Discovery of the Large Early Platform Margin of Upper Sinian Dengying Formation in Central and Northeast Sichuan Basin and Its Implications for Hydrocarbon Exploration
-
摘要: 为进一步查明绵阳-长宁拉张槽东侧震旦系灯影组优质碳酸盐岩储层分布、探索新的勘探领域,利用髙石梯-磨溪灯影组的钻井、测井和高精度三维地震资料,采用海侵-海退旋回、层拉平、地震线描及印模法等,识别出灯影组大型早期台缘带及其内部构型.在拉张槽东部的南东-北西向地震剖面上,首次发现灯影组三段对应的三级层序(SQ3)内部普遍发育数个自南东向北西进积的前积体,前积体呈S型、丘型或短轴状,前积体顶部可见SQ4海侵体系域的系列上超点和一个明显的坡折点,越过坡折点向北西SQ3厚度急剧减薄.表明在绵阳-长宁拉张槽东部的碳酸盐岩台地内,存在一个自高石梯开始,经由磨溪、龙女寺、南充、蓬安,向北东一直延伸至龙岗地区中部,长约270 km的大型早期台缘带.这一大型台缘带的发现将为研究区灯影组油气勘探提供一个新的领域,而不再局限于绵阳-长宁拉张槽附近.Abstract: This study focuses on the distribution of high-quality carbonate reservoirs and new exploration areas in the Dengying Formation (Sinian) on the eastern side of Mianyang-Changning intracratonic sag. Using drilling, logging and seismic data in the Gaoshiti-Moxi, we identify the large early platform margin of Dengying Formation and characterize its internal configuration, based on the theories including the transgression-regression cycle analysis, the layer flattening, the seismic line drawing, the impression method paleogeomorphology, and quality reservoir prediction. It is found that, on the SE-NW seismic profile in the east of Mianyang-Changning intracratonic sag, there are several progradation reflections identified for the first time within the third sequence (SQ3) of Dengying Formation, which prograded from southeast to northwest with a S-shaped, mound or short axis in cross section. At the top of these progradation reflections, there are an obvious slope break point and a series of onlap points of SQ4 transgressive system tract. The thickness of SQ3 from the slope break point to the northwest is sharply thinned and wedge-shaped. The results show that there is a large early platform margin belt about 270 km long in the carbonate platform in the east of Mianyang-Changning extensional trough, which starts from the Gaoshiti, extends northeastward to the middle of Longgang area through Moxi, Longnvsi, Nanchong and Peng'an areas. The discovery of this large platform marginal zone will provide a new area for the oil and gas exploration of the Dengying Formation in the study area, and it will no longer be limited to the vicinity of Mianyang-Changning intracratonic sag.
-
Key words:
- Gaoshiti-Moxi /
- Dengying Formatiom /
- early platform margin /
- sequence stratigraphy /
- progradation /
- petroleum geology
-
图 3 磨溪(a)、龙女寺(b)、蓬安(c)及龙岗(d)地区早期台缘地震反射特征
BB’、CC’、DD’和EE’测线的位置见图 1a
Fig. 3. Seismic reflection characteristics of the early platform margin belt in Moxi (a), Longnvsi (b), Peng'an (c)and Longgang (d) areas
-
[1] Du J.H., Wang Z.C., Zou C.N., et al. 2016. Discovery of Intra-Cratonic Rift in the Upper Yangtze and Its Coutrol Effect on the Formation of Anyue Giant Gas Field. Acta Petrolei Sinica, 37(1): 1-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201601001 [2] Du J.H., Zou C.N., Xu C.C., et al. 2014. Theoretical and Technical Innovations in Strategic Discovery of a Giant Gas Field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-Uplift, Sichuan Basin. Petroleum Exploration and Development, 41(3): 268-277 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403003 [3] Gao Z.Q., Fan T.L., Yang W.H., et al. 2012. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin. Journal of Jilin University (Earth Science Edition), 42(3): 657-665 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201203008 [4] Handford, C. R., Baria, L. R.. 2007. Geometry and Seismic Geomorphology of Carbonate Shoreface Clinoforms, Jurassic Smackover Formation, North Louisiana. Geological Society, London, Special Publications, 277(1): 171-185. https://doi.org/10.1144/gsl.sp.2007.277.01.10 http://cn.bing.com/academic/profile?id=10ebad1d67227d64d71b8bb953b7da03&encoded=0&v=paper_preview&mkt=zh-cn [5] Kiessling W., Flügel E., Golonka J.. 2003. Patterns of Phanerozoic Carbonate Platform Sedimentation. Lethaia, 36(3): 195-225. https://doi.org/10.1080/00241160310004648 doi: 10.1080-00241160310004648/ [6] Li Z.Q., Liu J., Li Y., et al. 2015. Formation and Evolution of Weiyuan-Anyue Extension-Erosion Groove in Sinian System, Sichuan Basin. Petroleum Exploration and Development, 42(1): 26-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201501003 [7] Li Z.W., Ran B., Xiao B., et al. 2019. Sinian to Early Cambrian Uplift-Depression Framework along the Northern Margin of the Sichuan Basin, Central China and Its Implications for Hydrocarbon Exploration. Earth Science Frontiers, 26(1): 59-85 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201901007 [8] Li Z.Y., Jiang H., Wang Z.C., et al. 2014. Control of Tectonic Movement on Hydrocarbon Accumulation in the Sinian Strata, Sichuan Basin. Natural Gas Industry, 34(3): 23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403004 [9] Lin G., Wang X.Z., Liu Z.Y., et al. 2014. Well Logging Interpretation of the Carbonate Karst Strata in the Dengying Formation in Central Sichuan. Sedimentary Geology and Tethyan Geology, 34(4): 59-67 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201404008 [10] Liu J.J., Li W., Zhang B.M., et al. 2015. Sedimentary Palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography (Chinese Edition), 17(6): 735-753 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e078d757b87cd7d4dfb0b2fbe3fb3498&encoded=0&v=paper_preview&mkt=zh-cn [11] Liu S.G., Sun W., Luo Z.L., et al. 2013. Xingkai Taphrogenesis and Petroleum Exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(5): 511-520 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201305003 [12] Liu S.G., Wang Y.G., Sun W., et al. 2016. Control of Intracratonic Sags on the Hydrocarbon Accumulations in the Marine Strata across the Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(1): 1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201601001 [13] Luo B., Luo W.J., Wang W.Z., et al. 2015a. Formation Mechanism of the Sinian Natural Gas Reservoir in the Leshan-Longnvsi Paleo-Uplift, Sichuan Basin. Natural Gas Geoscience, 26(3): 444-455 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201503006 [14] Luo B., Zhou G., Luo W.J., et al. 2015b. Discovery from Exploration of Lower Paleozoic-Sinian System in Central Sichuan Palaeo-Uplift and Its Natural Gas Abundance Law. China Petroleum Exploration, 20(2): 18-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201502003 [15] Luo B., Yang Y.M., Luo W.J., et al. 2015c. Controlling Factors and Distribution of Reservoir Development in Dengying Formation of Paleo-Uplift in Central Sichuan Basin. Acta Petrolei Sinica, 36(4): 416-426 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201504003 [16] Ma D.B., Wang Z.C., Duan S.F., et al. 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805005 [17] Mei M.X., Nie R.Z., Zhang H., et al. 2006. Sequence-Stratigraphic Division for the Sinian System of the Upper-Yangtze Region. Geoscience, 20(1): 49-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200601006 [18] Moore, C. H., Graham, E. A., Land, L. S.. 1976. Sediment Transport and Dispersal across the Deep Fore-Reef and Island Slope (-55 m to -305 m), Discovery Bay, Jamaica. SEPM Journal of Sedimentary Research, 46(1): 174-187. https://doi.org/10.1306/212f6eec-2b24-11d7-8648000102c1865d [19] Ni X.F., Shen A.J., Chen Y.Q., et al. 2015. Cambrian Carbonate Platform Types, Platform Margin Segmentation Characteristics and Exploration Enlightenment in Tarim Basin. Natural Gas Geoscience, 26(7): 1245-1255 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201507004 [20] Pomar L.. 2001. Types of Carbonate Platforms: A Genetic Approach. Basin Research, 13(3): 313-334. https://doi.org/10.1046/j.0950-091x.2001.00152.x doi: 10.1046-j.0950-091x.2001.00152.x/ [21] Teng, J.B., Shen, J.W., Jin, C.H. 2007. Relationship between Microbial Carbonates and Hydrocarbon Reserviors. Natural Gas Geoscience, 18(4): 522-526 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx200704007 [22] Wang Y.G., Wen Y.C., Hong H.T., et al. 2009. Carbonate Slope Facies Sedimentary Characteristics of the Late Permian to Early Triassic in Northern Sichuan Basin. Journal of Palaeogeography, 11(2): 143-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200902003 [23] Wang Y.G., Wen Y.C., Zhang F., et al. 1998. Distribution Law of the Organic Reefs in Changxing Formation of Upper Permian in East Sichuan. Natural Gas Industry, 18(6): 10-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG806.002.htm [24] Wang, Y. Y., Xu, G. Q., Pang X., et al. 2019. A Method for Restoring Sedimentary Sequence Original Structural Profiles: A Case Study of Miocene Strata from the Northern Continental Slope of the South China Sea. Marine and Petroleum Geology, 103: 294-305. https://doi.org/10.1016/j.marpetgeo.2019.01.036 http://cn.bing.com/academic/profile?id=2a15d200f20e7926451d47101ef4f23d&encoded=0&v=paper_preview&mkt=zh-cn [25] Wang Z.C., Jiang H., Wang T.S., et al. 2014. Paleo-Geomorphology Formed during Tongwan Tectonization in Sichuan Basin and Its Significance for Hydrocarbon Accumulation. Petroleum Exploration and Development, 41(3): 305-312 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403006 [26] Wei G.Q., Yang W., Du J.H., et al. 2015a. Geological Characteristics of the Sinian-Early Cambrian Intracratonic Rift, Sichuan Basin. Natural Gas Industry, 35(1): 24-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201501003 [27] Wei G.Q., Yang W., Du J.H., et al. 2015b. Tectonic Features of Gaoshiti-Moxi Paleo-Uplift and Its Controls on the Formation of a Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(3): 257-265 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201503001 [28] Wen L., Wang W.Z., Zhang J., et al. 2017. Classification of Sinian Dengying Formation and Sedimentary Evolution Mechanism of Gaoshiti-Moxi Area in Central Sichuan Basin. Acta Petrologica Sinica, 33(4): 1285-1294 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201704020 [29] Wen L., Yang Y.M., You C.Q., et al. 2016. Characteristics of Dengying Fm Sedimentary Sequence in the Central-Western Sichuan Basin and Their Controlling Effect on Gas Accumulation. Natural Gas Industry, 36(7): 8-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201607002 [30] Williams, H. D., Burgess, P. M., Wright, V. P., et al. 2011. Investigating Carbonate Platform Types: Multiple Controls and a Continuum of Geometries. Journal of Sedimentary Research, 81(1): 18-37. https://doi.org/10.2110/jsr.2011.6 http://cn.bing.com/academic/profile?id=e5509fbddb36872e80f1e3b33252a3f3&encoded=0&v=paper_preview&mkt=zh-cn [31] Yang Y., Huang X.P., Zhang J., et al. 2014. Features and Geologic Significances of the Top Sinian Karst Landform before the Cambrian Deposition in the Sichuan Basin. Natural Gas Industry, 34(3): 38-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403006 [32] Yang Y.M., Wen L., Luo B., et al. 2016. Hydrocarbon Accumulation of Sinian Natural Gas Reservoirs, Leshan-Longnüsi Paleohigh, Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 179-188 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602003 [33] Yang Z.R., Wang X.J., Feng X.K., et al. 2014. Geological Research and Significance of a Rift Valley in the Presinian Period in Central Sichuan Basin. Natural Gas Industry, 34(3): 80-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403013 [34] Yao G.S., Hao Y., Zhou J.G., et al. 2014. Formation and Evolution of Reservoir Spaces in the Sinian Dengying Fm of the Sichuan Basin. Natural Gas Industry, 34(3): 31-37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403005 [35] Zhang, H.Y., Zhou, X., Wang, A.Q.. 2018. Log Evaluation Method for Fractured-Vuggy Reservoir in the Dengying Formation of the Anyue Block, Sichuan Basin. Well Logging Technology, 42(1): 91-97 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjs201801016 [36] Zheng J.F., Yuan W.F., Huang L.L., et al. 2019. Sedimentary Facies Model and Its Exploration Significance of the Lower Cambrian Xiaoerblak Formation in Xiaoerblak Area, Tarim Basin. Journal of Palaeogeography (Chinese Edition), 21(4): 589-602 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201904004 [37] Zheng X.P., Pan, W. Q., Chang S.Y., et al. 2011. Relationship between Ordovician Platform Margin Types and Reef-shoal Reservoirs in Tarim Basin. Lithologic Reservoirs, 23(5): 1-4 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201105001 [38] Zhong Y., Li Y.L., Zhang X.B., et al. 2013. Features of Extensional Structures in Pre-Sinian to Cambrian Strata, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(5): 498-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201305002 [39] Zhou Y., Chen H.D., Wang C.S., et al. 2004. Study on Sequence Stratigraphy in Upper Sinian Series in Mid-Yangtze Area. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 53-58 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200401009 [40] Zhou Z., Wang X.Z., Xie L., et al. 2014. Reservoir Features and Physical Influences of the Sinian Dengying Formation (Sinian) in Central Sichuan, China. Natural Gas Geoscience, 25(5): 701-708 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201405008 [41] Zou C.N., Du J.H., Xu C.C., et al. 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403004 [42] 杜金虎, 汪泽成, 邹才能, 等. 2016.上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用.石油学报, 37(1): 1-16. http://d.old.wanfangdata.com.cn/Periodical/syxb201601001 [43] 杜金虎, 邹才能, 徐春春, 等. 2014.川中古隆起龙王庙组特大型气田战略发现与理论技术创新.石油勘探与开发, 41(3): 268-277. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403003 [44] 高志前, 樊太亮, 杨伟红, 等. 2012.塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化.吉林大学学报(地球科学版), 42(3): 657-665. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201203008 [45] 李忠权, 刘记, 李应, 等. 2015.四川盆地震旦系威远-安岳拉张侵蚀槽特征及形成演化.石油勘探与开发, 42(1): 26-33. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201501004.htm [46] 李智武, 冉波, 肖斌, 等. 2019.四川盆地北缘震旦纪-早寒武世隆-坳格局及其油气勘探意义.地学前缘, 26(1): 59-85. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201901008.htm [47] 李宗银, 姜华, 汪泽成, 等. 2014.构造运动对四川盆地震旦系油气成藏的控制作用.天然气工业, 34(3): 23-30. http://d.old.wanfangdata.com.cn/Periodical/trqgy201403004 [48] 刘静江, 李伟, 张宝民, 等. 2015.上扬子地区震旦纪沉积古地理.古地理学报, 17(6): 735-753. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201506002 [49] 刘树根, 孙玮, 罗志立, 等. 2013.兴凯地裂运动与四川盆地下组合油气勘探.成都理工大学学报(自然科学版), 40(5): 511-520. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201305003 [50] 刘树根, 王一刚, 孙玮, 等. 2016.拉张槽对四川盆地海相油气分布的控制作用.成都理工大学学报(自然科学版), 43(1): 1-23. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201601001 [51] 林刚, 王兴志, 刘志尧, 等. 2014.川中灯影组碳酸盐岩岩溶地层测井响应特征.沉积与特提斯地质, 34(4): 59-67. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201404008 [52] 罗冰, 罗文军, 王文之, 等. 2015a.四川盆地乐山-龙女寺古隆起震旦系气藏形成机制.天然气地球科学, 26(3): 444-455. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201503007.htm [53] 罗冰, 周刚, 罗文军, 等. 2015b.川中古隆起下古生界-震旦系勘探发现与天然气富集规律.中国石油勘探, 20(2): 18-29. http://d.old.wanfangdata.com.cn/Conference/9291247 [54] 罗冰, 杨跃明, 罗文军, 等. 2015c.川中古隆起灯影组储层发育控制因素及展布.石油学报, 36(4): 416-426. http://d.old.wanfangdata.com.cn/Periodical/syxb201504003 [55] 马德波, 汪泽成, 段书府, 等. 2018.四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义.石油勘探与开发, 45(5): 795-805. [56] 梅冥相, 聂瑞贞, 张海, 等. 2006.上扬子区震旦系层序地层划分.现代地质, 20(1): 49-60. http://d.old.wanfangdata.com.cn/Periodical/xddz200601006 [57] 倪新锋, 沈安江, 陈永权, 等. 2015.塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示.天然气地球科学, 26(7): 1245-1255. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201507004 [58] 滕建彬, 沈建伟, 金春花. 2007.微生物碳酸盐地层与油气成藏.天然气地球科学, 18(4): 522-526. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx200704007 [59] 王一刚, 文应初, 洪海涛, 等. 2009.四川盆地北部晚二叠世-早三叠世碳酸盐岩斜坡相带沉积特征.古地理学报, 11(2): 143-156. http://d.old.wanfangdata.com.cn/Periodical/gdlxb200902003 [60] 王一刚, 文应初, 张帆, 等. 1998.川东地区上二叠统长兴组生物礁分布规律.天然气工业, 18(6): 10-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201204004 [61] 汪泽成, 姜华, 王铜山, 等. 2014.四川盆地桐湾期古地貌特征及成藏意义.石油勘探与开发, 41(3): 305-312. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403006 [62] 魏国齐, 杨威, 杜金虎, 等. 2015a.四川盆地震旦纪-早寒武世克拉通内裂陷地质特征.天然气工业, 35(1): 24-35. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201503002.htm [63] 魏国齐, 杨威, 杜金虎, 等. 2015b.四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用.石油勘探与开发, 42(3): 257-265. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201503002.htm [64] 文龙, 王文之, 张健, 等. 2017.川中高石梯-磨溪地区震旦系灯影组碳酸盐岩岩石类型及分布规律.岩石学报, 33(4): 1285-1294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704020 [65] 文龙, 杨跃明, 游传强, 等. 2016.川中-川西地区灯影组沉积层序特征及其对天然气成藏的控制作用.天然气工业, 36(7): 8-17. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201607003.htm [66] 姚根顺, 郝毅, 周进高, 等. 2014.四川盆地震旦系灯影组储层储集空间的形成与演化.天然气工业, 34(3): 31-37. http://d.old.wanfangdata.com.cn/Periodical/trqgy201403005 [67] 杨雨, 黄先平, 张健, 等. 2014.四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义.天然气工业, 34(3): 38-43. http://d.old.wanfangdata.com.cn/Periodical/trqgy201403006 [68] 杨跃明, 文龙, 罗冰, 等. 2016.四川盆地乐山-龙女寺古隆起震旦系天然气成藏特征.石油勘探与开发, 43(2): 179-188. [69] 杨志如, 王学军, 冯许魁, 等. 2014.川中地区前震旦系裂谷研究及其地质意义.天然气工业, 34(3): 80-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201403013 [70] 张红英, 周肖, 王安庆. 2018.四川盆地安岳区块灯影组缝洞型储层测井评价方法.测井技术, 42(1): 91-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjs201801016 [71] 郑剑锋, 袁文芳, 黄理力, 等. 2019.塔里木盆地肖尔布拉克露头区下寒武统肖尔布拉克组沉积相模式及其勘探意义.古地理学报, 21(4): 589-602. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201904004 [72] 郑兴平, 潘文庆, 常少英, 等. 2011.塔里木盆地奥陶系台缘类型及其储层发育程度的差异性.岩性油气藏, 23(5): 1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201105001 [73] 钟勇, 李亚林, 张晓斌, 等. 2013.四川盆地下组合张性构造特征.成都理工大学学报(自然科学版), 40(5): 498-510. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201305002 [74] 周雁, 陈洪德, 王成善, 等. 2004.中扬子区上震旦统层序地层研究.成都理工大学学报(自然科学版), 31(1): 53-58. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb200401009 [75] 周正, 王兴志, 谢林, 等. 2014.川中地区震旦系灯影组储层特征及物性影响因素.天然气地球科学, 25(5): 701-708. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201405008 [76] 邹才能, 杜金虎, 徐春春, 等. 2014.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现.石油勘探与开发, 41(3): 278-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403004