• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    盆地流体年代学研究新技术:方解石激光原位U-Pb定年法

    刘恩涛 ZhaoJian-xin 潘松圻 严德天 陆江 郝少斌 龚银 邹康

    刘恩涛, ZhaoJian-xin, 潘松圻, 严德天, 陆江, 郝少斌, 龚银, 邹康, 2019. 盆地流体年代学研究新技术:方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958
    引用本文: 刘恩涛, ZhaoJian-xin, 潘松圻, 严德天, 陆江, 郝少斌, 龚银, 邹康, 2019. 盆地流体年代学研究新技术:方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958
    Liu Entao, Zhao Jian-xin, Pan Songqi, Yan Detian, Lu Jiang, Hao Shaobin, Gong Yin, Zou Kang, 2019. A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712. doi: 10.3799/dqkx.2019.958
    Citation: Liu Entao, Zhao Jian-xin, Pan Songqi, Yan Detian, Lu Jiang, Hao Shaobin, Gong Yin, Zou Kang, 2019. A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712. doi: 10.3799/dqkx.2019.958

    盆地流体年代学研究新技术:方解石激光原位U-Pb定年法

    doi: 10.3799/dqkx.2019.958
    基金项目: 

    青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室开放基金 KC201701

    国家自然科学基金项目 41702121

    中国石油科技创新基金研究项目 2018D-5007-0104

    详细信息
      作者简介:

      刘恩涛(1986-), 男, 副教授, 主要从事沉积学、盆地分析研究

    • 中图分类号: P597

    A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite

    • 摘要: 流体活动是沉积盆地内最活跃的地质营力,与盆地内油气的生成、运移和成藏关系密切,精确确定流体活动历史一直是具有挑战性和前沿性的研究方向.前期对流体活动历史的研究主要依附于流体包裹体分析,该方法很难完整恢复盆地经历的所有流体事件,更无法确定流体事件活动年代.方解石是盆地流体的直接产物,对其开展年代学研究可以准确揭示盆地流体活动历史,然而目前较为成熟的同位素稀释法方解石U-Pb等时线定年成功率较低、耗时较长.近些年研发成功的方解石激光原位U-Pb定年技术可以精确确定U含量低至10×10-9的方解石的年代,具有空间分辨率高、测试效率高的优势.该技术已成功确定多个含油气盆地流体活动历史,显示其在盆地流体研究领域具有光明的应用前景.在详细的微观鉴定和成岩观察基础上,选取不同期次的方解石样品开展方解石激光原位U-Pb定年分析,并结合C-O同位素、微量元素研究,查明盆地流体特征及其演化历史,将是未来盆地流体研究领域的重要发展方向.

       

    • 图  1  同位素稀释法方解石U-Pb测年典型实例

      Rasbury et al. (2004)

      Fig.  1.  The typical example of calcite ages using isotope dilution U-Pb isochrones approach

      图  2  同位素稀释法方解石U-Pb定年(a)与激光原位法(b)测试结果对比

      据Robert et al.(2017)

      Fig.  2.  The comparison between ID-IRMS U-Pb data (a) and in-situ LA-ICPMS data (b)

      图  3  运用激光原位方解石U-Pb定年成功确定盆地断层活动带流体活动历史典型实例

      数据来自Nuriel et al.(2017)

      Fig.  3.  The typical example showing the application of in-situ U-Pb dating method to reconstruct the history of fluid flow events in the sedimentary basin

      表  1  盆地流体年代学主要研究方法介绍

      Table  1.   The main methods of basin fluid flow history

      研究方法 主要特点 测试仪器 代表性文献
      流体包裹体法 在盆地流体研究领域中应用最为广泛, 主要用于流体期次研究, 但该方法容易受到继承性包裹体的影响, 很难准确确定流体活动时间 偏光显微镜 Worden et al. (1999)
      自生伊利石定年法 主要有K-Ar、Ar-Ar及Rb-Sr等时线3种定年手段, 分选出纯净的伊利石是该方法的难点, 仅适用于碎屑岩盆地 GV Instrument 5400、Helix-MC稀有气体质谱仪及TIMS/MC-ICPMS Uysal et al. (2001)
      自生钾长石加大边定年法 通常采用激光显微探针Ar-Ar定年手段, 样品需求量小, 测试精度高, 但满足测试需求的样品较少 GV Instrument 5400和Helix-MC稀有气体质谱仪 Mark et al. (2005)
      同位素稀释法方解石U-Pb测年法 在方解石年代学研究领域应用较为广泛, 但测试周期长、成功率并不高 MC-ICPMS、TIMS Smith et al. (1991)
      方解石激光原位ICP-MS U-Pb定年法 发展迅速, 测试精度高, 具有空间分辨率高、测试效率高的优势, 尚有一些技术问题需要解决 LA-HR- ICPMS、LA-MC-ICPMS Roberts and Walker (2016); Nuriel et al. (2017)
      方解石U-Th定年法 测试精度高, 但仅能测量50万年以内的样品年龄 MC-ICPMS、TIMS Zhao et al. (2009)
      方解石ESR年代学 测年的年限较长, 可从几千年到几百万年, 但主要用于断层带研究, 获得可靠的古剂量值是得到准确年龄的前提 电子顺磁(自旋)共振波谱仪 王鹏昊等(2013)
      下载: 导出CSV

      表  2  同位素稀释法方解石U-Pb测年代表性数据汇总

      Table  2.   Representative data of calcite using isotope dilution U-Pb isochrone approach

      U-Pb年龄(Ma) 误差(Ma) 加权平均方差 U最大含量(10-6) 238U/204Pb 样品类型 文献
      0.83 0.05 0.86 0.003 18 638~226 350 洞穴方解石 Polyak et al. (2008)
      2.11 0.06 2.8 0.49 20 000~120 000 方解石 Walker et al. (2006)
      2.17 0.06 7.9 1.34 3 000~90 000 方解石 Walker et al. (2006)
      2.19 0.47 1.6 0.001 5 849~13 744 洞穴方解石 Polyak et al. (2008)
      2.24 0.08 85 1.71 6 000~50 000 方解石 Walker et al. (2006)
      2.68 0.49 0.53 0.001 3 056~5 420 洞穴方解石 Polyak et al. (2008)
      3.43 0.43 2.3 0.004 186~940 洞穴方解石 Polyak et al. (2008)
      3.77 0.09 0.66 1.2 52 485~224 120 石笋方解石 Woodhead et al. (2006)
      3.83 0.11 0.17 1.44 36 026~1 480 200 石笋方解石 Woodhead et al. (2006)
      4.09 0.12 2.1 2.02 33 511~170 230 石笋方解石 Woodhead et al. (2006)
      14.81 0.39 2.8 169 1 961~6 510 石灰岩方解石 Cole et al. (2005)
      15.30 0.25 2.9 175 2 707~5 891 石灰岩方解石 Cole et al. (2005)
      16.14 0.40 31 30.7 123.5~427.2 石灰岩方解石 Cole et al. (2005)
      16.24 0.23 15 162 401~2584 石灰岩方解石 Cole et al. (2005)
      80.9 11 30 0.6 22~122 方解石 Wang et al. (1998)
      91.7 1.9 126 2 7.3~3 725 洞穴方解石 Lundberg et al. (2000)
      211.9 2.1 2.67 2.7 114~617 方解石 Wang et al. (1998)
      212.4 3.4 3.5 2.5 7.4~364 方解石 Wang et al. (1998)
      271 19 877 33 637~1615 方解石 Becker (2001)
      292.3 6.5 83 16.3 356~792 方解石 Becker (2001)
      下载: 导出CSV

      表  3  激光原位方解石l > Pb定年设备LA-ICPIVIS和LA-MOICPMS格度对比数据

      Table  3.   he comi > arison l > etwecn in-situ LA-ICPMS and LA-MC-ICPMS U-Ph calcite data

      样品名 U(10-6) 238U/206Pb 207Pb/206Pb t(Ma) ±2σ 误差率 加权平均力差 点数 数据来源 仪器类型
      SFN-1 0.600 23~406 0.07~0.81 15.83 0.4 3% 1.6 26 Nuriel et al.(2017) LV-MC-ICPMS
      SFN-4 0.130 17~422 0.11~0.83 13.65 0.5 4% 1.2 16 Nuriel et al.(2017) LV-MC-ICPMS
      YG3 0.350 4.4~358 0.09~0.77 16.97 0.6 4% 2.3 48 Nuriel et al.(2017) LV-MC-ICPMS
      YF4c 1.200 1.3~266 0.33~0.82 15.53 0.5 3% 0.89 47 Nuriel et al.(2017) LV-MC-ICPMS
      AHX-1 0.140 0.50~32 0.08~0.86 209.2 0.83 < 1% 3.2 85 未发表数据 LV-MC-ICPMS
      595B-2R1-84-95 0.013 0.92~8.71 0.71~0.85 115 16 14% 1.5 18 Coogan et al.(2016) LV-HR-ICPMS
      595B-3R2-12-18 0.019 2.71~20.5 0.62~0.83 86 14 16% 6.6 41 Coogan et al.(2016) LV-HR-ILTMS
      543-16R6-114.5-118 0.050 1.51~43.9 0.41~0.85 91.3 4.9 5% 1.5 42 Coogan et al.(2016) LV-HR-ICPMS
      417D-27R4-61 0.124 0.96~58.4 0.09~0.82 103.9 3.1 3% 0.31 18 Coogan et al.(2016) LV-HR-ICPMS
      418A-15R3-144 0.534 0.43~49.4 0.09~0.82 121.9 3.8 3% 4.8 28 Coogan et al.(2016) LV-HR-ICPMS
      417D-31R4-8 2.460 18.7~52.4 0.06~0.54 127.5 4.7 4% 5.3 53 Coogan et al.(2016) LV-HR-ILTMS
      TJN-6-1 0.108 121~162 0.12~0.28 37.7 1.9 5% 2.4 35 Roberts and Walker (2016) LV-HR-ICPMS
      MOL-1-2 0.037 22.2~144 0.05~0.40 40.1 4.8 12% 5.3 29 Roberts and Walker (2016) LV-HR-ICPMS
      下载: 导出CSV
    • [1] Babinski, M., Chemale, F., van Schmus, W.R., 1995.The Pb/Pb Age of the Minas Supergroup Carbonate Rocks, Quadrilátero Ferrífero, Brazil.Precambrian Research, 72(3-4):235-245. https://doi.org/10.1016/0301-9268(94)00091-5
      [2] Becker, M.L., 2001.Evaluation of U Distributions and U-Pb Dating of Authigenic Sedimentary Materials: Correlation of Terrestrial and Marine Sedimentary Sequences (Dissertation).State University of New York, Stony Brook.
      [3] Becker, M.L., Rasbury, E.T., Meyers, W.J., et al., 2002.U-Pb Calcite Age of the Late Permian Castile Formation, Delaware Basin:A Constraint on the Age of the Permian-Triassic Boundary (?).Earth and Planetary Science Letters, 203(2):681-689. https://doi.org/10.1016/s0012-821x(02)00877-4
      [4] Chew, D.M., Petrus, J.A., Kamber, B.S., 2014.U-Pb LA-ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb.Chemical Geology, 363:185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006
      [5] Cole, J.M., Rasbury, E.T., Hanson, G.N., et al., 2005.Using U-Pb Ages of Miocene Tufa for Correlation in a Terrestrial Succession, Barstow Formation, California.Geological Society of America Bulletin, 117(3):276-287. https://doi.org/10.1130/B25553.1
      [6] Coogan, L.A., Parrish, R.R., Roberts, N.M.W., 2016.Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust:Insight from in-situ U-Pb Dating.Geology, 44(2):147-150. https://doi.org/10.1130/g37212.1
      [7] Davies, G.R., Smith, L.B., 2006.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview.AAPG Bulletin, 90(11):1641-1690. https://doi.org/10.1306/05220605164
      [8] Godeau, N., Deschamps, P., Guihou, A., et al., 2018.U-Pb Dating of Calcite Cement and Diagenetic History in Microporous Carbonate Reservoirs:Case of the Urgonian Limestone, France.Geology, 46(3):247-250. https://doi.org/10.1130/g39905.1
      [9] Goodfellow, B.W., Viola, G., Bingen, B., et al., 2017.Palaeocene Faulting in SE Sweden from U-Pb Dating of Slickenfibre Calcite.Terra Nova, 29(5):321-328. https://doi.org/10.1111/ter.12280
      [10] Gu, J.Y., Fan, T.Z., Fang, H., et al., 2001.Fluid Migration and Oil Reservoirs in the Tarim Basin.Geological Review, 47(2):201-206(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005997
      [11] Guo, K., Zeng, J.H., Li, Y.H., et al., 2013.Geochemical Characteristics of Tectonic Fracture-Filling Calcite in Yanchang Formation of Longdong Area and Its Relationship with Hydrocarbon Fluid Flow.Journal of China University of Petroleum (Edition of Natural Science), 37(2):36-42(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201302006
      [12] Han, J.F., Wang, Z.M., Pan, W.Q., et al., 2006.Petroleum Controlling Theory of Lunnan Paleohigh and Its Buried Hill Pool Exploration Technology, Tarim Basin.Petroleum Exploration and Development, 33(4):448-453(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200604011
      [13] Hansman, R.J., Albert, R., Gerdes, A., et al., 2018.Absolute Ages of Multiple Generations of Brittle Structures by U-Pb Dating of Calcite.Geology, 46(3):207-210. https://doi.org/10.1130/g39822.1
      [14] Hiess, J., Condon, D.J., McLean, N., et al., 2012.238U/235U Systematics in Terrestrial Uranium-Bearing Minerals.Science, 335(6076):1610-1614. https://doi.org/10.1126/science.1215507
      [15] Hu, S.Y., Shi, S.Y., Wang, T.S., et al., 2016.Effect of Gypsum-Salt Environment on Hydrocarbon Generation, Reservoir-Forming and Hydrocarbon Accumulation in Carbonate Strata.China Petroleum Exploration, 21(2):20-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201602003
      [16] Israelson, C., Halliday, A.N., Buchardt, B., 1996.U-Pb Dating of Calcite Concretions from Cambrian Black Shales and the Phanerozoic Time Scale.Earth and Planetary Science Letters, 141(1):153-159. https://doi.org/10.1016/0012-821x(96)00071-4
      [17] Jahn, B.M., Cuvellier, H., 1994.Pb-Pb and U-Pb Geochronology of Carbonate Rocks:An Assessment.Chemical Geology, 115(1-2):125-151. https://doi.org/10.1016/0009-2541(94)90149-x
      [18] Jahn, B.M., Simonson, B.M., 1995.Carbonate Pb-Pb Ages of the Wittenoom Formation and Carawine Dolomite, Hamersley Basin, Western Australia (with Implications for Their Correlation with the Transvaal Dolomite of South Africa).Precambrian Research, 72(3):247-261. https://doi.org/10.1016/0301-9268(94)00092-6
      [19] Jiang, H., Zhang, Y.Q., Pan, W.Q., et al., 2013.Carbonate Reservoir Features and Karst Mode in the Yingmai-2 Well Field of Tabei Uplift.Acta Petrolei Sinica, 34(2):232-238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201302004
      [20] Jin, Z.J., Zhang, L.P., Yang, L., et al., 2002.Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins.Earth Science, 27(6):659-665(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200206001
      [21] Jin, Z.J., Zhu, D.Y., Meng, Q.Q., et al., 2013.Hydrothermal Activites and Influences on Migration of Oil and Gas in Tarim Basin.Acta Petrologica Sinica, 29(3):1048-1058(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303025
      [22] Li, M.C., Li, J., Wan, Y.J., et al., 2001.Fluids in the Sedimenary Basin.Acta Petrolei Sinica, 22(4):13-17(in Chinese with English abstract).
      [23] Li, Q., Parrish, R.R., Horstwood, M.S.A., et al., 2014.U-Pb Dating of Cements in Mesozoic Ammonites.Chemical Geology, 376:76-83. https://doi.org/10.1016/j.chemgeo.2014.03.020
      [24] Li, Z., 2016.Research Frontiers of Fluid-Rock Interaction and Oil-Gas Formation in Deep-Buried Basins.Bulletin of Mineralogy, Petrology and Geochemistry, 35(5):807-816(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201605004
      [25] Liu, D.H., 1995.Fluid Inclusion Studies-An Effective Means for Basin Fluid Investigation.Earth Science Frontiers, 2(4):149-154(in Chinese with English abstract).
      [26] Liu, E.T., Wang, H., Shen, N.P., et al., 2017.Formation of Authigenic Clay Minerals in Hydrothermal Events Developed Regions:A Case Study from the Fushan Depression, Beibuwan Basin.Bulletin of Mineralogy, Petrology and Geochemistry, 36(1):59-66(in Chinese with English abstract).
      [27] Liu, E.T., Wang, H., Uysal, I.T., et al., 2017.Paleogene Igneous Intrusion and Its Effect on Thermal Maturity of Organic-Rich Mudstones in the Beibuwan Basin, South China Sea.Marine and Petroleum Geology, 86:733-750. https://doi.org/10.1016/j.marpetgeo.2017.06.026
      [28] Liu, S.G., Li, G.R., Li, J.C., et al., 2005.Fluid Cross Formation Flow and Gas Explosion Accumulation in Western Sichuan Foreland Basin, China.Acta Geologica Sinica, 79(5):690-699(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200505014
      [29] Lu, H.Z., 1997.Ore-Forming Fluid.China Science and Technology Press, Beijing (in Chinese).
      [30] Lu, Z.Y., Chen, H.H., Feng, Y., et al., 2015.Evidences of Multi-Episodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchengxu Uplift, Tarim Basin.Earth Science, 40(9):1529-1537(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.137
      [31] Luczaj, J.A., Goldstein, R.H., 2000.Diagenesis of the Lower Permian Krider Member, Southwest Kansas, U.S.A.:Fluid-Inclusion, U-Pb, and Fission-Track Evidence for Reflux Dolomitization during Latest Permian Time.Journal of Sedimentary Research, 70(3):762-773. https://doi.org/10.1306/2dc40936-0e47-11d7-8643000102c1865d
      [32] Lundberg, J., Ford, D.C., Hill, C.A., 2000.A Preliminary U-Pb Date on Cave Spar, Big Canyon, Guadalupe Mountains, New Mexico, USA.Journal of Cave and Karst Studies, 62:144-148.
      [33] Ma, Y.S., Cai, X.Y., Zhao, P.R., 2011.The Research Status and Advances in Porosity Evolution and Diagenesis of Deep Carbonate Reservoir.Earth Science Frontiers, 18(4):181-192(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201104015
      [34] Mark, D.F., Green, P.F., Parnell, J., et al., 2008.Late Palaeozoic Hydrocarbon Migration through the Clair Field, West of Shetland, UK Atlantic Margin.Geochimica et Cosmochimica Acta, 72(10):2510-2533. https://doi.org/10.1016/j.gca.2007.11.037
      [35] Mark, D.F., Parnell, J.P., Kelley, S.P., et al., 2005.Dating of Multistage Fluid Flow in Sandstones.Science, 309(5743):2048-2051. https://doi.org/10.1126/science.1116034
      [36] Mark, D.F., Parnell, J., Kelley, S.P., et al., 2007.Resolution of Regional Fluid Flow Related to Successive Orogenic Events on the Laurentian Margin.Geology, 35(6):547. https://doi.org/10.1130/g23388a.1
      [37] Moorbath, S., Taylor, P.N., Orpen, J.L., et al., 1987.First Direct Radiometric Dating of Archaean Stromatolitic Limestone.Nature, 326(6116):865-867. https://doi.org/10.1038/326865a0
      [38] Neymark, L.A., Amelin, Y., Paces, J.B., et al., 2002.U-Pb Ages of Secondary Silica at Yucca Mountain, Nevada:Implications for the Paleohydrology of the Unsaturated Zone.Applied Geochemistry, 17(6):709-734. https://doi.org/10.1016/s0883-2927(02)00032-x
      [39] Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., et al., 2017.The Onset of the Dead Sea Transform Based on Calcite Age-Strain Analyses.Geology, 45(7):587-590. https://doi.org/10.1130/g38903.1
      [40] Pagel, M., Bonifacie, M., Schneider, D.A., et al., 2018.Improving Paleohydrological and Diagenetic Reconstructions in Calcite Veins and Breccia of a Sedimentary Basin by Combining Δ47 Temperature, δ18O Water and U-Pb Age.Chemical Geology, 481:1-17. https://doi.org/10.1016/j.chemgeo.2017.12.026
      [41] Pisapia, C., Deschamps, P., Battani, A., et al., 2017.U/Pb Dating of Geodic Calcite:New Insights on Western Europe Major Tectonic Events and Associated Diagenetic Fluids.Journal of the Geological Society, 175(1):60-70. https://doi.org/10.1144/jgs2017-067
      [42] Polyak, V., Hill, C., Asmerom, Y., 2008.Age and Evolution of the Grand Canyon Revealed by U-Pb Dating of Water Table-Type Speleothems.Science, 319(5868):1377-1380. https://doi.org/10.1126/science.1151248
      [43] Rasbury, E.T., Cole, J.M., 2009.Directly Dating Geologic Events:U-Pb Dating of Carbonates.Reviews of Geophysics, 47(3):RG3001. https://doi.org/10.1029/2007rg000246
      [44] Rasbury, E.T., Hanson, G.N., Meyers, W.J., et al., 1997.Dating of the Time of Sedimentation Using U-Pb Ages for Paleosol Calcite.Geochimica et Cosmochimica Acta, 61(7):1525-1529. https://doi.org/10.1016/s0016-7037(97)00043-4
      [45] Rasbury, E.T., Ward, W.B., Hemming, N.G., et al., 2004.Concurrent U-Pb Age and Seawater 87Sr/86Sr Value of a Marine Cement.Earth and Planetary Science Letters, 221:355-371. https://doi.org/10.1016/S0012-821X(04)00105-0
      [46] Richards, D.A., Bottrell, S.H., Cliff, R.A., et al., 1998.U-Pb Dating of a Speleothem of Quaternary Age.Geochimica et Cosmochimica Acta, 62(23-24):3683-3688. https://doi.org/10.1016/s0016-7037(98)00256-7
      [47] Ring, U., Gerdes, A., 2016.Kinematics of the Alpenrhein-Bodensee Graben System in the Central Alps:Oligocene/Miocene Transtension Due to Formation of the Western Alps Arc.Tectonics, 35(6):1367-1391. https://doi.org/10.1002/2015tc004085
      [48] Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., et al., 2017.A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology.Geochemistry, Geophysics, Geosystems, 18(7):2807-2814. https://doi.org/10.1002/2016gc006784
      [49] Roberts, N.M.W., Walker, R.J., 2016.U-Pb Geochronology of Calcite-Mineralized Faults:Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin.Geology, 44(7):531-534. https://doi.org/10.1130/g37868.1
      [50] Seewald, J.S., 1994.Evidence for Metastable Equilibrium between Hydrocarbons under Hydrothermal Conditions.Nature, 370(6487):285-287. https://doi.org/10.1038/370285a0
      [51] Shi, S.Y., Hu, S.Y., Liu, W., et al., 2015.Distinguishing Paleokarst Period by Integrating Carbon-Oxygen Isotopes and Fluid Inclusion Characteristics.Natural Gas Geoscience, 26(2):208-217(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502002
      [52] Smith, P.E., Farquhar, R.M., Hancock, R.G., 1991.Direct Radiometric Age Determination of Carbonate Diagenesis Using U-Pb in Secondary Calcite.Earth and Planetary Science Letters, 105(4):474-491. https://doi.org/10.1016/0012-821x(91)90186-l
      [53] Uysal, I.T., Feng, Y.X., Zhao, J.X., et al., 2011.Seismic Cycles Recorded in Late Quaternary Calcite Veins:Geochronological, Geochemical and Microstructural Evidence.Earth and Planetary Science Letters, 303(1-2):84-96. https://doi.org/10.1016/j.epsl.2010.12.039
      [54] Uysal, I.T., Golding, S.D., Thiede, D.S., 2001.K-Ar and Rb-Sr Dating of Authigenic Illite-Smectite in Late Permian Coal Measures, Queensland, Australia:Implication for Thermal History.Chemical Geology, 171(3-4):195-211. https://doi.org/10.1016/s0009-2541(00)00247-3
      [55] Walker, J., Cliff, R.A., Latham, A.G., 2006.U-Pb Isotopic Age of the StW 573 Hominid from Sterkfontein, South Africa.Science, 314(5805):1592-1594. https://doi.org/10.1126/science.1132916
      [56] Wang, G., Qin, Y., Shen, J., et al., 2018.Dynamic-Change Laws of the Porosity and Permeability of Low-to Medium-Rank Coals under Heating and Pressurization Treatments in the Eastern Junggar Basin, China.Journal of Earth Science, 29(3):607-615. https://doi.org/10.1007/s12583-017-0908-4
      [57] Wang, J., Zhang, J., Zhong, W.B., et al., 2018.Sources of Ore-Forming Fluids from Tianbaoshan and Huize Pb-Zn Deposits in Yunnan-Sichuan-Guizhou Region, Southwest China:Evidence from Fluid Inclusions and He-Ar Isotopes.Earth Science, 43(6):2076-2099(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.601
      [58] Wang, P.H., Tang, L.J., Qiu, H.J., et al., 2013.Chronology Evidence of ESR Dating for the Late Movements of the Piqiang Fault in the Tarim Basin and Its Geological Implication.Oil & Gas Geology, 34(1):107-111(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201301014
      [59] Wang, Z.S., Rasbury, E.T., Hanson, G.N., et al., 1998.Using the U-Pb System of Calcretes to Date the Time of Sedimentation of Clastic Sedimentary Rocks.Geochimica et Cosmochimica Acta, 62(16):2823-2835. https://doi.org/10.1016/s0016-7037(98)00201-4
      [60] Woodhead, J., Hellstrom, J., Maas, R., et al., 2006.U-Pb Geochronology of Speleothems by MC-ICPMS.Quaternary Geochronology, 1(3):208-221. https://doi.org/10.1016/j.quageo.2006.08.002
      [61] Woodhead, J., Pickering, R., 2012.Beyond 500 ka:Progress and Prospects in the U-Pb Chronology of Speleothems, and Their Application to Studies in Palaeoclimate, Human Evolution, Biodiversity and Tectonics.Chemical Geology, 322-323:290-299. https://doi.org/10.1016/j.chemgeo.2012.06.017
      [62] Worden, R.H., Coleman, M.L., Matray, J.M., 1999.Basin Scale Evolution of Formation Waters:A Diagenetic and Formation Water Study of the Triassic Chaunoy Formation, Paris Basin.Geochimica et Cosmochimica Acta, 63(17):2513-2528. https://doi.org/10.1016/s0016-7037(99)00121-0
      [63] Xie, X.N., Cheng, J.M., Meng, Y.L., 2009.Basin Fluid Flow and Associated Diagenetic Processes.Acta Sedimentologica Sinica, 27(5):863-871(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201801017
      [64] Zhang, W.D., Wu, X.B., Deng, X.H., et al., 2018.Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan.Earth Science, 43(9):3036-3048(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.150
      [65] Zhao, J.X., Yu, K.F., Feng, Y.X., 2009.High-Precision 238U-234U-230Th Disequilibrium Dating of the Recent Past:A Review.Quaternary Geochronology, 4(5):423-433. https://doi.org/10.1016/j.quageo.2009.01.012
      [66] Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2018.Petroleum Geological Conditions and Exploration Importance of Proterozoic to Cambrian in China.Petroleum Exploration and Development, 45(1):1-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201801001
      [67] Zhao, Z.J., Luo, J.H., Zhang, Y.B., et al., 2011.Lithofacies Paleogeography of Cambrian Sequences in the Tarim Basin.Acta Petrolei Sinica, 32(6):937-948(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201106003
      [68] Zheng, R.C., Peng, J., Gao, H.C., et al., 2003.Analysis of Fracture Active Stages, Heat Fluid Nature and the Process of Forming Reservoir in Western Sichuan Sag.Journal of Chengdu University of Technology (Science & Technology Edition), 30(6):551-558(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200306001
      [69] 顾家裕, 范土芝, 方辉, 等, 2001.塔里木盆地流体与油气藏.地质论评, 47(2):201-206. doi: 10.3321/j.issn:0371-5736.2001.02.014
      [70] 郭凯, 曾溅辉, 李元昊, 等, 2013.陇东地区延长组构造裂缝方解石脉特征及其与烃类流体活动的关系.中国石油大学学报(自然科学版), 37(2):36-42. doi: 10.3969/j.issn.1673-5005.2013.02.006
      [71] 韩剑发, 王招明, 潘文庆, 等, 2006.轮南古隆起控油理论及其潜山准层状油气藏勘探.石油勘探与开发, 33(4):448-453. doi: 10.3321/j.issn:1000-0747.2006.04.011
      [72] 胡素云, 石书缘, 王铜山, 等, 2016.膏盐环境对碳酸盐岩层系成烃、成储和成藏的影响.中国石油勘探, 21(2):20-27. doi: 10.3969/j.issn.1672-7703.2016.02.003
      [73] 姜华, 张艳秋, 潘文庆, 等, 2013.塔北隆起英买2井区碳酸盐岩储层特征及岩溶模式.石油学报, 34(2):232-238. http://d.old.wanfangdata.com.cn/Periodical/syxb201302004
      [74] 金之钧, 张刘平, 杨雷, 等, 2002.沉积盆地深部流体的地球化学特征及油气成藏效应.地球科学, 27(6):659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001
      [75] 金之钧, 朱东亚, 孟庆强, 等, 2013.塔里木盆地热液流体活动及其对油气运移的影响.岩石学报, 29(3):1048-1058. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303025
      [76] 李明诚, 李剑, 万玉金, 等, 2001.沉积盆地中的流体.石油学报, 22(4):13-17. doi: 10.3321/j.issn:0253-2697.2001.04.003
      [77] 李忠, 2016.盆地深层流体-岩石作用与油气形成研究前沿.矿物岩石地球化学通报, 35(5):807-816. doi: 10.3969/j.issn.1007-2802.2016.05.001
      [78] 刘德汉, 1995.包裹体研究——盆地流体追踪的有力工具.地学前缘, 2(4):149-154. doi: 10.3321/j.issn:1005-2321.1995.04.003
      [79] 刘恩涛, 王华, 沈能平, 等, 2017.热事件发育地区自生黏土矿物形成过程分析:以北部湾盆地福山凹陷为例.矿物岩石地球化学通报, 36(1):59-66. doi: 10.3969/j.issn.1007-2802.2017.01.007
      [80] 刘树根, 李国蓉, 李巨初, 等, 2005.川西前陆盆地流体的跨层流动和天然气爆发式成藏.地质学报, 79(5):690-699. doi: 10.3321/j.issn:0001-5717.2005.05.014
      [81] 卢焕章, 1997.成矿流体.北京:中国科学技术出版社.
      [82] 鲁子野, 陈红汉, 丰勇, 等, 2015.塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义.地球科学, 40(9):1529-1537. https://doi.org/10.3799/dqkx.2015.137
      [83] 马永生, 蔡勋育, 赵培荣, 2011.深层、超深层碳酸盐岩油气储集层形成机理研究综述.地学前缘, 18(4):181-192. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201104014.htm
      [84] 石书缘, 胡素云, 刘伟, 等, 2015.综合运用碳氧同位素和包裹体信息判别古岩溶形成期次.天然气地球科学, 26(2):208-217. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502002
      [85] 王健, 张均, 仲文斌, 等, 2018.川滇黔地区天宝山、会泽铅锌矿床成矿流体来源初探:来自流体包裹体及氦氩同位素的证据.地球科学, 43(6):2076-2099. https://doi.org/10.3799/dqkx.2018.601
      [86] 王鹏昊, 汤良杰, 邱海峻, 等, 2013.塔里木盆地皮羌断裂晚期活动ESR年代学证据及其地质意义.石油与天然气地质, 34(1):107-111. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201301014
      [87] 解习农, 成建梅, 孟元林, 2009.沉积盆地流体活动及其成岩响应.沉积学报, 27(5):863-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905010
      [88] 张文东, 吴湘滨, 邓小华, 等, 2018.东天山小热泉子矿床流体包裹体及矿床成因.地球科学, 43(9):3036-3048. https://doi.org/10.3799/dqkx.2018.150
      [89] 赵文智, 胡素云, 汪泽成, 等, 2018.中国元古界-寒武系油气地质条件与勘探地位.石油勘探与开发, 45(1):1-13. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201801002.htm
      [90] 赵宗举, 罗家洪, 张运波, 等, 2011.塔里木盆地寒武纪层序岩相古地理.石油学报, 32(6):937-948. http://d.old.wanfangdata.com.cn/Periodical/syxb201106003
      [91] 郑荣才, 彭军, 高红灿, 等, 2003.川西坳陷断裂活动期次、热流体性质和油气成藏过程分析.成都理工大学学报(自然科学版), 30(6):551-558. doi: 10.3969/j.issn.1671-9727.2003.06.001
    • 加载中
    图(3) / 表(3)
    计量
    • 文章访问数:  6104
    • HTML全文浏览量:  2198
    • PDF下载量:  172
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-24
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回