Genetic Mechanism of Inversion Anticline Structure at the End of Miocene in Xihu Sag, East China Sea: A New Understanding of Basement Structure Difference
-
摘要: 东海西湖凹陷广泛发育中新世末形成的大型反转背斜,关于背斜成因前人多认为与外力作用有关,忽视了凹陷内部结构的影响.以重磁震资料综合解释分析为基础,系统梳理中新世末反转背斜分布及其与凹陷基底结构的关系,并结合构造物理模拟实验方法探讨基底结构差异对反转背斜发育的影响.结果表明,中新世末反转背斜与高磁性火成岩基底分布呈现出明显的相关性,且均具有南北分段差异.凹陷北段火成岩基底分布在中央洼陷-反转带内,反转背斜主要在火成岩基底东缘区发育;凹陷南段火成岩基底分布在东、西两侧边缘,反转背斜主要在边缘火成岩基底内侧发育.构造物理模拟实验结果显示,在挤压背景下,压应力通过相对刚性硅胶边缘释放,控制挤压背斜褶皱的形成;表明不同岩性基底所产生的抗压强度差异能显著影响反转背斜分布.最终提出在挤压背景下,高磁性、高抗压强度的火成岩基底所引起的局部构造应力场改变是决定中新世末反转背斜强弱分布的关键因素.Abstract: Large inversion anticlines formed at the end of the Miocene are widely developed in Xihu Sag in the East China Sea,which have generally attributed to external forces,ignoring the influence of the internal structure of the sag. Based on the comprehensive interpretation and analysis of gravity and magnetic seismic data,this paper systematically sorts out the relationship between the distribution of inversion anticlines at the end of Miocene and the basement structure,and discusses the influence of basement structure difference on the development of inversion anticlines in Xihu Sag by combining with structural physical simulation experimental methods. The research results show that there is a clear correlation between the inversion anticline at the end of Miocene and the distribution of high magnetic igneous rock basement,and it shows South-North segments. The igneous rock basement in the northern part of the sag is distributed in the central sag-inversion zone,and the inversion anticline is mainly developed on the eastern edge of the igneous rock basement. The igneous rock basement in the southern part of the sag is distributed on the eastern and western edges,and the inversion anticline is mainly developed on the inner side of the distribution area of the igneous rock basement on the edge. Structural physical simulation results show that under the compression background,the compressive stress is released through the edge of rigid silica gel to control the formation of compression anticline folds. The results reflect the difference in compressive strength caused by different lithological basement and can significantly affect the strength distribution of inversion anticlines. Finally,this paper proposes that the change of regional tectonic stress caused by igneous rock basement with high magnetic and high compressive strength is the key to control the strength distribution of the inversion anticline at the end of Miocene.
-
Key words:
- inversion anticline /
- Longjing Movement /
- basement structure /
- high magnetic anomaly /
- the end of Miocene /
- Xihu Sag /
- basin analysis
-
图 3 西湖凹陷中新世末反转背斜分布结构剖面
剖面位置见图 1
Fig. 3. Distribution structure profiles of invertion anticline at the end of Miocene in Xihu Sag
图 5 西湖凹陷及邻区火成岩基底分布范围
a.由沉积母源分析推断的隆起区花岗岩基底,据蔡华等(2019)修改;b. X1井揭示的花岗岩基底
Fig. 5. Distribution range of igneous basement in Xihu Sag and its adjacent area
图 6 重磁震联合反演剖面
a.重力、磁力剖面拟合数据;b.地震剖面对应的密度、磁化率数据剖面;c.常规地震剖面及解释成果.剖面位置见图 1
Fig. 6. Joint inversion profile of gravity, magnetism and seismology
-
[1] Cai, H., Qin, L.Z., Liu, Y.H., 2019. Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag. Earth Science, 44(3): 880-897 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903016 [2] Chen, S.G., Zhang, Y.M., Cui, Y.Q., et al., 2017. The Inversion Structures and Their Genetic Mechanisms of Bayindulan Sag, Erlian Basin. Earth Science, 42(4):559-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201704006 [3] Chen, Z.Y., Ge, H.P., 2003. Inversion Structures and Hydrocarbon Accumulation in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas (Geology), 17(1): 20-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-dz200301004 [4] Glennie, K.W., Boegner, P.L.E., 1981. Sole Pit Inversion Tectonics. In: Illing, L.V., Hobson, G.D., eds., Petroleum Geology of the Continental Shelf of Northwest Europe. Institute of Petroleum, London. [5] Guo, Z., Liu, C.Y., Tian, J.F., 2015. Structural Characteristics and Main Controlling Factors of Inversion Structures in Xihu Depression in Donghai Basin. Earth Science Frontiers, 22(3): 59-67 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503005 [6] Hu, M.Y., Li, S.Z., Dai, L.M., et al., 2017. Numerical Dynamic Modeling of Tectonic Inversion in the Northeastern Xihu Sag. Marine Geology & Quaternary Geology, 37(4): 151-166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201704010 [7] Jiang, Y.M., He, X.J., Tang, X.J., et al., 2019. Material Composition of Diaoyu Islands Folded Zone and Reanalysis of Eastern Boundary of Prototype Basin of Xihu Sag in East China Sea. Earth Science, 44(3): 773-783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201903007 [8] Li, P.L., Zhu, P., 1992. Basement Tectonic Evolution and Basin Formation Mechanism of the East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 12(3): 37-43 (in Chinese with English abstract). [9] Li, S.Z., Yu, S., Zhao, S.J., et al., 2013. Tectonic Transition and Plate Reconstructions of the East Asian Continental Magin. Marine Geology & Quaternary Geology, 33(3): 65-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008 [10] Li, X.Q., Liu, J.S., Lu, Y.C., et al., 2018. Prototype Basin Chracterization of Huagang Formation of Xihu Depression, East China Sea Shelf Basin. Earth Science, 43(2): 502-513 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802012 [11] Li, Z.Y., 1994. Introduction to Engineering Geology. China University of Geosciences Press, Wuhan (in Chinese). [12] Lin, X.X., 2012. Using the Gravity and Magnetic Data to Study the Pre-Cenozoic Basin Structure in the Bohai Sea (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [13] Liu, J.S., Liao, Z.T., Jia, J.Y., et al., 2003. The Geological Structure and Tectonic Evolution of the East China Sea Shelf Basin. Shanghai Geology, 24(3): 1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201901014 [14] Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810002 [15] Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025 [16] Song, Y.X., Zhou, M.F., 1995. Relationship of Inversion Structure and Oil and Gas Prospect in Xihu Depression in East China Sea. Marine Geology & Quaternary Geology, 15(4): 13-22 (in Chinese with English abstract). [17] Taira, A., Okada, H., Whitaker, J. H., et al., 1982. The Shimanto Belt of Japan: Cretaceous-Lower Miocene Active-Margin Sedimentation. Geological Society, London, Special Publications, 10(1): 5-26. https://doi.org/10.1144/gsl.sp.1982.010.01.01 [18] Tian, Y., Ye, J.R., Lei, C., et al., 2019. Development Model for Source Rock of Marine-Continental Transitional Face in Faulted Basins: A Case Study of Pinghu Formation in Xihu Sag. Earth Science, 44(3): 898-908 (in Chinese with English abstract). [19] Wang, G.C., 1995. Positive Inversion Structures and Their Significance to Petroleum Geology in China Offshore Basins. China Offshore Oil and Gas, 7(1): 33-40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500647681 [20] Williams, G. D., Powell, C. M., Cooper, M. A., 1989. Geometry and Kinematics of Inversion Tectonics. Geological Society, London, Special Publications, 44(1): 3-15. https://doi.org/10.1144/gsl.sp.1989.044.01.02 [21] Yan, S.Y., Wu, J.F., Zhao, Z.G., et al., 2016. Physical Modeling of Tectonic Inversion in the Xihu Sag, East China Sea Shelf Basin, China. Science Technology and Engineering, 16(21): 166-171, 176 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201621026 [22] Yang, W.D., Cui, Z.K., Zhang, Y.B., 2010. Geology and Minerals in East China Sea. China Ocean Press, Beijing (in Chinese). [23] Ye, J.R., Chen, H.H., Chen, J.Y., et al., 2006. Fluid History Analysis in the Xihu Depression, East China Sea. Natural Gas Industry, 26(9): 40-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200609012 [24] Zhang, G.H., Zhang, J.P., 2015. A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501022 [25] Zhang, J.P., Zhang, T., Liu, J.Y., et al., 2008. Distribution and Style of Inversed Structures in Xihu Depression. Offshore Oil, 28(4): 14-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200804003 [26] Zhang, M.Q., Zhong, Z.H., Xia, B., et al., 2005. Late Miocene Tectonic Inversion and Hydrocarbon Migration and Accumulation in Central and Southern Xihu Sag, East China Sea. China Offshore Oil and Gas, 17(2): 73-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc200502001 [27] Zhong, K., Zhu, W.L., Gao, S.L., et al., 2018. Key Geological Questions of the Formation and Evolution and Hydrocarbon Accumulation of the East China Sea Shelf Basin. Earth Science, 43(10): 3485-3497 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810012 [28] Zhou, X.H., Gao, S.L., Gao, W.Z., et al., 2019. Formation and Distribution of Marine-Continental Transitional Lithologic Reservoirs in Pingbei Slope Belt, Xihu Sag, East China Sea Shelf Basin. China Petroleum Exploration, 24(2): 153-164 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsykt201902003 [29] 蔡华, 秦兰芝, 刘英辉, 2019.西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式.地球科学, 44(3): 880-897. doi: 10.3799/dqkx.2019.025 [30] 陈树光, 张以明, 崔永谦, 等, 2017.二连盆地巴音都兰凹陷反转构造及成因机制.地球科学, 42(4): 559-569. doi: 10.3799/dqkx.2017.044 [31] 陈志勇, 葛和平, 2003.西湖凹陷反转构造与油气聚集.中国海上油气(地质), 17(1): 20-24. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301004 [32] 郭真, 刘池洋, 田建锋, 2015.东海盆地西湖凹陷反转构造特征及其形成的动力环境.地学前缘, 22(3): 59-67. http://d.old.wanfangdata.com.cn/Periodical/dxqy201503005 [33] 胡梦颖, 李三忠, 戴黎明, 等, 2017.西湖凹陷中北部反转构造动力学机制的数值模拟.海洋地质与第四纪地质, 37(4): 151-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201704010 [34] 蒋一鸣, 何新建, 唐贤君, 等, 2019.钓鱼岛隆褶带物质构成及东海西湖凹陷原型盆地东边界再认识.地球科学, 44(3): 773-783. doi: 10.3799/dqkx.2018.293 [35] 李培廉, 朱平, 1992.试论东海陆架盆地的基底构造演化和盆地形成机制.海洋地质与第四纪地质, 12(3): 37-43. [36] 李三忠, 余珊, 赵淑娟, 等, 2013.东亚大陆边缘的板块重建与构造转换.海洋地质与第四纪地质, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008 [37] 李祥权, 刘金水, 陆永潮, 等, 2018.东海陆架盆地西湖凹陷花港组原型盆地性质厘定.地球科学, 43(2): 502-513. doi: 10.3799/dqkx.2017.596 [38] 李智毅, 1994.工程地质学概论.武汉: 中国地质大学出版社. [39] 林晓星, 2012.重磁资料在渤海前新生代油气盆地结构研究中的应用(博士学位论文).北京: 中国地质大学. [40] 刘金水, 廖宗廷, 贾健谊, 等, 2003.东海陆架盆地地质结构及构造演化.上海地质, 24(3): 1-6. doi: 10.3969/j.issn.2095-1329.2003.03.001 [41] 任建业, 2018.中国近海海域新生代成盆动力机制分析.地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330 [42] 索艳慧, 李三忠, 戴黎明, 等, 2012.东亚及其大陆边缘新生代构造迁移与盆地演化.岩石学报, 28(8): 2602-2618. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208025 [43] 宋岳雄, 周铭锋, 1995.东海西湖凹陷反转构造与油气.海洋地质与第四纪地质, 15(4): 13-22. http://d.old.wanfangdata.com.cn/Periodical/dqxb200004003 [44] 田杨, 叶加仁, 雷闯, 等, 2019.断陷盆地海陆过渡相烃源岩发育模式:以西湖凹陷平湖组为例.地球科学, 44(3): 898-908. doi: 10.3799/dqkx.2018.940 [45] 王国纯, 1995.中国近海盆地的正反转构造及其石油地质意义.中国海上油气, 7(1): 33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500647681 [46] 闫淑玉, 吴景富, 赵志刚, 等, 2016.西湖凹陷反转构造物理模拟研究.科学技术与工程, 16(21): 166-171, 176. doi: 10.3969/j.issn.1671-1815.2016.21.026 [47] 杨文达, 崔征科, 张异彪, 2010.东海地质与矿产.北京:海洋出版社. [48] 叶加仁, 陈海红, 陈景阳, 等, 2006.东海西湖凹陷成藏流体历史分析.天然气工业, 26(9): 40-43. doi: 10.3321/j.issn:1000-0976.2006.09.012 [49] 张国华, 张建培, 2015.东海陆架盆地构造反转特征及成因机制探讨.地学前缘, 22(1): 260-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201501022 [50] 张建培, 张涛, 刘景彦, 等, 2008.西湖凹陷反转构造分布与样式.海洋石油, 28(4): 14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003 [51] 张敏强, 钟志洪, 夏斌, 等, 2005.东海西湖凹陷中南部晚中新世构造反转与油气运聚.中国海上油气, 17(2): 73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001 [52] 钟锴, 朱伟林, 高顺莉, 等, 2018.东海陆架盆地形成演化及油气成藏关键地质问题.地球科学, 43(10): 3485-3497. doi: 10.3799/dqkx.2018.282 [53] 周心怀, 高顺莉, 高伟中, 等, 2019.东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测.中国石油勘探, 24(2): 153-164. http://d.old.wanfangdata.com.cn/Periodical/zgsykt201902003