a)、兴蒙造山带(b)构造简图和内蒙古东乌旗西部地质简图(c)
据Cheng et al.(2014)修改. TC.塔里木板块;NCC.华北板块.除317.8±1.6 Ma外,其他年龄数据均来源于Cheng et al.(2014)
Fig. 1. Geological sketch maps of Central-Asian Orogenic Belt (a) and Xing'an-Mongolian Orogenic Belt (b) and western Dong Ujimqi, Inner Mongolia (c)
图 5 内蒙古东乌旗辉石橄榄岩稀土元素球粒陨石标准化配分模式(a)和原始地幔标准化微量元素蛛网图(b)
Fig. 5. Chondrite-normalized REE pattern(a)and primitive mantle-normalized trace element spider diagram(b)of the pyroxene peridotite in Dong Ujimqi, Inner Mongolia
图 6 内蒙古东乌旗辉石橄榄岩的部分熔融判别图解
图a据程银行等(2016);图b据Onuma et al.(1981).实心和空心分别代表稀土总量高和稀土总量低的辉石橄榄岩
Fig. 6. Discrimination diagrams of partial melting of the pyroxene peridotite in Dong Ujimqi, Inner Mongolia
图 7 内蒙古东乌旗辉石橄榄岩的地幔岩相判别图
图a据Münker(2000);图b据Deniel(1998).实心和空心分别代表稀土总量高和稀土总量低的辉石橄榄岩
Fig. 7. Discrimination diagrams of pyrolite phase of the pyroxene peridotite in Dong Ujimqi, Inner Mongolia
图 8 内蒙古东乌旗辉石橄榄岩的Zr/4-2Nb-Y图解
据Meschede(1986). A1.板内碱性玄武岩;A2.板内玄武岩和板内拉斑玄武岩;B.E-MORB;C.板内拉斑玄武岩和火山弧玄武岩;D. N-MORB和火山弧玄武岩.实心和空心分别代表稀土总量高和稀土总量低的辉石橄榄岩
Fig. 8. Zr/4-2Nb-Y diagram of the pyroxene peridotite in Dong Ujimqi, Inner Mongolia
表 1 内蒙古东乌旗辉石橄榄岩LA-MC-ICP-MS锆石U-Pb同位素分析结果
Table 1. Zircon LA-MC-ICP-MS U-Pb dating result of pyroxene peridotite in Dong Ujimqi, Inner Mongolia
测点号 元素含量及比值 同位素比值 年龄(Ma) U(10-6) Th(10-6) Th/U 206Pb/ 238U ±1σ 207Pb/ 235U ±1σ 207Pb/ 206Pb ±1σ 206Pb/ 238U ±1σ 207Pb/ 235U ±1σ 7217.1 521 683 1.31 0.050 2 0.000 6 0.362 0 0.006 0 0.052 3 0.000 7 316 4 314 5 7217.2 92 67 0.72 0.050 9 0.000 6 0.369 7 0.023 7 0.052 6 0.003 3 320 4 319 21 7217.3 400 609 1.52 0.051 0 0.000 6 0.370 5 0.008 9 0.052 7 0.000 9 320 4 320 8 7217.4 342 184 0.54 0.050 6 0.000 9 0.367 6 0.010 8 0.052 7 0.001 4 318 6 318 9 7217.5 188 222 1.18 0.050 4 0.000 6 0.365 1 0.009 2 0.052 5 0.001 2 317 4 316 8 7217.6 166 124 0.75 0.050 4 0.000 6 0.365 8 0.010 6 0.052 6 0.001 4 317 4 317 9 7217.7 227 165 0.73 0.050 5 0.000 6 0.366 2 0.008 1 0.052 6 0.001 1 317 4 317 7 7217.8 175 213 1.22 0.051 1 0.000 6 0.371 9 0.008 0 0.052 8 0.001 1 321 4 321 7 7217.9 811 610 0.75 0.050 2 0.000 6 0.365 1 0.005 6 0.052 7 0.000 6 316 4 316 5 7217.10 521 625 1.20 0.050 2 0.000 6 0.368 4 0.006 1 0.053 2 0.000 7 316 4 318 5 7217.11 367 314 0.85 0.050 8 0.000 6 0.369 6 0.007 0 0.052 8 0.001 0 319 3 319 6 7217.12 534 612 1.15 0.050 6 0.000 6 0.369 0 0.006 0 0.052 9 0.000 7 318 4 319 5 7217.13 2 052 2730 1.33 0.050 5 0.000 6 0.367 0 0.005 2 0.052 7 0.000 6 318 4 317 4 7217.14 749 633 0.84 0.050 5 0.000 6 0.367 7 0.006 1 0.052 8 0.000 8 318 4 318 5 7217.15 764 803 1.05 0.050 9 0.000 6 0.369 9 0.007 3 0.052 7 0.000 8 320 4 320 6 7217.16 247 246 0.99 0.050 3 0.000 6 0.366 2 0.012 0 0.052 8 0.001 7 317 4 317 10 7217.17 428 597 1.39 0.050 6 0.000 6 0.369 8 0.006 3 0.053 0 0.000 9 318 4 319 5 7217.18 645 1 175 1.82 0.050 6 0.000 6 0.369 2 0.007 0 0.052 9 0.000 8 318 4 319 6 7217.19 491 7 0.02 0.050 6 0.000 8 0.367 7 0.008 4 0.052 7 0.001 0 318 5 318 7 7217.20 92 63 0.68 0.049 8 0.000 6 0.363 6 0.023 3 0.053 0 0.003 3 313 4 315 20 7217.21 497 12 0.03 0.050 5 0.000 6 0.369 1 0.009 2 0.053 0 0.001 4 318 4 319 8 7217.24 710 6 0.01 0.050 9 0.001 2 0.370 4 0.010 4 0.052 8 0.000 8 320 8 320 9 表 2 内蒙古东乌旗辉石橄榄岩主量元素(%)和微量元素(10-6)分析结果
Table 2. Major element (%) and trace element (10-6) contents of pyroxene peridotite in Dong Ujimqi, Inner Mongolia
编号 7216-4 7216-5 7216-6 7217 P19-13-4 P19-13-5 P19-13-6 SiO2 43.57 44.50 43.88 40.28 43.00 43.33 43.02 Al2O3 7.93 7.94 7.96 5.67 7.73 7.56 7.59 Fe2O3 3.81 3.67 3.34 4.90 2.83 3.99 3.08 FeO 8.16 8.08 8.18 10.29 11.29 10.42 11.16 CaO 6.70 6.58 6.54 3.27 3.70 3.75 3.62 MgO 23.99 23.42 23.96 29.44 24.92 24.33 25.22 K2O 0.42 0.40 0.40 0.44 0.88 1.05 0.90 Na2O 1.06 1.04 1.04 0.56 1.12 1.07 1.08 TiO2 0.42 0.44 0.43 0.26 0.84 0.86 0.82 P2O5 0.08 0.08 0.07 0.08 0.24 0.25 0.25 MnO 0.19 0.18 0.18 0.23 0.21 0.21 0.21 LOI 2.77 2.77 3.10 3.44 1.99 2.02 1.79 总量 99.09 99.09 99.08 98.86 98.75 98.84 98.74 Mg# 78.70 78.60 79.26 78.14 76.27 75.60 76.36 FeOT 11.59 11.38 11.18 14.70 13.84 14.01 13.93 m/f 3.73 3.70 3.86 3.61 3.24 3.13 3.26 K2O+Na2O 1.48 1.44 1.44 1.00 2.00 2.12 1.98 K2O/Na2O 0.39 0.38 0.38 0.78 0.78 0.98 0.83 K2O/TiO2 1.00 0.90 0.93 1.69 1.04 1.22 1.09 P2O5 /Al2O3 0.01 0.01 0.01 0.01 0.03 0.03 0.03 Cu 13.8 20.0 16.8 8.9 70.1 62.8 62.6 Pb 8.83 6.98 7.98 58.80 4.12 4.25 4.08 Zn 93.8 93.9 91.6 136 119 121 119 Cr 1 290 1 230 1 260 728 1 510 1 460 1 530 Ni 413 399 398 586 842 831 880 Co 97.8 94.8 95.6 132 107 106 111 Li 9.5 10.2 10.3 13.8 28.9 33.2 31.8 Rb 11.9 11.8 11.0 18.5 36.5 48.1 40.6 Cs 2.62 2.54 2.24 7.11 21.10 26.40 24.00 Sr 370 362 362 177 347 255 359 Ba 79.9 92.4 93.2 79.2 159 143 170 V 96.2 96.3 96.2 77.8 124 123 125 Sc 20.4 17.5 20.0 9.0 10.9 12.4 12.4 Nb 1.49 1.57 1.48 1.43 3.31 3.28 3.34 Ta 0.12 0.12 0.10 0.14 0.21 0.22 0.22 Zr 38.3 41.0 37.4 42.0 99.3 101 105 Hf 1.22 1.27 1.22 1.16 2.64 2.70 2.82 Ga 8.6 8.33 8.72 6.33 9.96 9.83 10.6 U 0.41 0.39 0.42 0.78 0.29 0.32 0.32 Th 1.25 1.21 1.33 1.72 0.76 0.83 1.66 La 5.26 5.24 6.44 5.84 9.20 9.25 10.80 Ce 12.0 12.0 14.2 12.6 22.6 22.7 26.1 Pr 1.67 1.67 1.92 1.64 3.34 3.35 3.79 Nd 7.34 7.43 8.36 6.7 15.2 15.3 17.2 Sm 1.67 1.70 1.88 1.40 3.50 3.51 3.87 Eu 0.52 0.53 0.56 0.36 1.03 1.03 1.08 Gd \ \ \ 1.32 \ \ \ Tb 0.25 0.26 0.28 0.20 0.54 0.56 0.63 Dy 1.40 1.53 1.58 1.00 3.00 3.15 3.65 Ho 0.27 0.28 0.30 0.20 0.60 0.61 0.74 Er 0.74 0.76 0.84 0.55 1.64 1.65 2.06 Tm 0.10 0.11 0.12 0.081 0.23 0.24 0.32 Yb 0.66 0.70 0.77 0.51 1.47 1.56 2.04 Lu 0.10 0.11 0.12 0.08 0.23 0.24 0.32 Y 6.74 6.79 7.42 5.08 14.50 14.60 17.90 ΣREE 31.98 32.32 37.37 32.48 62.58 63.15 72.60 (La/Sm)N 1.98 1.93 2.15 2.62 1.65 1.65 1.75 (La/Yb)N 5.37 5.04 5.63 7.72 4.21 3.99 3.56 δEu 1.65 1.65 1.58 0.79 1.56 1.55 1.48 Rb/Sr 0.03 0.03 0.03 0.10 0.11 0.19 0.11 注:Mg#=100×Mg2+/(Mg2++Fe2+);FeOT=FeO+0.899 8Fe2O3;下标N表示球粒陨石标准化值(Sun and McDonough, 1989);m/f= (FeOT/72)/(MgO/40);Gd是两批测试的结果,“\”代表没有测试数据. -
[1] Aldanmaz, E., Pearce, J., Thirlwall, M., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 [2] Brandon, A. D., Hooper, P. R., Goles, G. G., et al., 1993. Evaluating Crustal Contamination in Continental Basalts: The Isotopic Composition of the Picture Gorge Basalt of the Columbia River Basalt Group. Contributions to Mineralogy and Petrology, 114(4): 452-464. https://doi.org/10.1007/bf00321750 [3] Cheng, Y. H., Teng, X. J., Li, Y. F., et al., 2014. Early Permian East-Ujimqin Mafic-Ultramafic and Granitic Rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, Chronology, and Tectonic Implications. Journal of Asian Earth Sciences, 96: 361-373. https://doi.org/10.1016/j.jseaes.2014.09.027 [4] Cheng, Y.H., Zhang, T.F., Li, Y.F., et al., 2016. Discovery of the Early Permian Ultramafic Rock in Dong Ujimqi, Inner Mongolia and Its Tectonic Implications. Acta Geologica Sinica, 90(1): 115-125 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201601007 [5] Cheng, Y. H., Duan, L. F., Wang, S. Y., et al., 2020. Termination of the Hegenshan Orogen in the Xing'an-Mongolian Orogenic Belt, North China: Geochemical and Zircon U-Pb Geochronological Constraints from Early Permian Mafic Dykes. Geological Journal, 55(1): 845-861. https://doi.org/10.1002/gj.3463 [6] Cheng, Y.H., Li, M., Zhang, T.F., et al., 2015. Late Paleozoic Crustal Extensional Regime on the Southeastern Siberian Plate: New Evidences from Geochronology and Geochemistry of the Bojite in Dong Ujimqi. Acta Geologica Sinica, 89(2): 262-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201502005.htm [7] Deng, Y.F., Song, X.Y., Jie, W., et al., 2011. Petrogenesis of the Huangshandong Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, Northern Tianshan, Xinjiang: Evidence from Major and Trace Elements and Sr-Nd Isotope. Acta Geologica Sinica, 85(9): 1435-1451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201109005.htm [8] Deniel, C., 1998. Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interactions in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 144(3-4): 281-303. https://doi.org/10.1016/s0009-2541(97)00139-3 [9] Ewart, A., Collerson, K. D., Regelous, M., et al., 1998. Geochemical Evolution within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time. Journal of Petrology, 39(3): 331-368. https://doi.org/10.1093/petroj/39.3.331 [10] Fu, J.Y., Wang, Y., Zhong, H., et al., 2017. Geochemistry and Source Characteristics of Ultramafic Rocks in Tuquan Mangniuhai, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 47(4): 1172-1186 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201704015 [11] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000. Genesis of Positive ε(Nd, t) Granitoids in the Da Xinggan Mts. -Monggolia Orogenic Belt and Growth Continental Crust. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract). [12] Langmuir, C. H., Bender, J. F., Bence, A.E., et al., 1977. Petrogenesis of Basalts from the Famous Area: Mid-Atlantic Ridge. Earth and Planetary Science Letters, 36(1): 133-156. https://doi.org/10.1016/0012-821x(77)90194-7 [13] Li, D.P., Chen, Y.L., Wang, Z., et al., 2010. Nd-Pb Isotopic Composition Characteristics and Geological Significances of Granitoids with Different Ages in Inner Mongolia. Geoscience, 24(5): 821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201005001 [14] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200703004 [15] Li, M., Ren, B.F., Teng, X.J., et al., 2018. Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt. Earth Science, 43(12): 4586-4605 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812023 [16] Li, Y. J., Wang, G. H., Santosh, M., et al., 2018. Supra-Subduction Zone Ophiolites from Inner Mongolia, North China: Implications for the Tectonic History of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 59: 126-143. https://doi.org/10.1016/j.gr.2018.02.018 [17] Li, Y.J., Wang, J.F., Wang, G.H., et al., 2018. Discovery and Significance of the Dahate Fore-Arc Basalts from the Diyanmiao Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 34(2): 469-482 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019 [18] Liang, Y.W., Yu, C.L., Shen, G.Z., et al., 2013. Geochemical Characteristics of Granites in the Suonaga Pb-Zn-Ag Deposit of Dong Ujimqin Banner, Inner Mongolia, and Their Tectonic and Ore-Forming Implications. Chinese Geology, 40(3): 767-779 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201303009 [19] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [20] Münker, C., 2000. The Isotope and Trace Element Budget of the Cambrian Devil River Arc System, New Zealand: Identification of Four Source Components. Journal of Petrology, 41(6): 759-788. https://doi.org/10.1093/petrology/41.6.759 [21] Onuma, N., Hirano, M., Isshiki, N., 1981. Sr/Ca-Ba/Ca Systematics in Four Volcanoes of Oshima, Izu Islands, Japan. Geochemical Journal, 15(6): 315-324. https://doi.org/10.2343/geochemj.15.315 [22] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [23] Pettigrew, N. T., Hattori, K. H., 2006. The Quetico Intrusions of Western Superior Province: Neo-Archean Examples of Alaskan/Ural-Type Mafic-Ultramafic Intrusions. Precambrian Research, 149(1-2): 21-42. https://doi.org/10.1016/j.precamres.2006.06.004 [24] Saunders, A. D., Storey, M., Kent, R.W., et al., 1992. Consequences of Plume-Lithosphere Interaction. Geological Society, London, Special Publications, 68(1):41-60. https://doi.org/10.1144/gsl.sp.1992.068.01.04 [25] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004. Age and Its Tectonic Significance of A-Type Granite in Xilinhot, Inner Mongolia. Chinese Science Bulletin, 49(4): 384-389 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201203009 [26] Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Tong, Y., Hong, D.W., Wang, T., et al., 2010. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientica Sinica, 31(3): 395-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201003013 [28] Wang, S.Q., Hu, X.J., Yang, Z.L., et al., 2018. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Characteristics and Geological Significance of Carboniferous Yuejin Arc Intrusive Rocks of Xilinhot, Inner Mongolia. Earth Science, 43(3): 672-695 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803003 [29] Wang, S.Q., Hu, X.J., Zhao, H.L., 2019. Geochronology of Late Carboniferous Alkaline Granite from Honger Area, Sunidzuoqi, Inner Mongolia. Geological Survey and Research, 42(2): 81-85 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201902001 [30] Wang, X.Y., Hou, Q.Y., Wang, J., et al., 2013. SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia. Geoscience, 27(1): 67-78 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201301007 [31] Wang, Y.J., Fan, Z.Y, 1997. Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance. Acta Palaeontologica Sinica, 36(1): 58-69 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700131556 [32] Wilson, B.M., 1989. Igneous Petrogenesis. Springer, Netherlands. [33] Xiao, W. J., Windley, B. F., Han, C.M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186:94-128. https://doi.org/j.earscirev.2017.09.020 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01d8c0dd8b7005c62e7be74b90a2311d [34] Xin, H.T., Teng, X.J., Cheng, Y.H., 2011. Stratigraphic Subdivision and Isotope Geochronology Study on the Baoligaomiao Formation in the East Ujimqin County, Inner Mongolia. Geological Survey and Research, 34(1): 1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201101001 [35] Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196. https://doi.org/10.1016/j.jseaes.2014.07.020 [36] Zhang, G.S., Wen, H.J., Hu, R.Z., et al., 2009. Geochemical Features of the Cenozoic Alkaline Ultramafic Volcanic Rock in Fujian and Their Tectonic Significance. Acta Geologica Sinica, 83(2): 284-294 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200902013 [37] Zhang, J., Ge, W.C., Li, B.Y., et al., 2011. Zircon U-Pb Ages and Hf Isotopes of Late Paleozoic Granites in Taerqi Area, Inner Mongolia. Global Geology, 30(4): 521-531 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201104003 [38] Zhang, L., Lü, X.B., Liu, G., et al., 2013. Characteristics and Genesis of Continental Back-Arc A-Type Granites in the Eastern Segment of the Inner Mongolia-Da Hinggan Mountains Orogenic Belt. Geology in China, 40(3): 869-884 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201303018 [39] Zhang, Y.Q., Zhang, J., Qu, Q., et al., 2013. U-Pb Age of Zircon from the Syenogranite in Adelagawula, Inner Mongolia. Geology and Resources, 22(4): 308-312 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201304010 [40] 程银行, 李敏, 张天福, 等, 2015.西伯利亚板块东南缘晚古生代伸展体制新证据:东乌旗角闪辉长岩年代学及地球化学研究.地质学报, 89(2): 262-271. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502005 [41] 程银行, 张天福, 李艳锋, 等, 2016.内蒙古东乌旗早二叠世超镁铁岩的发现及其构造意义.地质学报, 90(1): 115-125. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201601007 [42] 邓宇峰, 宋谢炎, 颉炜, 等, 2011.新疆北天山黄山东含铜镍矿镁铁-超镁铁岩体的岩石因:主量元素、微量元素和Sr-Nd同位素证据.地质学报, 85(9): 1435-1451. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201109004 [43] 付俊彧, 汪岩, 钟辉, 等, 2017.内蒙古突泉县牤牛海地区超镁铁质岩地球化学及源区特征.吉林大学学报(地球科学版), 47(4): 1172-1186. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201704015 [44] 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2): 441-456. http://d.old.wanfangdata.com.cn/Periodical/dxqy200002012 [45] 李大鹏, 陈岳龙, 王忠, 等, 2010.内蒙古不同时代花岗岩类Nd、Pb同位素特征及其地质意义.现代地质, 24(5): 821-831. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201005001 [46] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3): 565-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200703004 [47] 李敏, 任邦方, 滕学建, 等, 2018.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义.地球科学, 43(12): 4586-4605. doi: 10.3799/dqkx.2017.598 [48] 李英杰, 王金芳, 王根厚, 等, 2018.内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义.岩石学报, 34(2): 469-482. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019 [49] 梁玉伟, 余存林, 沈国珍, 等, 2013.内蒙古东乌旗索纳嘠铅锌银矿区花岗岩地球化学特征及其构造与成矿意义.中国地质, 40(3): 767-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201303009 [50] 施光海, 苗来成, 张福勤, 等, 2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报, 49(4): 384-389. http://d.old.wanfangdata.com.cn/Periodical/kxtb200404015 [51] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3): 395-412. http://d.old.wanfangdata.com.cn/Periodical/dqxb201003013 [52] 王树庆, 胡晓佳, 杨泽黎, 等, 2018.兴蒙造山带中段锡林浩特跃进地区石炭纪岛弧型侵入岩:年代学、地球化学、Sr-Nd-Hf同位素特征及其地质意义.地球科学, 43(3): 672-695. doi: 10.3799/dqkx.2017.510 [53] 王树庆, 胡晓佳, 赵华雷, 2019.内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩.地质调查与研究, 42(2): 81-85. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201902001 [54] 王新宇, 侯青叶, 王瑾, 等, 2013.内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究.现代地质, 27(1): 67-78. http://d.old.wanfangdata.com.cn/Periodical/xddz201301007 [55] 王玉净, 樊志勇, 1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报, 36(1): 58-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700131556 [56] 辛后田, 滕学建, 程银行, 2011.内蒙古东乌旗宝力高庙组地层划分及其同位素年代学研究.地质调查与研究, 34(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201101001 [57] 张贵山, 温汉捷, 胡瑞忠, 等, 2009.福建新生代碱性超基性火山岩地球化学特征及构造意义.地质学报, 83(2): 284-294. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200902013 [58] 张健, 陈井胜, 李泊洋, 等, 2011.内蒙古塔尔气地区晚古生代花岗岩的锆石U-Pb年龄及Hf同位素特征.世界地质, 30(4): 521-531. http://d.old.wanfangdata.com.cn/Periodical/sjdz201104003 [59] 张磊, 吕新彪, 刘阁, 等, 2013.兴蒙造山带东段大陆弧后A型花岗岩特征与成因.中国地质, 40(3): 869-884. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201303018 [60] 张玉清, 张建, 屈强, 等, 2013.内蒙古阿德拉嘎乌拉正长花岗岩锆石U-Pb年龄.地质与资源, 22(4): 308-312. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201304010