Primordial Peridotitic Mantle Component in Asthenosphere beneath Northeast China: Geochemical Evidence from Cenozoic Basalts of Greater Khingan Range
-
摘要: 为了进一步了解中国东北新生代玄武岩地幔源区的物质属性,报道了大兴安岭哈拉哈河-柴河地区新生代玄武岩的全岩主量、微量元素和Sr、Nd、Pb、Hf同位素组成.哈拉哈河-柴河玄武岩属钠质碱性系列,具有与洋岛玄武岩相似的微量元素特征,如富集大离子亲石元素(LILEs)、明显的Nb、Ta正异常等.它们具有中等亏损的Sr-Nd-Hf同位素组成(87Sr/86Sr=0.703 5~0.703 9、εNd=5.21~6.55、εHf=10.00~11.25),接近中国东部新生代玄武岩的亏损端元.这些玄武岩具有中等的放射成因Pb同位素组成(206Pb/204Pb=18.37~18.57、207Pb/204Pb=15.52~15.54和208Pb/204Pb=38.24~38.43),在206Pb/204Pb-207Pb/204Pb相关图上位于4.42~4.45 Ga的地球等时线之间.它们在Sr-Nd-Pb同位素相关图中均落入地幔柱来源的、高3He/4He比(>30Ra)的洋岛玄武岩范围内,暗示其源区可能存在来自深部地幔的古老原始地幔物质.此外,这些玄武岩具有高MgO(8.49%~11.58%)、高Ni(174×10-6~362×10-6)和高Mg#(59.1~66.9)的特征,表明它们接近于原始岩浆的成分.反演的哈拉哈河-柴河玄武岩的原始岩浆组成具有中等的SiO2、低Al2O3以及高CaO/Al2O3比的特征,与石榴子石橄榄岩高压(>2.5 GPa)实验熔体的成分相当,暗示玄武岩的源区岩性最可能为橄榄岩.对以原始地幔(而不是亏损地幔)的微量元素为初始成分的饱满石榴子石二辉橄榄岩进行低程度(1%~2%)部分熔融的模拟计算,产生的熔体与哈拉哈河-柴河玄武岩具有一致的微量元素特征,这进一步支持了上述推断.综上所述,认为大兴安岭地区哈拉哈河-柴河玄武岩的源区含有来自深部地幔的古老的橄榄岩质原始地幔组分.Abstract: In order to further explore the nature of mantle source beneath the Northeast China, it presents major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate volcanic rocks from the Halaha-Chaihe field in the Greater Khingan Range. These volcanic rocks are mainly alkaline (sodic) basalts, and generally exhibit OIB-like incompatible trace element characteristics, e.g.enrichment in large lithophile elements (LILEs) and positive Nb-Ta anomalies. They show moderate depleted Sr-Nd-Hf isotopic compositions (87Sr/86Sr=0.703 5-0.703 9, εNd=5.21-6.55, εHf=10.00-11.25) and almost represent the most depleted mantle end-member among the Cenozoic basalts in eastern China. Their Pb isotopic compositions (206Pb/204Pb=18.37-18.57, 207Pb/204Pb=15.52-15.54, 208Pb/204Pb=38.24 -38.43) range between 4.42 Ga and 4.45 Ga geochrons on the 207Pb/204Pb versus 206Pb/204Pb diagram. They also show similar Sr-Nd-Pb isotopic compositions with those mantle plume-derived ocean island basalts (3He/4He>30 Ra), which implies a deep mantle source. The high MgO (8.49%-11.58%), Ni(174×10-6-362×10-6) contents and high Mg# values (59.1-66.9) of these basalts imply that their compositions are close to those of the primary magmas. The calculated primitive compositions of Halaha-Chaihe basalts show moderate SiO2, low Al2O3 contents and high CaO/Al2O3 ratios, which are accordant with the compositions of experimental melts of garnet peridotite under high pressure (>2.5 GPa) conditions, suggesting a garnet peridotitic mantle source. Moreover, trace-element modeling suggests low-degree melts from a primitive mantle (rather than a depleted mantle) are consistent with these basalts. In summary, it is suggested that the mantle source of the Halaha-Chaihe basalts from the Greater Khingan Range contains ancient, primordial, peridotitic component from the deep mantle.
-
Key words:
- Cenozoic basalt /
- asthenosphere /
- primordial mantle /
- geochemistry /
- Northeast China /
- petrology
-
图 1 中国东部新生代玄武岩与高3He/4He比值洋岛玄武岩Sr-Nd-Pb同位素协变图:(a) εNd-206Pb/204Pb协变图;(b)87Sr/86Sr-206Pb/204Pb协变图
亏损地幔(DMM)数据引自Workman and Hart (2005);早期亏损地幔储库(EDR)数据引自Boyet and Carlson (2005);高3He/4He比值洋岛玄武岩(3He/4He > 30 Ra样品的平均值)数据包括巴芬岛(Jackson et al., 2010)、西格陵兰(Graham et al., 1998)、夏威夷(Kurz et al., 1982)、加拉帕戈斯(Saal et al., 2007)、萨摩亚(Jackson et al., 2007)、冰岛(Hilton et al., 1999; Starkey et al., 2009; Stuart et al., 2003)和留尼汪群岛(Graham et al., 1990);中国东部新生代玄武岩数据来源范围较广,略;EM1、EM2型样品数据引自http://georem.mpch-mainz.gwdg.de/georoc/
Fig. 1. Variation diagrams of (a) εNd versus 206Pb/204Pb and (b)87Sr/86Sr versus 206Pb/204Pb of Cenozoic basalts from eastern China and high 3He/4He ocean island basalts
图 2 (a) 中国东北地区新生代火山岩分布图;(b)哈拉哈河-柴河玄武岩分布及采样位置
图a据Xu (2007); 图b据Ho et al.(2013), 灰色虚线区域指示大兴安岭-太行重力梯度带
Fig. 2. Distribution of Cenozoic volcanic rocks in Northeast China (a) and Late Cenozoic basalts and sample locations in Halaha-Chaihe basalts (b)
图 3 哈拉哈河-柴河玄武岩TAS图(a),SiO2-(CaO/Al2O3) (b)、SiO2-MgO (c)和SiO2-TiO2 (d)相关图解
图a据Le Bas et al.(1986).红色实心圆代表本次研究哈拉哈河-柴河玄武岩数据;空心圈、蓝心圈(驼峰岭)和绿色圈(德勒河)代表前人数据,引自Chen et al.(2017)、Ho et al.(2013)、Li et al.(2017)以及赵勇伟和樊祺诚(2012)
Fig. 3. Total alkaili versus SiO2 (a); variation of CaO/Al2O3, MgO and TiO2 versus SiO2 (b-d) forHalaha-Chaihe basalts
图 4 哈拉哈河-柴河玄武岩球粒陨石标准化稀土元素配分模式图
球粒陨石数据引自Anders and Grevesse(1989);红线代表本文数据;灰线代表前人数据,引自Li et al.(2017)
Fig. 4. Chondrite-normalized REE patterns for Halaha-Chaihe basalts
图 5 哈拉哈河-柴河玄武岩的不相容微量元素原始地幔标准化图
原始地幔数据引自McDonough and Sun(1995),N-MORB数据引自Gale et al.(2013),东北钾质玄武岩数据引自Liu et al.(2017),内蒙古阿巴嘎数据引自Ho et al.(2008)和Zhang and Guo(2016)
Fig. 5. Primitive mantle-normalized incompatible trace element patterns for Halaha-Chaihe basalts
图 6 哈拉哈河-柴河玄武岩Sr-Nd-Pb-Hf同位素组成:(a) εNd-87Sr/86Sr比值协变图;(b) εHf-εNd协变图;(c) 207Pb/204Pb-206Pb/204Pb比值协变图;(d) 208Pb/204Pb-206Pb/204Pb比值协变图
Nd-Hf同位素地球参考线,据Vervoort et al.(2011);NHRL.Pb同位素北半球参考线,据Hart (1984);Pb同位素地球等时线,据Holmes (1946);高3He/4He比洋岛玄武岩数据同图 1,Nd同位素组成仅包含巴芬岛样品数据;太平洋型和印度洋型MORB样品来自Stracke (2012)汇总的大洋玄武岩数据
Fig. 6. Variation diagrams of (a) εNd versus 87Sr/86Sr; (b) εHf versus εNd; (c) 207Pb/204Pb versus 206Pb/204Pb and (d) 208Pb/204Pb versus 206Pb/204Pb for the Halaha-Chaihe basalts
图 7 哈拉哈河-柴河玄武岩MgO-Ni, Cr, Co协变图(a~c); Sr同位素-SiO2协变图(d)
红色实心圆代表本文数据;空心圈、蓝心圈(驼峰岭)和绿色圈(德勒河)代表前人数据,引自Chen et al.(2017)、Ho et al.(2013)、Li et al.(2017)以及赵勇伟和樊祺诚(2012)
Fig. 7. Variation diagrams of MgO versus Ni, Cr and Co (a-c) and 87Sr/86Sr versus SiO2 (d) for the Halaha-Chaihe basalts
图 8 哈拉哈河-柴河玄武岩与实验熔体在主量元素上的对比:(a)MgO-TiO2协变图;(b)SiO2-Al2O3协变图;(c)SiO2-FeOT协变图;(d)CaO-(CaO/Al2O3)协变图
>2.5 GPa的实验橄榄岩熔体数据引自Davis et al.(2011)、Hirose and Kushiro(1993)、Kushiro(2013)和Walter(1998);>2 GPa的贫硅辉石岩熔体数据引自Hirschmann et al.(2003)、Keshav et al.(2004)和Kogiso et al.(2003);>2 GPa的富硅辉石岩熔体数据引自Pertermann and Hirschmann(2003)、Spandler et al.(2007)、Yasuda et al.(1994)、Yaxley and Green(1998)和Yaxley and Sobolev(2007)
Fig. 8. Variation diagrams of (a) MgO versus TiO2; (b) SiO2 versus Al2O3; (c) SiO2 versus FeOT; (d) CaO versus (CaO/Al2O3) between the Halaha-Chaihe primary magmas and experimental melt
-
[1] Adam, J., Green, T., 2006.Trace Element Partitioning between Mica- and Amphibole-Bearing Garnet Lherzolite and Hydrous Basanitic Melt: 1.Experimental Results and the Investigation of Controls on Partitioning Behaviour.Contributions to Mineralogy and Petrology, 152(1):1-17. https://doi.org/10.1007/s00410-006-0085-4 [2] Allègre, C.J., Lewin, E., 1995.Isotopic Systems and Stirring Times of the Earth's Mantle.Earth and Planetary Science Letters, 136(3-4):629-646. https://doi.org/10.1016/0012-821x(95)00184-e [3] Anders, E., Grevesse, N., 1989.Abundances of the Elements:Meteoritic and Solar.Geochimica et Cosmochimica Acta, 53(1):197-214. https://doi.org/10.1016/0016-7037(89)90286-x [4] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [5] Boyet, M., Carlsow, R.W., 2005.142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth.Science, 309(5734):576-581. https://doi.org/10.1126/science.1113634 [6] Chen, H., Xia, Q.K., Ingrin, J., et al., 2017.Heterogeneous Source Components of Intraplate Basalts from NE China Induced by the Ongoing Pacific Slab Subduction.Earth and Planetary Science Letters, 459:208-220. https://doi.org/10.1016/j.epsl.2016.11.030 [7] Chen, L.H., Zeng, G., Hu, S.L., et al., 2012.Crustal Recycling and Genesis of Continental Alkaline Basalts:Case Study of the Cenozoic Alkaline Basalts from Shandong Province, Eastern China.Geological Journal of China Universities, 18(1):16-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201201004.htm [8] Chen, L.H., Zeng, G., Jiang, S.Y., et al., 2009.Sources of Anfengshan Basalts:Subducted Lower Crust in the Sulu UHP Belt, China.Earth and Planetary Science Letters, 286(3-4):426-435. https://doi.org/10.1016/j.epsl.2009.07.006 [9] Chen, X.Y., Chen, L.H., Chen, Y., et al., 2014.Distribution Summary of Cenozoic Basalts in Central and Eastern China.Geological Journal of China Universities, 20(4):507-519(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201404002 [10] Chu, Z.Y., Harvey, J., Liu, C.Z., et al., 2013.Source of Highly Potassic Basalts in Northeast China:Evidence from Re-Os, Sr-Nd-Hf Isotopes and PGE Geochemistry.Chemical Geology, 357:52-66. https://doi.org/10.1016/j.chemgeo.2013.08.007 [11] Davis, F.A., Hirschmann, M.M., Humayun, M., 2011.The Composition of the Incipient Partial Melt of Garnet Peridotite at 3 GPa and the Origin of OIB.Earth and Planetary Science Letters, 308(3-4):380-390. https://doi.org/10.1016/j.epsl.2011.06.008 [12] Fan, Q., Hooper, P.R., 1991.The Cenozoic Basaltic Rocks of Eastern China:Petrology and Chemical Composition.Journal of Petrology, 32(4):765-810. https://doi.org/10.1093/petrology/32.4.765 [13] Fan, Q.C., Sui, J.L., Zhao, Y.W., et al., 2008.Preliminary Study on Garnet Peridotite Xenolith of Quaternary Volcanic Rocks in Middle Daxing'an Mountain Range.Acta Petrologica Sinica, 24(11):2563-2568(in Chinese with English abstract). [14] Fan, Q.C., Zhao, Y.W., Li, D.M., et al., 2011.Studies on Quaternary Volcanism Stages of Halaha River and Chaoer River Area in the Great Xing'an Range:Evidence from K-Ar Dating and Volcanic Geology Features.Acta Petrologica Sinica, 27(10):2827-2832 (in Chinese with English abstract). [15] Gale, A., Dalton, C.A., Langmuir, C.H., et al., 2013.The Mean Composition of Ocean Ridge Basalts.Geochemistry, Geophysics, Geosystems, 14(3):489-518. https://doi.org/10.1029/2012gc004334 [16] Geske, A., Goldstein, R.H., Mavromatis, V., et al., 2015.The Magnesium Isotope (δ26Mg) Signature of Dolomites.Geochimica et Cosmochimica Acta, 149:131-151. https://doi.org/10.1016/j.gca.2014.11.003 [17] Graham, D.W., Larsen, L.M., Hanan, B.B., et al., 1998.Helium Isotope Composition of the Early Iceland Mantle Plume Inferred from the Tertiary Picrites of West Greenland.Earth and Planetary Science Letters, 160(3-4):241-255. https://doi.org/10.1016/s0012-821x(98)00083-1 [18] Graham, D., Lupton, J., Albarède, F., et al., 1990.Extreme Temporal Homogeneity of Helium Isotopes at Piton de la Fournaise, Réunion Island.Nature, 347(6293):545-548. https://doi.org/10.1038/347545a0 [19] Green, T.H., Blundy, J.D., Adam, J., et al., 2000.SIMS Determination of Trace Element Partition Coefficients between Garnet, Clinopyroxene and Hydrous Basaltic Liquids at 2-7.5 GPa and 1 080-1 200 ℃.Lithos, 53(3-4):165-187. https://doi.org/10.1016/s0024-4937(00)00023-2 [20] Hart, S.R., 1984.A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature, 309(5971):753-757. https://doi.org/10.1038/309753a0 [21] Hilton, D.R., Grönvold, K., MacPherson, C.G., et al., 1999.Extreme 3He/4He Ratios in Northwest Iceland:Constraining the Common Component in Mantle Plumes.Earth and Planetary Science Letters, 173(1/2):53-60. https://doi.org/10.1016/s0012-821x(99)00215-0 [22] Hirose, K., Kushiro, I., 1993.Partial Melting of Dry Peridotites at High Pressures:Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond.Earth and Planetary Science Letters, 114(4):477-489. https://doi.org/10.1016/0012-821x(93)90077-m [23] Hirschmann, M.M., Kogiso, T., Baker, M.B., et al., 2003.Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite.Geology, 31(6):481.https://doi.org/10.1130/0091-7613(2003)0310481:amgbpm>2.0.co;2 doi: 10.1130/0091-7613(2003)0310481:amgbpm>2.0.co;2 [24] Ho, K.S., Ge, W.C., Chen, J.C., et al., 2013.Late Cenozoic Magmatic Transitions in the Central Great Xing'an Range, Northeast China:Geochemical and Isotopic Constraints on Petrogenesis.Chemical Geology, 352:1-18. https://doi.org/10.1016/j.chemgeo.2013.05.040 [25] Ho, K.S., Liu, Y., Chen, J.C., et al., 2008.Elemental and Sr-Nd-Pb Isotopic Compositions of Late Cenozoic Abaga Basalts, Inner Mongolia:Implications for Petrogenesis and Mantle Process.Geochemical Journal, 42(4):339-357. https://doi.org/10.2343/geochemj.42.339 [26] Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385(6613):219-229. https://doi.org/10.1038/385219a0 [27] Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986.Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution.Earth and Planetary Science Letters, 79(1-2):33-45. https://doi.org/10.1016/0012-821x(86)90038-5 [28] Holmes, A., 1946.An Estimate of the Age of the Earth.Nature, 157(3995):680-684. https://doi.org/10.1038/157680a0 [29] Hong, L.B., Zhang, Y.H., Qian, S.P., et al., 2013.Constraints from Melt Inclusions and Their Host Olivines on the Petrogenesis of Oligocene-Early Miocene Xindian Basalts, Chifeng Area, North China Craton.Contributions to Mineralogy and Petrology, 165(2):305-326. https://doi.org/10.1007/s00410-012-0810-0 [30] Huang, J.L., Zhao, D.P., 2006.High-Resolution Mantle Tomography of China and Surrounding Regions.Journal of Geophysical Research, 111(B9):B09305. https://doi.org/10.1029/2005jb004066 [31] Huang, J., Li, S.G., Xiao, Y.L., et al., 2015.Origin of Low δ26Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications.Geochimica et Cosmochimica Acta, 164:298-317. https://doi.org/10.1016/j.gca.2015.04.054 [32] Jackson, M.G., Carlson, R.W., Kurz, M.D., et al., 2010.Evidence for the Survival of the Oldest Terrestrial Mantle Reservoir.Nature, 466(7308):853-856. https://doi.org/10.1038/nature09287 [33] Jackson, M., Kurz, M., Hart, S., et al., 2007.New Samoan Lavas from Ofu Island Reveal a Hemispherically Heterogeneous High 3He/4He Mantle.Earth and Planetary Science Letters, 264(3-4):360-374. https://doi.org/10.1016/j.epsl.2007.09.023 [34] Jahn, B.M., Wu, F.Y., Chen, B., 2000.Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic.Geological Society of America, Special Paper, 350:181-193. https://doi.org/10.1130/0-8137-2350-7.181 [35] Jochum, K.P., Weis, U., Schwager, B., et al., 2016.Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials.Geostandards and Geoanalytical Research, 40(3):333-350. https://doi.org/10.1111/j.1751-908x.2015.00392.x [36] Keshav, S., Gudfinnsson, G.H., Sen, G., et al., 2004.High-Pressure Melting Experiments on Garnet Clinopyroxenite and the Alkalic to Tholeiitic Transition in Ocean-Island Basalts.Earth and Planetary Science Letters, 223(3-4):365-379. https://doi.org/10.1016/j.epsl.2004.04.029 [37] Kogiso, T., Hirschmann, M.M., Frost, D.J., 2003.High-Pressure Partial Melting of Garnet Pyroxenite:Possible Mafic Lithologies in the Source of Ocean Island Basalts.Earth and Planetary Science Letters, 216(4):603-617. https://doi.org/10.1016/s0012-821x(03)00538-7 [38] Kuritani, T., Kimura, J.I., Miyamoto, T., et al., 2009.Intraplate Magmatism Related to Deceleration of Upwelling Asthenospheric Mantle:Implications from the Changbaishan Shield Basalts, Northeast China.Lithos, 112(3-4):247-258. https://doi.org/10.1016/j.lithos.2009.02.007 [39] Kuritani, T., Kimura, J.I., Ohtani, E., et al., 2013.Transition Zone Origin of Potassic Basalts from Wudalianchi Volcano, Northeast China.Lithos, 156-159:1-12. https://doi.org/10.1016/j.lithos.2012.10.010 [40] Kuritani, T., Nakamura, E., 2002.Precise Isotope Analysis of Nanogram-Level Pb for Natural Rock Samples without Use of Double Spikes.Chemical Geology, 186(1-2):31-43. https://doi.org/10.1016/s0009-2541(02)00004-9 [41] Kuritani, T., Ohtani, E., Kimura, J.I., 2011.Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation.Nature Geoscience, 4(10):713-716. https://doi.org/10.1038/ngeo1250 [42] Kurz, M.D., Jenkins, W.J., Hart, S.R., 1982.Helium Isotopic Systematics of Oceanic Islands and Mantle Heterogeneity.Nature, 297(5861):43-47. https://doi.org/10.1038/297043a0 [43] Kushiro, I., 2013.Partial Melting of a Fertile Mantle Peridotite at High Pressures: An Experimental Study Using Aggregates of Diamond.In: Kushiro, I., ed., Earth Processes: Reading the Isotopic Code.American Geophysical Union, Washington, D.C., 109-122.https: //doi.org/10.1029/gm095p0109 [44] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [45] Li, H.Y., Xu, Y.G., Ryan, J.G., et al., 2017.Olivine and Melt Inclusion Chemical Constraints on the Source of Intracontinental Basalts from the Eastern North China Craton:Discrimination of Contributions from the Subducted Pacific Slab.Geochimica et Cosmochimica Acta, 178:1-19. https://doi.org/10.1016/j.gca.2015.12.032 [46] Li, S.G., Yang, W., Ke, S., et al., 2016.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(1):111-120. https://doi.org/10.1093/nsr/nww070 [47] Li, Y.Q., Ma, C.Q., Robinson, P.T., et al., 2015.Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone:Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China.Lithos, 230:146-165. https://doi.org/10.1016/j.lithos.2015.05.021 [48] Liu, J.Q., Chen, L.H., Wang, X.J., et al., 2017.The Role of Melt-Rock Interaction in the Formation of Quaternary High-MgO Potassic Basalt from the Greater Khingan Range, Northeast China.Journal of Geophysical Research:Solid Earth, 122(1):262-280. https://doi.org/10.1002/2016jb013605 [49] Liu, J.Q., Ren, Z.Y., Nichols, A.R.L., et al., 2015.Petrogenesis of Late Cenozoic Basalts from North Hainan Island:Constraints from Melt Inclusions and Their Host Olivines.Geochimica et Cosmochimica Acta, 152:89-121. https://doi.org/10.1016/j.gca.2014.12.023 [50] Liu, S.A., Wang, Z.Z., Li, S.G., et al., 2016.Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters, 444:169-178. https://doi.org/10.1016/j.epsl.2016.03.051 [51] Liu, R., X., 1992.Geochronology and Geochemistry of Cenozoic Volcanic Rocks in China.Seismological Press, Beijing (in Chinese). [52] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [53] Meng, F.C., Safonova, I., Chen, S.S., et al., 2018.Late Cenozoic Intra-Plate Basalts of the Greater Khingan Range in NE China and Khangai Province in Central Mongolia.Gondwana Research, 63:65-84. https://doi.org/10.1016/j.gr.2018.05.009 [54] Pertermann, M., Hirschmann, M.M., 2003.Anhydrous Partial Melting Experiments on MORB-Like Eclogite:Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa.Journal of Petrology, 44(12):2173-2201. https://doi.org/10.1093/petrology/egg074 [55] Pu, W., Gao, J.F., Zhao, K.D., et al., 2005.Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA.Journal of Nanjing University (Natural Sciences), 41(4):445-450(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200504017 [56] Roeder, P.L., Emslie, R.F., 1970.Olivine-Liquid Equilibrium.Contributions to Mineralogy and Petrology, 29(4):275-289. https://doi.org/10.1007/bf00371276 [57] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In: Rudnick, R.L., Gao, S., eds., Treatise on Geochemistry.Elsevier, Cambridge, 1-64.https://doi.org/10.1016/b0-08-043751-6/03016-4 [58] Saal, A., Kurz, M., Hart, S., et al., 2007.The Role of Lithospheric Gabbros on the Composition of Galapagos Lavas.Earth and Planetary Science Letters, 257(3-4):391-406. https://doi.org/10.1016/j.epsl.2007.02.040 [59] Saenger, C., Wang, Z.R., 2014.Magnesium Isotope Fractionation in Biogenic and Abiogenic Carbonates:Implications for Paleoenvironmental Proxies.Quaternary Science Reviews, 90:1-21. https://doi.org/10.1016/j.quascirev.2014.01.014 [60] Spandler, C., Yaxley, G., Green, D.H., et al., 2007.Phase Relations and Melting of Anhydrous K-Bearing Eclogite from 1 200 to 1 600 ℃ and 3 to 5 GPa.Journal of Petrology, 49(4):771-795. doi: 10.1093/petrology/egm039 [61] Starkey, N.A., Stuart, F.M., Ellam, R.M., et al., 2009.Helium Isotopes in Early Iceland Plume Picrites:Constraints on the Composition of High 3He/4He Mantle.Earth and Planetary Science Letters, 277(1-2):91-100. https://doi.org/10.1016/j.epsl.2008.10.007 [62] Stracke, A., 2012.Earth's Heterogeneous Mantle:A Product of Convection-Driven Interaction between Crust and Mantle.Chemical Geology, 330/331:274-299. https://doi.org/10.1016/j.chemgeo.2012.08.007 [63] Stuart, F.M., Lass-Evans, S., Godfrey Fitton, J., et al., 2003.High 3He/4He Ratios in Picritic Basalts from Baffin Island and the Role of a Mixed Reservoir in Mantle Plumes.Nature, 424(6944):57-59. https://doi.org/10.1038/nature01711 [64] Sun, S.S., 1980.Lead Isotopic Study of Young Volcanic Rocks from Mid-Ocean Ridges, Ocean Islands and Island Arcs.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 297(1431):409-445. https://doi.org/10.1098/rsta.1980.0224 [65] Sun, Y.B., Zhang, R., Ding, C.C., et al., 2016.Adsorption of U(Ⅵ) on Sericite in the Presence of Bacillus Subtilis:A Combined Batch, EXAFS and Modeling Techniques.Geochimica et Cosmochimica Acta, 180:51-65. https://doi.org/10.1016/j.gca.2016.02.012 [66] Sun, Y., Ying, J.F., Su, B.X., et al., 2015.Contribution of Crustal Materials to the Mantle Sources of Xiaogulihe Ultrapotassic Volcanic Rocks, Northeast China:New Constraints from Mineral Chemistry and Oxygen Isotopes of Olivine.Chemical Geology, 405:10-18. https://doi.org/10.1016/j.chemgeo.2015.04.005 [67] Tang, Y.J., Zhang, H.F., Nakamura, E., et al., 2007.Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton:Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle.Geochimica et Cosmochimica Acta, 71(17):4327-4341. https://doi.org/10.1016/j.gca.2007.07.006 [68] Tao, K., Niu, F.L., Ning, J.Y., et al., 2014.Crustal Structure beneath NE China Imaged by NECESSArray Receiver Function Data.Earth and Planetary Science Letters, 398:48-57. https://doi.org/10.1016/j.epsl.2014.04.043 [69] Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7 [70] Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites.Geochimica et Cosmochimica Acta, 74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019 [71] Vervoort, J.D., Plank, T., Prytulak, J., 2011.The Hf-Nd Isotopic Composition of Marine Sediments.Geochimica et Cosmochimica Acta, 75(20):5903-5926. https://doi.org/10.1016/j.gca.2011.07.046 [72] Walter, M.J., 1998.Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere.Journal of Petrology, 39(1):29-60. https://doi.org/10.1093/petrology/39.1.29 [73] Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2017.Mantle Transition Zone-Derived EM1 Component beneath NE China:Geochemical Evidence from Cenozoic Potassic Basalts.Earth and Planetary Science Letters, 465:16-28. https://doi.org/10.1016/j.epsl.2017.02.028 [74] Wang, Y., Zhao, Z.F., Zheng, Y.F., et al., 2011.Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East-Central China.Lithos, 125(3-4):940-955. https://doi.org/10.1016/j.lithos.2011.05.007 [75] Wei, W., Xu, J.D., Zhao, D.P., et al., 2012.East Asia Mantle Tomography:New Insight into Plate Subduction and Intraplate Volcanism.Journal of Asian Earth Sciences, 60:88-103. https://doi.org/10.1016/j.jseaes.2012.08.001 [76] Weis, D., Kieffer, B., Maerschalk, C., et al., 2006.High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS.Geochemistry, Geophysics, Geosystems, 7(8). https://doi.org/10.1029/2006gc001283 [77] Wombacher, F., Eisenhauer, A., Böhm, F., et al., 2011.Magnesium Stable Isotope Fractionation in Marine Biogenic Calcite and Aragonite.Geochimica et Cosmochimica Acta, 75(19):5797-5818. https://doi.org/10.1016/j.gca.2011.07.017 [78] Workman, R.K., Hart, S.R., 2005.Major and Trace Element Composition of the Depleted MORB Mantle (DMM).Earth and Planetary Science Letters, 231(1-2):53-72. https://doi.org/10.1016/j.epsl.2004.12.005 [79] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015.A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion.Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [80] Xu, Y.G., 2007.Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin'anling-Taihangshan Gravity Lineament.Lithos, 96(1-2):281-298. https://doi.org/10.1016/j.lithos.2006.09.013 [81] Xu, Y.G., Li, H.Y., Hong, L.B., et al., 2018.Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia.Science China Earth Sciences, 48(7):825-843 (in Chinese). doi: 10.1007/s11430-017-9192-y [82] Xu, Y.G., Zhang, H.H., Qiu, H.N., et al., 2012.Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China:Derived from the Mantle Transition Zone?.Chemical Geology, 328:168-184. https://doi.org/10.1016/j.chemgeo.2012.01.027 [83] Xu, Z., Zheng, Y.F., Zhao, Z.F., 2017.The Origin of Cenozoic Continental Basalts in East-Central China:Constrained by Linking Pb Isotopes to Other Geochemical Variables.Lithos, 268-271:302-319. https://doi.org/10.1016/j.lithos.2016.11.006 [84] Yang, W., Teng, F.Z., Zhang, H.F., et al., 2012.Magnesium Isotopic Systematics of Continental Basalts from the North China Craton:Implications for Tracing Subducted Carbonate in the Mantle.Chemical Geology, 328:185-194. https://doi.org/10.1016/j.chemgeo.2012.05.018 [85] Yang, Y.H., Zhang, H.F., Chu, Z.Y., et al., 2010.Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS.International Journal of Mass Spectrometry, 290(2-3):120-126. https://doi.org/10.1016/j.ijms.2009.12.011 [86] Yang, Z.F., Li, J., Liang, W.F., et al., 2016.On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China:Implications for Source Lithology and the Origin of Basalts.Earth-Science Reviews, 157:18-31. https://doi.org/10.1016/j.earscirev.2016.04.001 [87] Yasuda, A., Fujii, T., Kurita, K., 1994.Melting Phase Relations of an Anhydrous Mid-Ocean Ridge Basalt from 3 to 20 GPa:Implications for the Behavior of Subducted Oceanic Crust in the Mantle.Journal of Geophysical Research:Solid Earth, 99(B5):9401-9414. https://doi.org/10.1029/93jb03205 [88] Yaxley, G.M., Sobolev, A.V., 2007.High-Pressure Partial Melting of Gabbro and Its Role in the Hawaiian Magma Source.Contributions to Mineralogy and Petrology, 154(4):371-383. https://doi.org/10.1007/s00410-007-0198-4 [89] Yaxley, G.M., Green, D.H.1998.Reactions between Eclogite and Peridotite:Mantle Refertilisation by Subduction of Oceanic Crust.Schweiz.Mineral.Petrogr.Mitt., 78(2):243-255. [90] Yu, S.Y., Xu, Y.G., Zhou, S.H., et al., 2018.Late Cenozoic Basaltic Lavas from the Changbaishan-Baoqing Volcanic Belt, NE China:Products of Lithosphere-Asthenosphere Interaction Induced by Subduction of the Pacific Plate.Journal of Asian Earth Sciences, 164:260-273. https://doi.org/10.1016/j.jseaes.2018.06.031 [91] Zeng, G., Chen, L.H., Hofmann, A.W., et al., 2011.Crust Recycling in the Sources of Two Parallel Volcanic Chains in Shandong, North China.Earth and Planetary Science Letters, 302(3-4):359-368. https://doi.org/10.1016/j.epsl.2010.12.026 [92] Zeng, G., Chen, L.H., Xu, X.S., et al., 2010.Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China.Chemical Geology, 273(1-2):35-45. https://doi.org/10.1016/j.chemgeo.2010.02.009 [93] Zeng, G., Chen, L.H., Yu, X., et al., 2017.Magma-Magma Interaction in the Mantle beneath Eastern China.Journal of Geophysical Research:Solid Earth, 122(4):2763-2779. https://doi.org/10.1002/2017jb014023 [94] Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China.Lithos, 110(1):305-326. https://doi.org/10.1016/j.lithos.2009.01.006 [95] Zhang, L.Y., Prelevi, D., Li, N., et al., 2016.Variation of Olivine Composition in the Volcanic Rocks in the Songliao Basin, NE China:Lithosphere Control on the Origin of the K-Rich Intraplate Mafic Lavas.Lithos, 262:153-168. https://doi.org/10.1016/j.lithos.2016.06.028 [96] Zhang, M.L., Guo, Z.F., 2016.Origin of Late Cenozoic Abaga-Dalinuoer Basalts, Eastern China:Implications for a Mixed Pyroxenite-Peridotite Source Related with Deep Subduction of the Pacific Slab.Gondwana Research, 37:130-151. https://doi.org/10.1016/j.gr.2016.05.014 [97] Zhang, R.Q., Wu, Q.J., Sun, L., et al., 2014.Crustal and Lithospheric Structure of Northeast China from S-Wave Receiver Functions.Earth and Planetary Science Letters, 401:196-205. https://doi.org/10.1016/j.epsl.2014.06.017 [98] Zhang, Y.L., Liu, C.Z., Ge, W.C., et al., 2011.Ancient Sub-Continental Lithospheric Mantle (SCLM) beneath the Eastern Part of the Central Asian Orogenic Belt (CAOB):Implications for Crust-Mantle Decoupling.Lithos, 126(3-4):233-247. https://doi.org/10.1016/j.lithos.2011.07.022 [99] Zhao, Y.W., Fan, Q.C., 2011.Characteristics of Lithospheric Mantle beneath the Great Xing'an Range:Evidence from Spinel Peridotite Xenoliths in the Halaha River and Chaoer River Area.Acta Petrologica Sinica, 27(10):2833-2841(in Chinese with English abstract). [100] Zhao, Y.W., Fan, Q.C., 2012.Mantle Sources and Magma Genesis of Quaternary Volcanic Rocks in the Halaha River and Chaoer River Area, Great Xing'an Range.Acta Petrologica Sinica, 28(4):1119-1129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201204010.htm [101] Zhao, Y.W., Fan, Q.C., Bai, Z.D., et al., 2008.Preliminary Study on Quaternary Volcanoes in the Halaha River and Chaoer River Area in Daxing'an Mountain Range.Acta Petrologica Sinica, 24(11):2569-2575(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200811012.htm [102] Zhou, X., Armstrong, R., 1982.Cenozoic Volcanic Rocks of Eastern China:Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition.Earth and Planetary Science Letters, 58(3):301-329. https://doi.org/10.1016/0012-821x(82)90083-8 [103] Zou, H.B., Zindler, A., Xu, X.S., et al., 2000.Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China:Mantle Sources, Regional Variations, and Tectonic Significance.Chemical Geology, 171(1-2):33-47. https://doi.org/10.1016/s0009-2541(00)00243-6 [104] 陈立辉, 曾罡, 胡森林, 等, 2012.地壳再循环与大陆碱性玄武岩的成因:以山东新生代碱性玄武岩为例.高校地质学报, 18(1):16-27. doi: 10.3969/j.issn.1006-7493.2012.01.002 [105] 陈霞玉, 陈立辉, 陈晹, 等, 2014.中国中-东部地区新生代玄武岩的分布规律与面积汇总.高校地质学报, 20(4):507-519. doi: 10.3969/j.issn.1006-7493.2014.04.002 [106] 樊祺诚, 隋建立, 赵勇伟, 等, 2008.大兴安岭中部第四纪火山岩中石榴石橄榄岩捕虏体的初步研究.岩石学报, 24(11):2563-2568. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811010 [107] 樊祺诚, 赵勇伟, 李大明, 等, 2011.大兴安岭哈拉哈河-绰尔河第四纪火山分期:K-Ar年代学与火山地质特征.岩石学报, 27(10):2827-2832. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110002 [108] 刘若新, 1992.中国新生代火山岩年代学与地球化学.北京:地震出版社. [109] 濮巍, 高剑峰, 赵葵东, 等, 2005.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法.南京大学学报(自然科学版), 41(4):445-450. doi: 10.3321/j.issn:0469-5097.2005.04.017 [110] 徐义刚, 李洪颜, 洪路兵, 等, 2018.东亚大地幔楔与中国东部新生代板内玄武岩成因.中国科学:地球科学, 48(7):825-843. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201807002 [111] 赵勇伟, 樊祺诚, 2011.大兴安岭岩石圈地幔特征:哈拉哈河-绰尔河橄榄岩捕虏体的证据.岩石学报, 27(10):2833-2841. doi: 10.1007-s12325-010-0046-1/ [112] 赵勇伟, 樊祺诚, 2012.大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因.岩石学报, 28(4):1119-1129. http://d.old.wanfangdata.com.cn/Conference/7667379 [113] 赵勇伟, 樊祺诚, 白志达, 等, 2008.大兴安岭哈拉哈河-淖尔河地区第四纪火山活动初步研究.岩石学报, 24(11):2569-2575. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811011