Crust-Mantle Interaction in Continental Subduction Zones
-
摘要: 由板块俯冲引发的深部物质循环过程是地球内部的一级运行机制,主宰了地球从内到外的演化进程,是地球科学研究的重要前沿.俯冲带化学地球动力学研究不仅需要确定俯冲带地壳物质再循环的机制和形式,而且需要确定俯冲带动力来源和热体制及其随时间的变化.为了识别不同类型壳源熔/流体对地幔楔的交代作用、寻求板片-地幔界面反应的岩石学和地球化学证据、理解汇聚板块边缘地壳俯冲和拆沉对地幔不均一性的贡献,我们必须将俯冲带变质作用、交代作用和岩浆作用作为一个地球科学系统来考虑.板块俯冲带变质过程中发生一系列物理化学变化,这些变化不但是导致板块进一步俯冲的主要驱动力,同时也控制着释放的熔/流体组成和俯冲到地球深部的物质组成,对俯冲带化学地球动力学过程产生重要影响.地幔楔作为俯冲系统中连接俯冲盘和仰冲盘的关键构造单元,在地球层圈之间物质循环和能量交换等方面起着重要作用.造山带地幔楔橄榄岩直接记录了俯冲带多种性质的熔/流体交代作用,以及复杂的壳幔物质循环过程.俯冲带岩浆岩是大洋/大陆板块俯冲物质再循环的表现形式,这些岩石样品记录了俯冲带从深部地幔到浅部地壳的过程,也为认识地球深部物质循环提供了理想的天然样品.尽管国际上在俯冲带岩石学和地球化学领域针对地球深部过程的研究方面取得了多项重要进展,但由于研究工作缺乏密切的协同配合,包括俯冲带熔/流体的物理化学性质、俯冲带壳幔相互作用的机制和过程、俯冲带幔源岩浆活动的物质来源和启动机制以及深部地幔过程对地表环境的影响等许多关键科学问题尚未得到根本解决.将来的研究需要聚焦俯冲带物质循环这一核心科学问题,进一步查明俯冲带变质作用、交代作用、岩浆作用等过程的各自特征和相互联系,包括挥发性组分在地球深部的迁移过程及其资源和环境效应,着力考察研究相对薄弱的古俯冲带,阐明板块俯冲与地球深部物质循环之间的耦合机制.Abstract: The recycling of crustal material into the mantle by subduction is the first-order mechanism of Earth's interior. In order to decipher the crustal-mantle interaction in subduction zones,it is important to distinguish different types of metasomatism by subducting crust-derived fluids such as aqueous solutions and hydrous melts to the mantle wedge. For this purpose,various lines of petrological and geochemical evidence have been used to determine the physicochemical properties of subduction zone fluids at the slab-mantle interface in subduction channels. In doing so,it is critical to determine how crustal rocks underwent metamorphic dehydration and partial melting at mantle depths. After incorporation of subduction zone fluids into the mantle wedge,different compositions of mantle metasomatites were generated in the mantle wedge to result in mantle heterogeneities. As soon as these metasomatites underwent partial melting,mafic igneous rocks were produced with both petrological and geochemical signatures of the subducted crust and the mantle wedge. In this regard,such processes as metamorphism,metasomatism and magmatism in subduction zones are the keys to the recycling of crustal material at convergent plate boundaries. The mantle wedge is the key lithotectonic unit linking the subducting slab and the obducting plate and thus plays an important role in the material transport and energy exchange in the subduction system. The orogenic mantle wedge peridotite directly records different types of crustal metasomatism in subduction zones. Subduction zone magmatism is the manifestation for recycling of subducted oceanic and continental rocks. These rocks witness the processes of magmatic melts from the mantle wedge to crustal levels above subduction zones,providing the natural samples to decode indirectly the crustal recycling at convergent plate boundaries. Although there are many advances in the study of subduction zones with respect to the crust-mantle interaction,such three processes as metamorphism,metasomatism and magmatism in subduction zones are still the most important targets in the deep Earth science. Many key problems cannot be resolved if no sufficient attention is paid to an integrated study of these three aspects. Such problems include the physiochemical properties of subduction zone fluids,the mechanism and process of crust-mantle interaction,the material source and triggering mechanism of mantle-derived magmatism above subduction zones,and the impact of deep mantle process on the shallow crustal environments. The future research needs to focus on the key question of material recycling in subduction zones,and take the metamorphism,metasomatism and magmatism in subduction zones as a whole in the framework of Earth system science. This concerns the transport process and the resource and environmental effects of volatile components,and clarify the coupling mechanism of plate subduction and material recycling in deep Earth by intensive studies of paleo-subduction zones.
-
图 1 大陆俯冲深度与变质指示矿物对应关系示意图
修改自郑永飞等(2015)
Fig. 1. Metamorphic index minerals indicate depths of crustal subduction at convergent plate boundaries
图 2 大陆俯冲隧道中壳幔相互作用示意图
修改自郑永飞等(2013).大陆地壳俯冲到地幔过程中释放流体交代上覆地幔楔橄榄岩,形成富集不相容元素的地幔交代岩
Fig. 2. Schematic diagram showing the crust-mantle interaction in continental subduction channel
图 3 大陆俯冲带板片-地幔楔界面两侧岩石组合的“三明治”结构示意图
修改自郑永飞等(2015)
Fig. 3. The sandwich structure of lithological associations at the slab-mantle interface in continental subduction zones
图 4 大陆俯冲隧道内板片-地幔楔界面过程示意图
修改自郑永飞等(2013).大陆碰撞过程中在俯冲隧道板片界面发生两种过程:(1)物理混合,形成由变质岩组成的构造混杂岩;(2)化学反应,俯冲地壳释放的熔/流体交代上覆岩石圈地幔楔橄榄岩
Fig. 4. Schematic diagram for the slab-mantle interface in continental subduction channel
图 5 俯冲带不同深度流体组成特征及对地幔楔交代的影响
修改自Zheng(2019)
Fig. 5. The composition of subduction zone fluids and their metsomatism to the mantle wedge in subduction zones
图 6 柴北缘绿梁山造山带橄榄岩造岩矿物氧同位素组成
Fig. 6. The oxygen isotope composition of rock-forming rocks in orogenic peridotite from Lüliangshan in North Qaidam
图 7 大别-苏鲁造山带M型橄榄岩及相关岩石中锆石O和Hf同位素与年龄相关图解
Fig. 7. The relationships between O-Hf isotope compositions and U-Pb ages for zircon from M-type peridotites and related rocks in the Dabie-Sulu orogenic belt
图 8 大陆俯冲带超高压白片岩镁和氧同位素组成图解
修改自Chen et al.(2016).白片岩经受了富镁流体的交代作用,流体来源于蛇纹石化橄榄岩在弧下深度的脱水,属于幔源流体.因此,在俯冲带深部存在幔源流体对地壳岩石的反向交代作用
Fig. 8. The Mg and O isotope compositions of UHP whiteschist from the continental subduction zone in western Alps
图 9 碰撞造山带镁铁质岩浆岩矿物稀有气体同位素组成图解
修改自Dai et al.(2016a).俯冲地壳可以将水及其溶解的大气组分稀有气体同位素信息带入地幔,并最终以镁铁质岩浆岩的形式重新返回到地表,实现地表物质再循环
Fig. 9. The noble gas isotope compositions of mafic minerals from mafic igneous rocks in the Dabie orogen
图 10 板片俯冲、熔/流体交代与岩浆岩地球化学组成间的联系示意图
修改自Zheng(2019).大洋板块俯冲到大陆岩石圈之下的过程中交代地幔楔,地幔楔变得越来越大,在弧后区域形成大地幔楔.俯冲洋壳在不同深度释放微量元素存在巨大差异的熔/流体交代地幔楔,从而形成岛弧型和洋岛型微量元素组成特征的镁铁质岩浆岩的地幔源区
Fig. 10. Schematic diagram showing the petrogenetic linkage between slab subduction, fluid metasomatism and mafic magmatism above oceanic subduction zones
-
[1] Agard, P., Yamato, P., Jolivet, L., et al., 2009.Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones:Timing and Mechanisms.Earth⁃Science Reviews, 92(1-2):53-79. https://doi.org/10.1016/j.earscirev.2008.11.002 [2] Allègre, C.J., 1982.Chemical Geodynamics.Tectonophysics, 81(3-4):109-132. https://doi.org/10.1016/0040-1951(82)90125-1 [3] Allègre, C.J., Turcotte, D.L., 1986.Implications of a Two-Component Marble-Cake Mantle.Nature, 323:123-127. https://doi.org/10.1038/323123a0 [4] Anderson, D.L., 2006.Speculations on the Nature and Cause of Mantle Heterogeneity.Tectonophysics, 416(1-4):7-22. https://doi.org/10.1016/j.tecto.2005.07.011 [5] Beaumont, C., Ellis, S., Pfiffner, A., 1999.Dynamics of Sediment Subduction-Accretion at Convergent Margins:Short-Term Modes, Long-Term Deformation, and Tectonic Implications.Journal of Geophysical Research:Solid Earth, 104(B8):17573-17601. doi: 10.1029/1999JB900136 [6] Beaumont, C., Jamieson, R.A., Butler, J.P., et al., 2009.Crustal Structure:A Key Constraint on the Mechanism of Ultra-High-Pressure Rock Exhumation.Earth and Planetary Science Letters, 287(1-2):116-129. https://doi.org/10.1016/j.epsl.2009.08.001 [7] Bebout, G.E., 2007.Metamorphic Chemical Geodynamics of Subduction Zones.Earth and Planetary Science Letters, 260(3-4):373-393. https://doi.org/10.1016/j.epsl.2007.05.050 [8] Bebout, G.E., 2014.Chemical and Isotopic Cycling in Subduction Zones.Treatise on Geochemistry, 4:703-747. [9] Bercovici, D., Ricard, Y., 2014.Plate Tectonics, Damage and Inheritance.Nature, 508:513-516. https://doi.org/10.1038/nature13072 [10] Bi, H.Z., Song, S.G., Dong, J.L., et al., 2018.First Discovery of Coesite in Eclogite from East Kunlun, Northwest China.Science Bulletin, 63(23):1536-1538. https://doi.org/10.1016/j.scib.2018.11.011 [11] Borghini, G., Rampone, E., Zanetti, A., et al., 2013.Meter-Scale Nd Isotopic Heterogeneity in Pyroxenite-Bearing Ligurian Peridotites Encompasses Global-Scale Upper Mantle Variability.Geology, 41(10):1055-1058. https://doi.org/10.1130/g34438.1 [12] Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103:181-196. doi: 10.2138/am-2018-6166 [13] Brun, J.P., Faccenna, C., 2008.Exhumation of High-Pressure Rocks Driven by Slab Rollback.Earth and Planetary Science Letters, 272(1-2):1-7. https://doi.org/10.1016/j.epsl.2008.02.038 [14] Cawood, P.A., Hawkesworth, C.J., et al., 2018.Geological Archive of the Onset of Plate Tectonics.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 376(2132). https://doi.org/10.1098/rsta.2017.0405 [15] Chen, R.X., Yin, Z.Z., Xia, C.P., 2019.Crustal Metasomatism of Mantle Wedge during Collisional Orogeny:Insights from Orogenic Peridotites in the Dabie-Sulu Orogenic Belt.Bulletin of Mineralogy, Petrology and Geochemistry, 38(3):459-484(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [16] Chen, R.X., Zheng, Y.F., Hu, Z.C., 2012.Episodic Fluid Action during Exhumation of Deeply Subducted Continental Crust:Geochemical Constraints from Zoisite-Quartz Vein and Host Metabasite in the Dabie Orogen.Lithos, 155:146-166. https://doi.org/10.1016/j.lithos.2012.08.023 [17] Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017b.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011 [18] Chen, Y., Su, B., Chu, Z.Y., 2017c.Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China.Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025 [19] Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China:Earth Sciences, 58(10):1679-1699(in Chinese). doi: 10.1007/s11430-015-5148-9 [20] Chen, Y.X., Schertl, H.P., Zheng, Y.F., et al., 2016.Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps.Earth and Planetary Science Letters, 456:157-167. https://doi.org/10.1016/j.epsl.2016.09.010 [21] Chen, Y.X., Zheng, Y.F., Hu, Z., 2013a.Petrological and Zircon Evidence for Anatexis of UHP Quartzite during Continental Collision in the Sulu Orogen.Journal of Metamorphic Geology, 31(4):389-413. https://doi.org/10.1111/jmg.12026 [22] Chen, Y.X., Zheng, Y.F., Hu, Z.C., 2013b.Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks:Petrological Evidence from Granitic Gneiss in the Sulu Orogen.Lithos, 156-159:69-96. https://doi.org/10.1016/j.lithos.2012.10.008 [23] Chen, Y.X., Zhou, K., Gao, X.Y., 2017a.Partial Melting of Ultrahigh-Pressure Metamorphic Rocks during Continental Collision:Evidence, Time, Mechanism, and Effect.Journal of Asian Earth Sciences, 145:177-191. https://doi.org/10.1016/j.jseaes.2017.03.020 [24] Chen, Y.X., Zhou, K., Zheng, Y.F., et al., 2017d.Zircon Geochemical Constraints on the Protolith Nature and Metasomatic Process of the Mg-Rich Whiteschist from the Western Alps.Chemical Geology, 467:177-195. https://doi.org/10.1016/j.chemgeo.2017.08.013 [25] Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1-2):1-14. https://doi.org/10.1016/s0012-821x(03)00261-9 [26] Cloos, M., Shreve, R.L., 1988a.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:1.Background and Description.Pure and Applied Geophysics, 128(3-4):455-500. doi: 10.1007/BF00874548 [27] Cloos, M., Shreve, R.L., 1988b.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:2.Implications and Discussion.Pure and Applied Geophysics, 128(3-4):501-545. doi: 10.1007/BF00874549 [28] Dai, F.Q., Zhao, Z.F., Dai, L.Q., et al., 2016b.Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China.Journal of Petrology, 57(6):1109-1134. https://doi.org/10.1093/petrology/egw034 [29] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2011.Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction.Earth and Planetary Science Letters, 308(1-2):229-244. https://doi.org/10.1016/j.epsl.2011.06.001 [30] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2012.The Nature of Orogenic Lithospheric Mantle:Geochemical Constraints from Postcollisional Mafic-Ultramafic Rocks in the Dabie Orogen.Chemical Geology, 334:99-121. https://doi.org/10.1016/j.chemgeo.2012.10.009 [31] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015a.Tectonic Development from Oceanic Subduction to Continental Collision:Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens.Gondwana Research, 27(3):1236-1254. https://doi.org/10.1016/j.gr.2013.12.005 [32] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2015b.Source and Magma Mixing Processes in Continental Subduction Factory:Geochemical Evidence from Postcollisional Mafic Igneous Rocks in the Dabie Orogen.Geochemistry, Geophysics, Geosystems, 16(3):659-680. https://doi.org/10.1002/2014gc005620 [33] Dai, L.Q., Zheng, Y.F., He, H.Y., et al., 2016a.Postcollisional Mafic Igneous Rocks Record Recycling of Noble Gases by Deep Subduction of the Continental Crust.Lithos, 252-253:135-144. https://doi.org/10.1016/j.lithos.2016.02.025 [34] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2017b.Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.Journal of Petrology, 58(5):863-884. https://doi.org/10.1093/petrology/egx038 [35] Dai, L.Q., Zheng, F., Zhao, Z.F., et al., 2017a.Recycling of Paleotethyan Oceanic Crust:Geochemical Record from Postcollisional Mafic Igneous Rocks in the Tongbai-Hong'an Orogens.Geological Society of America Bulletin, 129(1-2):179-192. doi: 10.1130/B31461.1 [36] Dai, L.Q., Zheng, F., Zhao, Z.F., et al., 2018.Geochemical Insights into the Lithology of Mantle Sources for Cenozoic Alkali Basalts in West Qinling, China.Lithos, 302-303:86-98. https://doi.org/10.1016/j.lithos.2017.12.013 [37] Dong, J., Wei, C.J., Clarke, G.L., et al., 2018.Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust:Insights from Felsic Granulites in South Altyn Tagh, West China.Journal of Petrology, 59(10):1965-1990. https://doi.org/10.1093/petrology/egy086 [38] Eiler, J., 2003.Inside the Subduction Factory.Geophysical Monograph, 138:1-311. [39] Elliott, T., 2003.Tracers of the Slab.Geophysical Monograph, 138:23-45. [40] Erdman, M., Lee, C.T.A., 2014. Implications and Limitations of Buoyancy⁃Driven Exhumation of High⁃Pressure and Ultrahigh⁃Pressure Terranes. Earth⁃Science Reviews, 139:33-46. [41] Ernst, W.G., Liou, J.G., 1995.Contrasting Plate⁃Tectonic Styles of the Qinling⁃Dabie⁃Sulu and Franciscan Metamorphic Belt.Geology, 23:353-356. doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2 [42] Ernst, W.G., Liou, J.G., 2008.High⁃ and Ultrahigh⁃Pressure Metamorphism:Past Results and Future Prospects.American Mineralogist, 93:1771-1786. doi: 10.2138/am.2008.2940 [43] Fang, W., Dai, L.Q., Zheng, Y.F., et al., 2019.Tectonic Transition from Oceanic Subduction to Continental Collision: New Geochemical Evidence from Early-Middle Triassic Mafic Igneous Rocks in Southern Liaodong Peninsula, East-Central China.GSA Bulletin. https://doi.org/10.1130/b35278.1 [44] Frisch, W., Meschede, M., Blakey, R.C., 2010.Plate Tectonics: Continental Drift and Mountain Building.Springer-Verlag, Berlin Herdelburg, 149-158. [45] Gao, X.Y., Zheng, Y.F., Chen, Y.X., 2012.Dehydration Melting of Ultrahigh-Pressure Eclogite in the Dabie Orogen:Evidence from Multiphase Solid Inclusions in Garnet.Journal of Metamorphic Geology, 30(2):193-212. https://doi.org/10.1111/j.1525-1314.2011.00962.x [46] Gao, X.Y., Zheng, Y.F., Chen, Y.X., et al., 2015.Zircon Geochemistry Records the Action of Metamorphic Fluid on the Formation of Ultrahigh-Pressure Jadeite Quartzite in the Dabie Orogen.Chemical Geology, 419:158-175. https://doi.org/10.1016/j.chemgeo.2015.10.043 [47] Gao, X.Y., Wang, L., Chen, Y.X., et al., 2019.Geochemical Evidence from Coesite-Bearing Jadeite Quartzites for Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Channel.Geochimica et Cosmochimica Acta, 265:354-370. https://doi.org/10.1016/j.gca.2019.09.006 [48] Gerya, T.V., Stöckhert, B., Perchuk, A.L., 2002.Exhumation of High-Pressure Metamorphic Rocks in a Subduction Channel:A Numerical Simulation.Tectonics, 21(6):6-1-6-19. https://doi.org/10.1029/2002tc001406 [49] Gong, X.K., Chen, D.L., Ren, Y.F., et al., 2016.Identification of Coesite-Bearing Amphibolite in the North Qinling and Its Geological Significance.Chinese Science Bulletin, 61(12):1365-1378(in Chinese with English abstract). doi: 10.1360/N972015-01277 [50] Guo, S., Chen, Y., Ye, K., et al., 2015.Formation of Multiple High-Pressure Veins in Ultrahigh-Pressure Eclogite (Hualiangting, Dabie Terrane, China):Fluid Source, Element Transfer, and Closed⁃System Metamorphic Veining.Chemical Geology, 417:238-260. https://doi.org/10.1016/j.chemgeo.2015.10.006 [51] Guo, S., Yang, Y.H., Chen, Y., et al., 2016.Grain-Scale Sr Isotope Heterogeneity in Amphibolite (Retrograded UHP Eclogite, Dabie Terrane):Implications for the Origin and Flow Behavior of Retrograde Fluids during Slab Exhumation.Lithos, 266-267:383-405. https://doi.org/10.1016/j.lithos.2016.10.014 [52] Guillot, S., Hattori, K., Agard, P., et al., 2009.Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review.Subduction Zone Geodynamics.Springer, Berlin Heidelberg, 175-205. [53] Hawkesworth, C.J., Brown, M., 2018.Earth Dynamics and the Development of Plate Tectonics.Philosophical Transactions of The Royal Society A:Mathematical Physical and Engineering Sciences, 376(2132):20180228. doi: 10.1098/rsta.2018.0228 [54] Hermann, J., Rubatto, D., 2014.Subduction of Continental Crust to Mantle Depth :Geochemistry of Ultrahigh-Pressure Rocks.Treatise on Geochemistry, 4:309-340. https://doi.org/10.1016/b978-0-08-095975-7.00309-0 [55] Hermann, J., Spandler, C., Hack, A., et al., 2006.Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks:Implications for Element Transfer in Subduction Zones.Lithos, 92(3-4):399-417. https://doi.org/10.1016/j.lithos.2006.03.055 [56] Hermann, J., Zheng, Y.F., Rubatto, D., 2013.Deep Fluids in Subducted Continental Crust.Elements, 9(4):281-287. https://doi.org/10.2113/gselements.9.4.281 [57] Holder, R.M., Viete, D.R., Brown, M., et al., 2019.Metamorphism and the Evolution of Plate Tectonics.Nature, 572:378-381. doi: 10.1038/s41586-019-1462-2 [58] Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385:219-229. https://doi.org/10.1038/385219a0 [59] Huang, J., Xiao, Y.L., 2015.Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamorphic Rocks from the Dabie UHP Orogen, China:Insights into Supercritical Liquids in Continental Subduction Zones.International Geology Review, 57(9-10):1103-1129. https://doi.org/10.1080/00206814.2014.893213 [60] Huangfu, P.P., Wang, Y.J., Fan, W.M., et al., 2017.Dynamics of Unstable Continental Subduction:Insights from Numerical Modeling.Science China:Earth Sciences, 60(2):218-234. doi: 10.1007/s11430-016-5014-6 [61] Kawamoto, T., Kanzaki, M., Mibe, K., et al., 2012.Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism.Proceedings of the National Academy of Sciences, 109(46):18695-18700. https://doi.org/10.1073/pnas.1207687109 [62] Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics. John Wiley & Sons, Oxford, 482. [63] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2014.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 4:749-806. [64] Lenardic, A., 2018.The Diversity of Tectonic Modes and Thoughts about Transitions between Them.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 376(2132). https://doi.org/10.1098/rsta.2017.0416 [65] Li, W.C., Chen, R.X., Zheng, Y.F., et al., 2016a.Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China.Geological Society of America Bulletin, 128(9-10):1521-1542. doi: 10.1130/B31366.1 [66] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016b.The Crust‐Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 121(2):687-712. doi: 10.1002/2015JB012231 [67] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018.Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 123(3):2174-2198. doi: 10.1002/2017JB014015 [68] Li, Z.H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57(1): 47-69(in Chinese). [69] Liati, A., Gebauer, D., 2009.Crustal Origin of Zircon in a Garnet Peridotite:A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geochemistry (Erzgebirge, Bohemian Massif).European Journal of Mineralogy, 21(4):737-750. https://doi.org/10.1127/0935-1221/2009/0021-1939 [70] Liou, J.G., Zhang, R.Y., 1996.Occurrences of Intergranular Coesite in Ultrahigh-P Rocks from the Sulu Region, Eastern China; Implications for Lack of Fluid during Exhumation.American Mineralogist, 81(9-10):1217-1221. https://doi.org/10.2138/am-1996-9-1020 [71] Liou, J.G., Zhang, R.Y., Ernst, W.G., 1997.Lack of Fluid during Ultrahigh-P Metamorphism in the Dabie-Sulu Region, Eastern China.Proc.30th Intern.Geol.Congr., 17(II):141-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026035630 [72] Liu, L., Zhang, J.F., Green, H.W.II., et al., 2007.Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km.Earth and Planetary Science Letters, 263(3-4):180-191. https://doi.org/10.1016/j.epsl.2007.08.010 [73] Liu, L., Zhang, J.F., Cao, Y.T., et al., 2018.Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China.Earth and Planetary Science Letters, 484:353-362. https://doi.org/10.1016/j.epsl.2017.12.023 [74] Liu, M.Q., Li, Z.H., Yang, S.H., 2017a.Diapir versus Along-Channel Ascent of Crustal Material during Plate Convergence:Constrained by the Thermal Structure of Subduction Zones.Journal of Asian Earth Sciences, 145:16-36. https://doi.org/10.1016/j.jseaes.2017.02.036 [75] Liu, P.L., Massonne, H.J., Zhang, J.F., et al., 2017b.Intergranular Coesite and Coesite Inclusions in Dolomite from the Dabie Shan:Constraints on the Preservation of Coesite in UHP Rocks.Terra Nova, 29(3):154-161. https://doi.org/10.1111/ter.12258 [76] Liu, Q., Hermann, J., Zhang, J.F., 2013.Polyphase Inclusions in the Shuanghe UHP Eclogites Formed by Subsolidus Transformation and Incipient Melting during Exhumation of Deeply Subducted Crust.Lithos, 177:91-109. https://doi.org/10.1016/j.lithos.2013.06.010 [77] Livermore, R., 2018.The Tectonic Plates are Moving.Oxford University Press, Oxford. [78] Malaspina, N., Hermann, J., Scambelluri, M., 2009.Fluid/Mineral Interaction in UHP Garnet Peridotite.Lithos, 107(1-2):38-52. https://doi.org/10.1016/j.lithos.2008.07.006 [79] Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006a.Multistage Metasomatism in Ultrahigh-Pressure Mafic Rocks from the North Dabie Complex (China).Lithos, 90(1-2):19-42. https://doi.org/10.1016/j.lithos.2006.01.002 [80] Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006b.Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite.Earth and Planetary Science Letters, 249(3-4):173-187. https://doi.org/10.1016/j.epsl.2006.07.017 [81] McCarthy, A., Chelle-Michou, C., Müntener, O., et al., 2018.Subduction Initiation without Magmatism:The Case of the Missing Alpine Magmatic Arc.Geology, 46(12):1059-1062. https://doi.org/10.1130/g45366.1 [82] Mibe, K., Kawamoto, T., Matsukage, K.N., et al., 2011.Slab Melting versus Slab Dehydration in Subduction-Zone Magmatism.Proceedings of the National Academy of Sciences, 108(20):8177-8182. https://doi.org/10.1073/pnas.1010968108 [83] Moores, E. M., Yıkılmaz, M. B., Kellogg, L. H., 2013. Tectonics: 50 Years after the Revolution. Geological Society of America, 500:321-369. https://doi.org/10.1130/2013.2500(10 [84] Peacock, S.M., Wang, K.L., 1999.Seismic Consequences of Warm versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan.Science, 286(5441):937-939. https://doi.org/10.1126/science.286.5441.937 [85] Ringwood, A.E., 1974.The Petrological Evolution of Island Arc Systems.Journal of the Geological Society, 130(3):183-204. https://doi.org/10.1144/gsjgs.130.3.0183 [86] Ringwood, A.E., 1990.Slab-Mantle Interactions:3.Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle.Chemical Geology, 82(3-4):187-207. http://dx.doi.org/10.1016/0009-2541(90)90081-H [87] Rubatto, D., Regis, D., Hermann, J., et al., 2011.Yo-Yo Subduction Recorded by Accessory Minerals in the Italian Western Alps.Nature Geoscience, 4(5):338-342. https://doi.org/10.1038/ngeo1124 [88] Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry, 4:1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 [89] Rumble, D., Liou, J.G., Jahn, B.M., 2003.Continental Crust Subduction and Ultrahigh Pressure Metamorphism.Treatise on Geochemistry, 3:293-319. http://dx.doi.org/10.1016/b0-08-043751-6/03112-0 [90] Schmidt, M.W., Poli, S., 2014.Devolatilization during Subduction.Treatise on Geochemistry, 4:669-701. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210800054/ [91] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge.Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011 [92] Shen, T.T., Hermann, J., Zhang, L.F., et al., 2015.UHP Metamorphism Documented in Ti-Chondrodite- and Ti-Clinohumite-Bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan.Journal of Petrology, 56(7):1425-1458. https://doi.org/10.1093/petrology/egv042 [93] Smrekar, S.E., Davaille, A., Sotin, C., 2018.Venus Interior Structure and Dynamics.Space Science Reviews, 214(5). https://doi.org/10.1007/s11214-018-0518-1 [94] Spandler, C., Pirard, C., 2013.Element Recycling from Subducting Slabs to Arc Crust:A Review.Lithos, 170-171:208-223. https://doi.org/10.1016/j.lithos.2013.02.016 [95] Stern, R.J., 2002.Subduction Zones.Reviews of Geophysics, 40(4):1-38. https://doi.org/10.1029/2001rg000108 [96] Stern, R.J., 2018.The Evolution of Plate Tectonics.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 376(2132). https://doi.org/10.1098/rsta.2017.0406 [97] Su, B., Chen, Y., Guo, S., et al., 2016.Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China.Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007 [98] Su, B., Chen, Y., Guo, S., et al., 2017.Dolomite Dissociation Indicates Ultra-Deep (> 150 km) Subduction of a Garnet-Bearing Dunite Block (the Sulu UHP Terrane).American Mineralogist, 102(11):2295-2306. https://doi.org/10.2138/am-2017-5982 [99] Su, B., Chen, Y., Guo, S., ,et al., 2019.Garnetite and Pyroxenite in the Mantle Wedge Formed by Slab‐Mantle Interactions at Different Melt/Rock Ratios.Journal of Geophysical Research:Solid Earth, 124(7):6504-6522. https://doi.org/10.1029/2019jb017347 [100] Tatsumi, Y., 2005.The Subduction Factory:How It Operates in the Evolving Earth.GSA Today, 15(7):4-10. doi: 10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2 [101] Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism.Blackwell Science, Boston. [102] Tatsumi, Y., Kogiso, T., 2003.The Subduction Factory:Its Role in the Evolution of the Earth's Crust and Mantle.Geological Society, London, Special Publications, 219(1):55-80. https://doi.org/10.1144/gsl.sp.2003.219.01.03 [103] White, W.M., Klein, E.M., 2014.Composition of the Oceanic Crust.Treatise on Geochemistry, 4:457-496. doi: 10.1016-0012-821X(76)90108-4/ [104] Xia, Q.X., Zheng, Y.F., Hu, Z.C., 2010.Trace Elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen:Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism.Lithos, 114(3-4):385-412. https://doi.org/10.1016/j.lithos.2009.09.013 [105] Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust-Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010 [106] Xu, Z., Zheng, Y.F., Zhao, Z.F., 2017.The Origin of Cenozoic Continental Basalts in East-Central China:Constrained by Linking Pb Isotopes to Other Geochemical Variables.Lithos, 268-271:302-319. https://doi.org/10.1016/j.lithos.2016.11.006 [107] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2015.Partial Melting of Deeply Subducted Continental Crust during Exhumation:Insights from Felsic Veins and Host UHP Metamorphic Rocks in North Qaidam, Northern Tibet.Journal of Metamorphic Geology, 33(7):671-694. https://doi.org/10.1111/jmg.12146 [108] Zhang, Z.M., Shen, K., Sun, W.D., et al., 2008.Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China.Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://doi.org/10.1016/j.gca.2008.04.014 [109] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013.Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction.Scientific Reports, 3:3413. https://doi.org/10.1038/srep03413 [110] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015.Two Types of the Crust-Mantle Interaction in Continental Subduction Zones.Science China:Earth Sciences, 58(8):1269-1283. https://doi.org/10.1007/s11430-015-5136-0 [111] Zhao, Z.F., Zheng, Y.F., Chen, Y.X., et al., 2017.Partial Melting of Subducted Continental Crust:Geochemical Evidence from Synexhumation Granite in the Sulu Orogen.GSA Bulletin, 129(11-12):1692-1707. https://doi.org/10.1130/b31675.1 [112] Zhao, Z.F., Zheng, Y.F., Zhang, J., et al., 2012.Syn-Exhumation Magmatism during Continental Collision:Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen.Chemical Geology, 328:70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002 [113] Zheng, F., Dai, L.Q., Zhao, Z.F., et al., 2019.Recycling of Paleo-Oceanic Crust:Geochemical Evidence from Early Paleozoic Mafic Igneous Rocks in the Tongbai Orogen, Central China.Lithos, 328-329:312-327. https://doi.org/10.1016/j.lithos.2019.01.010 [114] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r [115] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [116] Zheng, Y.F., 2018.Fifty Years of Plate Tectonics.National Science Review, 5(2):119. https://doi.org/10.1093/nsr/nwy024 [117] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. doi: 10.1016/j.gsf.2019.02.003 [118] Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145:46-73. doi: 10.1016/j.jseaes.2017.03.009 [119] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China:Earth Sciences, 59(4):651-682 (in Chinese). doi: 10.1007/s11430-015-5258-4 [120] Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction-Zone Metamorphism:Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2):327-358. https://doi.org/10.1016/j.tecto.2008.09.014 [121] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049 [122] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 58(7):1045-1069(in Chinese). doi: 10.1007/s11430-015-5097-3 [123] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth⁃Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2 [124] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth Planets and Space, 66:93. https://doi.org/10.1186/1880-5981-66-93 [125] Zheng, Y.F., Xia, Q.X., Chen, R.X., et al., 2011.Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision.Earth⁃Science Reviews, 107(3-4):342-374. https://doi.org/10.1016/j.earscirev.2011.04.004 [126] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018.Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere.Science China:Earth Sciences, 61(4):353-385 (in Chinese). doi: 10.1007/s11430-017-9160-3 [127] Zheng, Y.F., Zhao, G.C., 2019.Two Styles of Plate Tectonics in Earth's History.Science Bulletin. https://doi.org/10.1016/j.scib.2018.12.029 [128] Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013. Continental Subduction Channel Processes:Plate Interface Interaction during Continental Collision.Chinese Science Bulletin, 58(35):4371-4377(in Chinese). doi: 10.1007/s11434-013-6066-x [129] Zhou, K., Chen, Y.X., Zheng, Y.F., et al., 2019.Migmatites Record Multiple Episodes of Crustal Anatexis and Geochemical Differentiation in the Sulu Ultrahigh-Pressure Metamorphic Zone, Eastern China.Journal of Metamorphic Geology, 37(8):1099-1127. https://doi.org/10.1111/jmg.12503 [130] Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [131] 陈仁旭, 尹壮壮, 夏春鹏, 2019.大别-苏鲁造山带橄榄岩记录的碰撞造山过程中地幔楔的地壳交代作用.矿物岩石地球化学通报, 38(3):459-484. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [132] 陈意, 苏斌, 郭顺, 2015.大别-苏鲁造山带橄榄岩:进展和问题.中国科学:地球科学, 45(9):1245-1269. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [133] 宫相宽, 陈丹玲, 任云飞, 等, 2016.北秦岭含柯石英斜长角闪岩的发现及其地质意义.科学通报, 61(12):1365-1378. http://d.old.wanfangdata.com.cn/Conference/9135230 [134] 李忠海, 2014.大陆俯冲-碰撞-折返的动力学数值模拟研究综述.中国科学:地球科学, 44(5):817-841. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201405001 [135] 郑永飞, 陈仁旭, 徐峥, 等, 2016.俯冲带中的水迁移.中国科学:地球科学, 46(3):253-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201603001 [136] 郑永飞, 陈伊翔, 戴立群, 等, 2015.发展板块构造理论:从洋壳俯冲带到碰撞造山带.中国科学:地球科学, 45(6):711-735. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201506001.htm [137] 郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏.中国科学:地球科学, 48(4):379-414. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201804002.htm [138] 郑永飞, 赵子福, 陈伊翔, 2013.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用.科学通报, 58(23):2233-2239. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201323000.htm