Discriminant Model of River-Lake Facies in the Upper Reach of Hanjiang Section of Jianghan Basin Based on Fisher Principle
-
摘要: 为了探究Fisher模型在盆地第四纪河湖相演变上的实用性,以江汉盆地汉江上游段某单一钻孔的粒度资料和沉积相划分作为模型的训练样本,利用Fisher基本原理计算得到河湖相判别模型,最终利用模型实现对研究区沉积环境演化分析.依据单因素方差以及显著性分析结果可知,Fisher模型对河流相、河湖过渡相、湖相具有很好的区分效果.留一交叉验证结果达到80.6%,超过了判别模型应用要求的75%标准.同时,将多孔沉积相判别结果与定性划分结果进行了对比,其综合吻合率达到85.06%,进一步验证了Fisher模型在河湖相判别上的实用性.依据判别分析结果可知,自早更新世开始,研究区存在4期较大的沉积旋回,可划分为8个沉积阶段,不同沉积阶段水动力来源复杂且变化迅速,区域沉积环境演化与新构造运动相吻合.本研究说明依据粒度资料建立Fisher模型用于沉积相以及沉积环境的分析是可行的,同时丰富了江汉盆地汉江段沉积环境资料,为盆地水资源调查及保护提供重要参考.Abstract: In order to explore the practicality of the Fisher model in the Quaternary river-lake evolution of the basin, in this paper it takes the particle size data and sedimentary facies of a single borehole in the upper reach of the Hanjiang River in the Jianghan basin as the training samples of the model, which is calculated by Fisher's basic principle. Then the river-lake phase discrimination model is used to analyze the sedimentary environment evolution of the study area by using the model discrimination results. According to the one-way variance and the significance analysis results, the Fisher model has a good distinguishing effect on the river phase, the river-lake transition phase, and the lake phase. The leave-one-out-cross-validation result reaches 80.6%, exceeding the 75% standard required for the discriminant model application. At the same time, the results of the quantitative evaluation of porous sedimentary facies are compared with the qualitative classification results, and the comprehensive coincidence rate reaches 85.06%, which further verifies the practicality of the Fisher model in the identification of rivers and lakes. According to the results of discriminant analysis, since the Early Pleistocene, there are four large sedimentary cycles in the study area, which can be divided into eight sedimentary stages. The hydrodynamic sources are complex and changing rapidly in different sedimentary stages, and the regional sedimentary environment evolution and Neotectonic movement are consistent. This study demonstrates that it is feasible to establish Fisher model based on particle size data for analyzing sedimentary facies and sedimentary environment, and enrich the sedimentary environment data of Hanjiang Section of Jianghan basin. It provides an important reference for basin water resources investigation and protection.
-
表 1 Fisher判别分析训练样本
Table 1. Training samples for Fisher discriminant analysis
样品编号 平均粒径 标准差 偏态 峰态 沉积相划分 01 51.131 101 62 3.554 969 -0.201 610 1.016 3 2 02 70.812 676 07 2.615 387 -0.233 360 1.191 4 2 03 62.780 400 69 3.925 418 -0.313 550 0.942 2 2 04 38.656 427 08 2.594 851 -0.326 720 1.314 7 1 05 112.966 903 1 3.234 160 -0.466 250 1.061 7 3 06 120.018 659 5 2.955 526 -0.436 710 1.109 6 3 07 17.032 798 07 3.786 894 -0.083 670 0.960 5 1 08 8.363 780 912 3.038 145 -0.023 800 1.012 1 1 09 8.844 834 076 2.807 966 -0.092 110 1.061 6 1 10 8.557 623 511 2.957 768 -0.061 010 0.988 4 1 11 10.098 961 50 3.099 973 -0.090 380 0.958 2 1 12 28.301 271 52 3.345 976 -0.232 760 1.062 3 1 13 56.514 773 28 4.097 760 -0.107 850 0.865 6 2 14 37.683 375 41 4.033 479 -0.171 590 0.970 0 2 15 59.472 706 67 6.581 987 -0.066 430 0.907 1 2 16 73.242 320 36 5.336 122 -0.272 020 0.755 0 2 17 80.871 407 31 4.891 506 -0.622 300 0.762 5 3 18 71.413 548 90 5.157 396 -0.458 660 0.743 0 3 19 39.514 562 71 5.187 817 -0.026 920 0.953 9 2 20 42.698 104 32 7.655 457 -0.033 190 0.918 6 2 21 11.290 370 79 3.124 726 -0.010 670 1.025 6 1 22 45.811 045 80 4.170 028 -0.330 520 0.770 7 1 23 12.601 434 68 6.230 988 0.367 407 1.299 4 2 24 122.301 223 2 3.715 868 -0.502 020 1.010 1 3 25 55.542 567 62 7.035 185 0.006 348 0.672 0 2 26 28.075 645 62 7.222 934 0.243 520 1.064 6 2 27 27.349 379 91 3.875 744 -0.140 160 0.950 7 2 28 62.439 108 34 6.212 808 -0.208 610 0.691 3 3 29 109.532 956 8 5.783 568 -0.467 120 0.708 5 3 30 38.261 742 89 3.544 544 -0.394 670 0.903 3 3 31 6.145 801 807 3.576 619 0.053 488 1.032 3 1 32 3.945 493 723 2.883 212 0.076 891 1.227 6 1 33 36.102 239 38 4.280 104 -0.008 410 0.776 0 2 34 67.319 464 44 3.844 993 -0.355 020 0.809 1 2 35 96.186 135 17 6.209 262 -0.507 750 0.678 2 3 36 103.590 710 3 6.170 378 -0.618 870 0.742 6 3 37 117.055 969 8 5.251 232 -0.619 390 0.814 5 3 表 2 不同沉积相质心函数
Table 2. The function of the centroid of each sedimentary facies
沉积相划分 判别函数1 判别函数2 湖相 2.424 -0.292 河湖过渡相 -0.772 1.356 河流相 -1.371 -1.558 表 3 部分钻孔沉积物的沉积相判别结果
Table 3. Discriminant results of sedimentary facies in some borehole sediments
样品编号 最高概率组 次高概率组 沉积相划分结果 马氏距离 分组概率 预测分组 马氏距离 分组概率 预测分组 38 3.463 0.658 1 4.782 0.340 2 1 39 1.055 1.000 1 20.888 0.000 2 1 40 0.727 1.000 1 18.896 0.000 2 1 41 1.372 0.848 2 5.906 0.088 3 2 42 0.441 1.000 1 18.135 0.000 2 1 43 0.225 0.996 1 11.298 0.004 2 1 44 0.552 0.992 1 11.309 0.005 3 1 45 1.344 0.999 1 15.260 0.001 3 1 46 2.092 0.544 2 2.449 0.455 3 2 47 3.368 0.825 1 6.472 0.175 2 1 表 4 组均值的均等性检验
Table 4. Equivalence test of mean within groups
Wilks的Lambda F df1 df2 Sig. 平均粒径 0.327 34.989 2 34 0.000 标准差 0.657 8.891 2 34 0.001 偏态 0.429 22.646 2 34 0.000 峰态 0.790 4.520 2 34 0.018 表 5 箱式检验结果
Table 5. The results of the test box
箱的M 72.839 F 近似 2.989 df1 20 df2 3 507.550 Sig. 0.000 表 6 判别函数方差附加特征值
Table 6. Additional eigenvalues of the variance of the discriminant function
判别函数 特征值 方差贡献率(%) 累计方差贡献率(%) 正则相关性 1 2.772 63.1 63.1 0.857 2 1.624 36.9 100.0 0.787 表 7 留一交叉验证结果
Table 7. The results of LOOCV
湖相 河湖过渡相 河流相 总计 湖相 90.9% 9.1% 0% 100% 河湖交替相 13.3% 73.3% 13.3% 100% 河流相 10.0% 10.0% 80.0% 100% 表 8 判别结果与定性分析结果对比
Table 8. Comparison of the results of discriminant analysis with the results of qualitative analysis
钻孔编号 样品数 识别正确个数及正确率(%) 识别错误个数及误判率(%) HJ012 19 15(78.95%) 4(21.05%) HJ014 23 21(91.30%) 2(8.70%) HJ015 45 38(84.44%) 7(15.56%) 总计 87 74(85.06%) 13(14.94%) -
[1] Alsharhan, A. S., El-Sammak, A., 2004. Grain-Size Analysis and Characterization of Sedimentary Environments of the United Arab Emirates Coastal Area. Journal of Coastal Research, 20(2):464-477. [2] Blott, S. J., Pye, K., 2001. GRADISTAT:A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms, 26(11):1237-1248. DOI: 10.1002/esp.261 [3] Bai, D.Y., Li, C.A., 2010. Status of Quaternary Geology Research of Jianghan Basin. Geological Science and Technology Information, 29(6):1-6 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201006001.htm [4] Chen, Y.P., Li, Y., 2018. Sediment Grain-Size Characteristics and Sedimentary Significance of DZ-1 Borehole near Zhoushan Islands, East China Sea. Journal of Marine Science, 36(4):53-59 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-marine-sciences_thesis/0201270233822.html [5] Dong, W.J., Zhu, Y.X., Wang, M.G., et al., 2011. Sedimentary Environment Discriminant and Classified Bayes Discriminant Analysis. Journal of Chengdu University (Natural Science), 30(2):139-141, 154 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDDD201102014.htm [6] Fan, T.L., Fan, Y.X., 2010. A Comparison of Grain Size Expression Methods:A Case Study. Gansu Geology, 19(2):32-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ201002006.htm [7] Fan, Y.D., 2013. A Summary of Cross-Validation in Model Selection (Dissertation). Shanxi University, Taiyuan, 15-20 (in Chinese with English abstract). [8] Fang, H.Q., 1959. Neotectonic Movements in the Middle and Lower Reaches of the Yangtze River. Acta Geologica Sinica, 39(3):328-343 (in Chinese with Russian abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=68908869495753574851484855 [9] Feng, Z.Z., 1993. Sedimentary Petrology. Petroleum Industry Press, Beijing, 62 (in Chinese with English abstract). [10] Folk, R. L., Ward, W. C., 1957. Brazos River Bar:A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research, 27(1):3-26. DOI: 10.1306/74d70646-2b21-11d7-8648000102c1865d [11] Friedman, G.M., Sanders, J. E., 1978. Principles of Sedimentology. John Wiley & Sons, New York, 792. [12] Gu, Y.S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11):3989-4000 (in Chinese with English abstract). [13] Jitheshkumar, N., Rajganapathi, V.C., Sundararajan, M., et al., 2013. Grain-Size Analysis and Characterization of Sedimentary Environment along Ovari Coast, Tamilnadu, India. International Journal of Sediment Research, 6:4717-4728. doi: 10.1007/s12517-012-0709-0 [14] Kang, Y. L., 1987. The Stratigraphic Division and Palaeoclimate-Divided Stage of Quaternary Period in Jianghan Plain. Hubei Geology, 1(1):1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK198701001.htm [15] Liu, C.M., Liu, W., 1993. The Evolution of Lakes on Jianghan Plain in Quaternary. Journal of Central China Normal University (Natural Science), 27(4):122-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZSZ199304028.htm [16] Lu, M.D., Tao, Y.C., Li, H.S., 1984. Application of the Discriminant Analysis Method to the Classfication of Ancient Depositional Environments. Earth Science, 25(2):85-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198402012.htm [17] Lü, T., 2018. Analysis of the Particle Size and Sedimentary Environment of the Quaternary Sediments in Luoyang (Dissertation). China University of Geosciences, Beijing, 1-60 (in Chinese with English abstract). [18] Qiao, Y.S., Guo, Z.T., Hao, Q.Z., et al., 2006. Grain Size Characteristics of the Miocene Loess-Paleosol Sequence and Its Implications for Genesis. Science in China (Series D:Earth Sciences), 36(7):646-653(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200607005 [19] Rajganapathi, V. C., Jitheshkumar, N., Sundararajan, M., et al., 2013. Grain Size Analysis and Characterization of Sedimentary Environment along Thiruchendur Coast, Tamilnadu, India. Arabian Journal of Geosciences, 6(12):4717-4728. DOI: 10.1007/s12517-012-0709-0 [20] Sahu, B. K., 1964. Depositional Mechanisms from the Size Analysis of Clastic Sediments. SEPM Journal of Sedimentary Research, 34:337-343. DOI: 10.1306/74d70fce-2b21-11d7-8648000102c1865d [21] Shi, X. F., Chen, C. F., Liu, Y. G., et al., 2002. Trend Analysis of Sediment Grain Size and Sedimentary Process in the Central South Yellow Sea. Chinese Science Bulletin, 47(14):1202-1207. DOI: 10.1007/BF02907610 [22] Sun, D. H., Bloemendal, J., Rea, D. K., et al., 2002. Grain-Size Distribution Function of Polymodal Sediments in Hydraulic and Aeolian Environments, and Numerical Partitioning of the Sedimentary Components. Sedimentary Geology, 152(3/4):263-277. DOI: 10.1016/s0037-0738(02)00082-9 [23] Wang, B.J., Lin, C.S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2):226-230 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200602023.htm [24] Wang, Y.Y., Huang, S.B., Zhao, L., et al., 2017. Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain. Earth Science, 42(5):751-760 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705010.htm [25] Xiang, D.J., Li, H.W., Liu, X.Y., et al., 2005. Practical Multivariate Statistical Analysis. China University of Geosciences Press, Wuhan, 78-80 (in Chinese). [26] Xu, R.H., Qi, G.F., Yang, L.M., 1988. A Study of Quaternary Period Geology and Neotectonic Movement in Wuhan. Journal of Hubei University (Natural Science), 10(2):93-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HDZK198802018.htm [27] Yang, L.H., Ye, W., Zheng, X.M., et al., 2014. The Discriminant Function with Grain Size of Floodplain and Aeolian Sediments and Its Application in the Quaternary Red Clay. Geographical Research, 33(10):1848-1856 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201410007.htm [28] Yang, Q.X., Tian, W.X., Li, Q.W., et al., 2016.The Neotectonic Restricts to Quaternary Deposition Environment Evolution of Jianghan Basin. Journal of Geomechanics, 22(3):631-641 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geomechanics_thesis/0201253295439.html [29] Zhang, C., Zhang, L.Q., Chen, J.L., et al., 2017. Lithofacies Types and Discrimination of Paleogene Fine-Grained Sedimentary Rocks in the Dongying Sag, Bohai Bay Basin, China. Natural Gas Geoscience, 28(5):713-723 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380416300258 [30] Zhang, D.H., 1994. Neotectonics and Quaternary Environmental Changes in Jianghan Basin. Crustal Deformation and Earthquake, 14(1):74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/292741002_Neotectonics_and_Quaternary_environmental_changes_in_Jianghan_Basin [31] Zhang, P., Song, C.H., Yang, Y.B., et al., 2008. The Significance and Establishment of Discriminant Function with Grain Size of Stable Lacustrine Sediment and Eolian Loess. Acta Sedmentologica Sinica, 26(3):501-507 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/cjxb200803018 [32] Zhang, Y.D., Shi, J.S., Zhou, A.G., 2014. Application of Laser Particle Size Analysis in Environment Analysis of Quaternary Sediments in Shenzhou. Journal of University of Chinese Academy of Sciences, 31(4):517-523 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKYB201404011.htm [33] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016. Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain. Earth Science, 41(7):1225-1230 (in Chinese with English abstract). http://www.researchgate.net/publication/306173105_Sediment_magnetism_characteristics_and_its_climatic_environment_significance_of_northeast_margin_of_Jianghan_plain [34] Zhou, L., Chen, D.L., 1980. Analysis of Sediment Phases Discriminant for Grain Size Parameters. Transactions of Oceanology and Limnology, (2):68-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFB198002013.htm [35] 柏道远, 李长安, 2010.江汉盆地第四纪地质研究现状.地质科技情报, 29(6):1-6. http://www.cqvip.com/Main/Detail.aspx?id=33888764 [36] 陈燕萍, 李琰, 2018.舟山DZ-1钻孔沉积物粒度特征与沉积环境辨别.海洋学研究, 36(4):53-59. http://d.wanfangdata.com.cn/periodical/dhhy201804007 [37] 董文娟, 朱远鑫, 万明刚, 等, 2011.沉积环境判别与分类的Bayes判别分析法.成都大学学报(自然科学版), 30(2):139-141, 154. http://www.cqvip.com/qk/91788a/201106/38369644.html [38] 范天来, 范育新, 2010.频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比.甘肃地质, 19(2):32-37. http://www.cnki.com.cn/Article/CJFDTotal-GSDZ201002006.htm [39] 范永东, 2013.模型选择中的交叉验证方法综述(硕士学位论文).太原: 山西大学, 15-20. [40] 方鸿琪, 1959.长江中下游地区的新构造运动.地质学报, 39(3):328-343. http://www.cqvip.com/main/zcps.aspx?c=1&id=68908869495753574851484855 [41] 冯增昭, 1993.沉积岩石学.北京:石油工业出版社, 62. [42] 顾延生, 管硕, 马腾, 等, 2018.江汉盆地东部第四纪钻孔地层与沉积环境.地球科学, 43(11):3989-4000. doi: 10.3799/dqkx.2018.324 [43] 康悦林, 1987.江汉平原第四纪地层划分与古气候分期.湖北地质, 1(1):1-10. http://www.cnki.com.cn/Article/CJFDTotal-HBDK198701001.htm [44] 刘昌茂, 刘武, 1993.第四纪江汉平原湖群的演变.华中师范大学学报(自然科学版), 27(4):122-125. http://www.cqvip.com/Main/Detail.aspx?id=1075785 [45] 陆明德, 陶一川, 李蕙生, 1984.判别分析与沉积环境划分.地球科学, 25(2):85-104. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198402012.htm [46] 吕童, 2018.洛阳第四纪沉积物粒度与沉积环境分析(硕士学位论文).北京: 中国地质大学, 60. [47] 乔彦松, 郭正堂, 郝青振, 等, 2006.中新世黄土-古土壤序列的粒度特征及其对成因的指示意义.中国科学(D辑:地球科学), 36 (7):646-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200607005 [48] 王必金, 林畅松, 陈莹, 等, 2006.江汉盆地幕式构造运动及其演化特征.石油地球物理勘探, 41(2):226-230. http://www.cnki.com.cn/Article/CJFDTotal-SYDQ200602023.htm [49] 王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5):751-760. doi: 10.3799/dqkx.2017.063 [50] 向东进, 李宏伟, 刘小雅, 等, 2005.实用多元统计分析.武汉:中国地质大学出版社, 78-80. [51] 徐瑞瑚, 齐国凡, 杨礼茂, 1988.武汉地区第四纪地质与新构造运动的研究.湖北大学学报(自然科学版), 10(2):93-101. http://www.cnki.com.cn/Article/CJFDTotal-HDZK198802018.htm [52] 杨立辉, 叶玮, 郑祥民, 等, 2014.河漫滩相沉积与风成沉积粒度判别函数的建立及在红土中应用.地理研究, 33(10):1848-1856. http://www.cqvip.com/QK/95732X/201410/68768974504849524948484855.html [53] 杨青雄, 田望学, 李启文, 等, 2016.江汉盆地新构造运动对第四纪沉积环境演化的制约.地质力学学报, 22(3):631-641. http://d.wanfangdata.com.cn/Periodical/dzlxxb201603018 [54] 张超, 张立强, 陈家乐, 等, 2017.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别.天然气地球科学, 28(5):713-723. [55] 张德厚, 1994.江汉盆地新构造与第四纪环境变迁.地壳形变与地震, 14(1):74-80. http://www.cqvip.com/Main/Detail.aspx?id=1308464 [56] 张平, 宋春晖, 杨用彪, 等, 2008.稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义.沉积学报, 26(3):501-507. http://d.wanfangdata.com.cn/periodical/cjxb200803018 [57] 张钰东, 石建省, 周爱国, 2014.激光粒度分析法在深州市第四纪沉积环境分析中的应用.中国科学院大学学报, 31(4):517-523. http://www.cqvip.com/QK/97442A/20144/50159059.html [58] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.3799/dqkx.2016.100 [59] 周莉, 陈敦隆, 1980.几种不同沉积相粒度参数的判别分析.海洋湖沼通报, (2):68-74. http://www.cnki.com.cn/Article/CJFDTotal-HYFB198002013.htm