Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites
-
摘要: 造山带橄榄岩不仅是地幔地球化学,而且是造山带形成与演化过程研究的主要对象.造山带橄榄岩主要有3种类型:(1)阿尔卑斯型橄榄岩,即岩石圈地幔构造-热侵位就位于造山带浅部地壳的橄榄岩;(2)前期层状基性-超基性堆晶岩经俯冲变质形成的橄榄岩;(3)蛇绿岩型橄榄岩.松树沟糜棱岩化橄榄岩及其相关高级变质岩详细的岩石学和地球化学研究发现这些橄榄岩记录了洋岩石圈形成到角闪岩相变质的全过程.即1 000~800 Ma洋岩石圈形成阶段,主要形成纯橄岩; < 800~500 Ma洋-陆转换即陆岩石圈演化阶段,岩石圈被交代形成大量方辉橄榄岩;500~480 Ma快速深俯冲和榴辉岩相变质阶段;460~335 Ma角闪岩相退变质阶段,此阶段在松树沟橄榄岩中形成大量富镁的直闪石类矿物,包括透闪石、阳起石和镁闪石.由此可见,蛇绿岩型造山带橄榄岩能够记录造山带形成与演化的全过程,通常会经历4个形成和演化阶段:(1)洋岩石圈(蛇绿岩)形成阶段,形成纯榄岩;(2)洋-陆转换阶段,陆岩石圈演化阶段,岩石圈受交代形成方辉橄榄岩;(3)岩石圈深俯冲,榴辉岩相变质;(4)俯冲板片抬升至角闪岩相时退变质,此时在橄榄岩中形成富镁的直闪石类矿物.不同造山带中蛇绿岩型橄榄岩的区别可能只是俯冲深度和退变质程度不同而已.最后,蛇绿岩一定要强调是什么时代的蛇绿岩.同时,造山带进变质作用产物经常会被后期抬升过程中退变质作用彻底改造,这应该引起重视.Abstract: Orogenic peridotite is one of major research targets not only for mantle geochemistry, but also for the formation and evolution of the orogenic belts. There are mainly three types of orogenic peridotites: (1) Alpine peridotite, i. e. lithospheric mantle tectonic-thermal diaper into the shallow orogenic crust; (2) mafic-ultramafic cumulates of layered intrusions underwent subduction and metamorphism; (3) ophiolitic peridotite.Detailed petrological and geochemical investigation on Songshugou mylonitized peridotites and their related high-grade metamorphic rocks demonstrates that the Songshugou peridotites recorded the whole cycle from the formation of an oceanic lithosphere to amphibolite-facies retrograde metamorphism. i. e. dunites produced during the formation of an oceanic lithosphere at 1 000-800 Ma; followed by the period of oceanic-continental transition during < 800-500 Ma, lithospheric dunites metasomatized to produce an amounts of metasomatic harzburgites; rapid deep subdution and eclogite-facies metamorphism at 500-480 Ma; and amphibolite-facies retrograde metasomatism during slow exhumation at 460-335 Ma, magnesium-rich anthophyllites in Songshugou peridotites, including tremolite, actinolite, and magnesium amphibole, were emerged at this stage.Thus it can be seen that ophiolitic orogenic peridotites can record the whole cycle from the orogen formation and its evolution.They often underwent four stages:(1) formation of an oceanic lithosphere (ophiolite) to produce dunites; (2) the period of oceanic-continental transition and the formation of metasomatic harzburgite due to mantle metasomatism; (3) deep lithosphere subduction and eclogite-facies metamorphism; (4) retrograde metamorphism when exhumed to the depth of amphibolite-facies, lots of anthophyllites in peridotites emerged in this stage. Different orogens may have a diverse rock types just in the depth of the deep subduction and in degrees of retrograde metamorphism. Finally, the age formation of ophiolites must be emphasized.Meantime, the high grade metamorphosed rocks can be completely destroyed due to the later retrograde metamorphism, this deserves a great attention.
-
图 1 华北陆块与华南陆块间的秦岭-桐柏-大别-苏鲁造山带(a)和北秦岭东部块体的地质简图(b)
图b修改自Zhang et al.(2015);图中星号表示北秦岭东部块体中高压-超高压变质岩中锆石U-Pb定年位置
Fig. 1. Geological sketch of the eastern North Qinling terrane (b) with the inset map showing the Qinling-Tongbai-Dabie-Sulu orogenic belts between the North China block and the South China block (a)
图 2 地质简图显示松树沟橄榄岩岩块和富水变辉长质杂岩及其相关的退变榴辉岩
修改自Zhang et al.(2015).富水杂岩中的红五星显示图 3壳幔边界橄榄岩样品采样位置.松树沟橄榄岩旁边的黑五星代表榴闪岩样品点据陈丹玲等(2015)
Fig. 2. Simplified geological map showing the Songshugou peridotite massif and the Fushui meta-gabbroic complex as well as its related retrograde eclogites
图 3 来自大洋岩石圈壳幔边界的宝贵样品
修改自Zhang et al.(2015).样品的原始成分应该是橄榄岩和基性脉岩.当岩石圈俯冲至榴辉岩相时,橄榄岩糜棱岩化,基性脉岩高压变质形成榴辉岩.当其抬升至斜长角闪岩相时,粗粒榴辉岩退变为石榴斜长角闪岩,而细粒榴辉岩则全部变成斜长角闪岩,此时石榴石全部转变成斜长石
Fig. 3. The sample represents a transition zone of lower crust-lithosphere mantle and initially an oceanic lithosphere
图 4 松树沟橄榄岩中角闪石形态(视域宽4 mm)和成分分类
修改自Yu et al.(2017).其中图a~c分别为中粒方辉橄榄岩中长柱状角闪石切穿橄榄石和斜方辉石、细粒纯橄岩中纤维状角闪石切穿橄榄石和角闪石切穿斜方辉石脉中的斜方辉石.图d为直闪石(富镁角闪石)的成分分类图.注意部分镁闪石边部为透闪石或阳起石
Fig. 4. Amphibole morphology (the width 4 mm) and compositional classification of the Songshugou peridotites
图 5 非洲Kaapvaal克拉通金伯利岩携带的地幔橄榄岩捕虏体(视域宽2 cm)
图a为橄榄岩捕虏体岩石分类图,修改自Zhang et al.(2001);图b为橄榄岩捕虏体的SiO2与MgO含量变化图,修改自Tang et al.(2013);图c和图d为南非复合橄榄岩捕虏体照片,引自Zhang et al.(2001)和张宏福(2006).其中,图c为斜方辉石交代透辉石,伴生石榴石形成;图d为棕褐色斜方辉石交代透辉石,并形成金红石.OL.橄榄石;OPX.斜方辉石;CPX.单斜辉石;L.液态;DI.翠绿色透辉石;GT.紫红色镁铝榴石;RUT.黑色金红石
Fig. 5. Mantle peridotite xenoliths entrained in kimberlites from African Kaapvaal craton
图 6 松树沟方辉橄榄岩照片(视域宽8 cm)和显微照片(视域宽4 mm)
图片来自Yu et al.(2017).图a为大颗粒斜方辉石呈定向排列;图b为大颗粒斜方辉石具有一系列平行的弯曲解理;图c为松树沟方辉橄榄岩的SiO2与MgO含量变化图;图d为松树沟方辉橄榄岩中斜方辉石的Al2O3与CaO含量变化图, 引自Yu et al.(2017)
Fig. 6. Photograph (width 8 cm) and microphotograph (width 4 mm) of the Songshugou harzburgite
-
[1] Arai, S., Kida, M., 2000.Origin of Fine-Grained Peridotite Xenoliths from Iraya Volcano of Batan Island, Philippines:Deserpentinization or Metasomatism at the Wedge Mantle beneath an Incipient Arc?.Island Arc, 9(4):458-471.https://doi.org/10.1111/j.1440-1738.2000.00294.x doi: 10.1046/j.1440-1738.2000.00294.x [2] Bader, T., Franz, L., Ratschbacher, L., et al., 2013.The Heart of China Revisited:Ⅱ Early Paleozoic (Ultra) High-Pressure and (Ultra) High-Temperature Metamorphic Qinling Orogenic Collage.Tectonics, 32(4):922-947.https://doi.org/10.1002/tect.20056 doi: 10.1002/tect.20056 [3] Bowen, N.L., Tuttle, O.F., 1949.The System MgO-SiO2-H2O.Geological Society of America Bulletin, 60(3):439-460. doi: 10.1130/0016-7606(1949)60[439:TSM]2.0.CO;2 [4] Chen, D.L., Liu, L., Zhou, D.W., et al., 2002.Genesis and 40Ar-39Ar Dating of Clinopyroxene Megacrysts in Ultramafic Terrain from Songshugou, East Qinling Mountain and Its Geological Implication.Acta Petrologica Sinica, 18(3):355-362(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200203010 [5] Chen, D.L., Ren, Y.F., Gong, X.K., et al., 2015.Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling.Acta Petrologica Sinica, 31(7):1841-1854(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507003 [6] Chen, Z.H., Lu, S.N., Li, H.K., et al., 2004.The Age of the Dehe Biotite Monzogranite Gneiss in the North Qinling:TIMS and SHRIMP U-Pb Zircon Dating.Regional Geology of China, 23(2):136-141(in Chinese with English abstract). [7] Cheng, H., Zhang, C., Vervoort, J.D., et al., 2011.Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China.Lithos, 125(3-4):969-983. https://doi.org/10.1016/j.lithos.2011.05.010 [8] Cheng, H., Zhang, C., Vervoort, J.D., et al., 2012.Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology.Lithos, 136-139:46-59. https://doi.org/10.1016/j.lithos.2011.06.003 [9] Dong, Y.P., Genser, J., Neubauer, F., et al., 2011a.U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China.Gondwana Research, 19(4):881-893. https://doi.org/10.1016/j.gr.2010.09.007 [10] Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011b.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 [11] Dong, Y.P., Zhou, D.W., Liu, L., et al., 1997.Sm-Nd Isotopic Ages of the Songshugou Ophiolite from the East Qinling and Its Geological Significance.Regional Geology of China, 16(2):217-221(in Chinese with English abstract). [12] Hanghøj, K., Kelemen, P.B., Hassler, D., et al., 2010.Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics.Journal of Petrology, 51(1-2):201-227. https://doi.org/10.1093/petrology/egp077 [13] Kaczmarek, M.A., Müntener, O., 2008.Juxtaposition of Melt Impregnation and High-Temperature Shear Zones in the Upper Mantle; Field and Petrological Constraints from the Lanzo Peridotite (Northern Italy).Journal of Petrology, 49(12):2187-2220. https://doi.org/10.1093/petrology/egn065 [14] Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358(6388):635-641. https://doi.org/10.1038/358635a0 [15] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1-2):387-406.https://doi.org/10.1016/s0012-821x(98)00233-7 doi: 10.1016/S0012-821X(98)00233-7 [16] Khedr, M.Z., Arai, S., Python, M., 2013.Petrology and Chemistry of Basal Lherzolites above the Metamorphic Sole from Wadi Sarami Central Oman Ophiolite.Journal of Mineralogical and Petrological Sciences, 108(1):13-24. https://doi.org/10.2465/jmps.121026 [17] Kusbach, V., Ulrich, S., Schulmann, K., 2012.Ductile Deformation and Rheology of Sub-Continental Mantle in a Hot Collisional Orogeny:Example from the Bohemian Massif.Journal of Geodynamics, 56-57:108-123. https://doi.org/10.1016/j.jog.2011.06.004 [18] Li, S.G., Chen, Y.Z., Zhang, G.W., et al., 1991.A 1 Ga B.Alpine Peridotite Body Emplaced into the Qinling Group:Evidence for the Existence of the Late Proterozoic Plate Tectonics in the North Qinling Area.Geological Review, 37:235-242 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_355341 [19] Liu, L., Liao, X.Y., Zhang, C.L., et al., 2013.Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications.Acta Petrologica Sinica, 29(5):1634-1656(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305015.htm [20] McInnes, B.I.A., Gregoire, M., Binns, R.A., et al., 2001.Hydrous Metasomatism of Oceanic Sub-Arc Mantle, Lihir, Papua New Guinea:Petrology and Geochemistry of Fluid-Metasomatised Mantle Wedge Xenoliths.Earth and Planetary Science Letters, 188(1-2):169-183.https://doi.org/10.1016/s0012-821x(01)00306-5 doi: 10.1016/S0012-821X(01)00306-5 [21] Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196.https://doi.org/10.1016/s0040-1951(00)00106-2 doi: 10.1016/S0040-1951(00)00106-2 [22] Newman, J., Lamb, W.M., Drury, M.R., et al., 1999.Deformation Processes in a Peridotite Shear Zone:Reaction-Softening by an H2O-Deficient, Continuous Net Transfer Reaction.Tectonophysics, 303(1-4):193-222.https://doi.org/10.1016/s0040-1951(98)00259-5 doi: 10.1016/S0040-1951(98)00259-5 [23] Nozaka, T., 2011.Constraints on Anthophyllite Formation in Thermally Metamorphosed Peridotites from Southwestern Japan.Journal of Metamorphic Geology, 29(4):385-398.https://doi.org/10.1111/j.1525-1314.2010.00921.x doi: 10.1111/jmg.2011.29.issue-4 [24] Nozaka, T., 2014.Metasomatic Hydration of the Oeyama Forearc Peridotites:Tectonic Implications.Lithos, 184-187:346-360. https://doi.org/10.1016/j.lithos.2013.11.012 [25] Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1-2):1-53.https://doi.org/10.1016/s0040-1951(03)00053-2 doi: 10.1016/S0040-1951(03)00053-2 [26] Roselle, G.T., Baumgartner, L.P., Chapman, J.A., 1997.Nucleation-Dominated Crystallization of Forsterite in the Ubehebe Peak Contact Aureole, California.Geology, 25(9):823-826.https://doi.org/10.1130/0091-7613(1997)025<0823:ndcofi>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0823:NDCOFI>2.3.CO;2 [27] Takazawa, E., Okayasu, T., Satoh, K., 2003.Geochemistry and Origin of the Basal Lherzolites from the Northern Oman Ophiolite (Northern Fizh Block).Geochemistry, Geophysics, Geosystems, 4(2):1021.https://doi.org/10.1029/2001gc000232 doi: 10.1029/2001gc000232 [28] Tamura, A., Arai, S., 2006.Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle.Lithos, 90(1-2):43-56. https://doi.org/10.1016/j.lithos.2005.12.012 [29] Tang, Y.J., Zhang, H.F., Ying, J.F., et al., 2013.Widespread Refertilization of Cratonic and Circum-Cratonic Lithospheric Mantle.Earth-Science Reviews, 118:45-68. https://doi.org/10.1016/j.earscirev.2013.01.004 [30] Wu, Y.B., Zheng, Y.F., 2013.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China.Gondwana Research, 23(4):1402-1428. doi: 10.1016/j.gr.2012.09.007 [31] Yu, H., Zhang, H.F., Li, X.H., et al., 2016.Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation:Evidence from Zircons in Metamorphic Rocks of the Qinling Group.Gondwana Research, 30:65-78. doi: 10.1016/j.gr.2015.07.003 [32] Yu, H., Zhang, H.F., Santosh, M., 2017.Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle.Gondwana Research, 52:1-17. doi: 10.1016/j.gr.2017.08.007 [33] Zhang, C.L., Liu, L., Wang, T., et al., 2013.Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling.Chinese Science Bulletin, 58(35):4405-4410. https://doi.org/10.1007/s11434-013-6064-z [34] Zhang, G.W., Meng, Q.R., Lai, S.C., 1995.Tectonics and Structure of the Qinling Orogenic Belt.Scientia Sinica Terrae, 38:1379-1394. http://d.old.wanfangdata.com.cn/Periodical/OA000002705 [35] Zhang, H.F., Menzies, M.A., Gurney, J.J., et al., 2001.Cratonic Peridotites and Silica-Rich Melts:Diopside-Enstatite Relationships in Polymict Xenoliths, Kaapvaal, South Africa.Geochimica et Cosmochimica Acta, 65(19):3365-3377.https://doi.org/10.1016/s0016-7037(01)00675-5 doi: 10.1016/S0016-7037(01)00675-5 [36] Zhang, H.F., Yu, H., Zhou, D.W., et al., 2015.The Meta-Gabbroic Complex of Fushui in North Qinling Orogen:A Case of Syn-Subduction Mafic Magmatism.Gondwana Research, 28(1):262-275. doi: 10.1016/j.gr.2014.04.010 [37] Zhang, H.F., 2006.Complex Peridotitic Xenoliths:Rare and Important Samples for Understanding the Lithospheric Evolution.Earth Science, 31(1):31-37(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=65cafab59a16585601a5b8288e86bf45&encoded=0&v=paper_preview&mkt=zh-cn [38] Zhou, D.W., Zhang, Z.J., Dong, Y.P., et al., 1995.Geological and Geochemical Characteristics on Proterozoic Songshugou Ophiolite Piece from Shangnan Country, Qinling.Acta Petrologica Sinica, 11(Suppl.):154-164 (in Chinese with English abstract). [39] 陈丹玲, 刘良, 周鼎武, 等, 2002.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和40Ar-39Ar定年及其地质意义.岩石学报, 18(3):355-362. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200203010 [40] 陈丹玲, 任云飞, 宫相宽, 等, 2015.北秦岭松树沟榴辉岩的确定及其地质意义.岩石学报, 31(7):1841-1854. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507003 [41] 陈志宏, 陆松年, 李怀坤, 等, 2004.北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学.地质通报, 23(2):136-141. doi: 10.3969/j.issn.1671-2552.2004.02.006 [42] 董云鹏, 周鼎武, 刘良, 等, 1997.东秦岭松树沟蛇绿岩Sm-Nd同位素年龄的地质意义.中国区域地质, 16(2):217-221. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD702.014.htm [43] 李曙光, 陈移之, 张国伟, 等, 1991.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据.地质论评, 37:235-242. doi: 10.3321/j.issn:0371-5736.1991.03.005 [44] 刘良, 廖小莹, 张成立, 等, 2013.北秦岭高压-超高压岩石的多期变质时代及其地质意义.岩石学报, 29(5):1634-1656. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305013 [45] 张宏福, 2006.复杂橄榄岩捕虏体:反演岩石圈演化过程的罕见而重要的样品.地球科学, 31(1):31-37. http://earth-science.net/WebPage/Article.aspx?id=1534 [46] 周鼎武, 张泽军, 董云鹏, 等, 1995.东秦岭商南松树沟元古宙蛇绿岩片的地质地球化学特征.岩石学报, 11(增刊):154-164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.011.htm