Sedimentology and Porosity Structures of the Epicontinental Sea-Platform Fine-Grained Deposits of Mufushan Formation in Lower Yangtze Area
-
摘要: 黑色细粒沉积岩系沉积学和孔隙结构研究对于沉积环境恢复、页岩气储层评价和有利储层预测具有重要意义.利用下扬子地区最新完钻的XYZ-1钻井资料,综合钻井岩心、岩石薄片、XRD分析、氩离子-场扫描电镜等手段,开展幕府山组细粒沉积岩系的沉积学和孔隙结构研究.结果表明,幕府山组岩性组成以块状、纹层状深色(碳质)泥岩、浅灰色纹层状泥质灰岩、泥晶灰岩为主,夹泥灰岩、云灰岩、陆屑灰岩和白云岩、安山岩、角砾岩等,以含硅质粘土质混合页岩相和含硅质粘土质页岩相为主,属于下扬子海盆的陆架浅海碳酸盐岩台地-深水海湾-潮坪环境.幕府山组黑色细粒沉积岩孔隙类型多样,有机孔为2~200 nm,面孔率为2.86%~15.90%,孔隙分布较均匀,但总体连通性较差,部分与脆性矿物或粘土矿物共生的有机孔分布不均匀.无机孔以粒内孔、粒间孔、溶蚀孔为主,部分为晶间孔和矿物层间孔.除黄铁矿晶间孔外,大部分无机孔均大于2 μm,最大可达50 μm.细粒沉积岩中的微裂缝广泛发育,构造微裂缝形态复杂,缝宽一般20~500 μm,常常被方解石和石英充填.成岩微裂缝长度一般大10μm,缝宽50~200 nm.幕府山组顶部深水海湾相和底部泥坪-蒸发台地相黑色细粒沉积岩TOC含量为2.66%~21.27%,平均值为6.30%,有机孔、无机孔和微裂缝发育,粘土矿物和脆性矿物含量较高,具备优质页岩气储层发育的有利条件.Abstract: The study of sedimentology and pore structure of black fine-grained sedimentary rock series is of great significance for environment, shale gas reservoir evaluation and favorable reservoir prediction.Using the newly drilled XYZ-1 well data in the Lower Yangtze area, based on systematic coring identification of Lower Cambrian Mufushan Formation, rock thin section, XRD (X-Ray Diffraction) analysis, and argon ion-field emission-scanning electron microscopy (Ar-FE-SEM), the sedimentology and pore structures of the fine-grained deposits series arestudied in this study.The results show that the lithologic composition of the Mufushan Formation is dominated by dark (carbonaceous) mudstone, light gray argillaceous limestone and cryptite, interbeded with marl, dolomitic limestone, terrigenouslimestone and dolomite, Andesite, breccia, etc., mainly composed of siliceous clay-mixed shale facies and siliceous clay-like shale facies. It is belong to the continental shelfshallow-sea carbonate platform-deep-water bay-tidal flat environment of the lower Yangtze ocean basin.The black argillutite (mud shale) of the Mufushan Formation has various pore types, the organic pores are 2-200 nm, the surface porosity ratio is 2.86%-15.90%, the pore distribution is relatively uniform, but the overall connectivity is poor, and some organic pores are inhomogeneity symbiotic with the brittle mineral or clay mineral. The inorganic pores are mainly intragranular, intergranular pores and dissolution pores, and some are intercrystalline pores and intermetallic pores. Except for the intercrystalline pores of pyrite, most of the inorganic pores are larger than 2 μm and the maximum is 50 μm.The micro-cracks in the shale are widely developed, and the micro-cracks of tectonic origin are complex in shape, and the slit width is generally 20-500 μm, generally filled with calcite and quartz. The length of diagenetic micro-cracks is generally greater than 10μm and the slit width is 50 to 200 nm. The black mud shale in the upper deep-water bay facies and lower parts of the mud flat and evaporate plat form of the Mufushan Formation has favorable conditions for the development of high quality shale gas reservoirs, due to a high TOC content from 2.65%-21.27%, average 6.30%, organic-inorganic pore system, and fracture system development, high clay minerals and brittle minerals content.
-
图 1 下扬子地区早古生代构造区划(a)和XYZ-1钻井位置(b)
据郭念发(1996);朱光等(2000);印峰等(2013);潘桂棠等(2016);蔡来星等(2017);樊佳莉(2017);郭兴伟等(2017)修编
Fig. 1. Early Paleozoic tectonic unit division of the Lower Yangtze region (a) and the XYZ-1 well location (b)
图 3 扬子地区下寒武统(a)和北美地区(b)细粒沉积岩矿物组成和岩相类型
1.硅质岩岩相组合S:S.硅质页岩相;S1.灰质硅质页岩相; S2.含灰质黏土质硅质页岩相; S3.含黏土硅质页岩相; 2.灰质页岩相组合C: C.灰质页岩相; C1.含硅质灰质页岩相; C2.含硅质黏土质灰质页岩相; C3.含黏土灰质页岩相; 3.黏土质页岩相组合CM:CM.黏土质页岩相; CM1.含硅质黏土质页岩相; CM2.含灰质硅质黏土质页岩相; CM3.含灰质黏土质页岩相; 4.混合页岩相组合M:M.混合页岩相; M1.含硅质灰质混合页岩相; M2.含硅质黏土质混合页岩相; M3.含灰质黏土质混合页岩相
Fig. 3. Mineral composition and lithofacies classification of fine-grained sedimentary rocks in Lower Cambrian Yangtze (a) and North American (b)
图 7 幕府山组深水海湾-台地-盆地体系沉积模式
据朱光等(2000);路琳琳等(2013);樊佳莉(2017);刘计勇等(2018)修编
Fig. 7. Depositional model of Mufushan Formation in Lower Yangtze area
-
[1] Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. https://doi.org/10.1306/06190606018 [2] Cai, L. X., Wang, J., Guo, X.W., et al., 2017. Characteristics of Sedimentary Facies and Source Rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea: a Case Study of CSDP-2 Coring Well. Journal of Jilin University (Earth Science Edition), 47(4): 1030-1046 (in Chinese with English abstract). http://www.researchgate.net/publication/319458231_Characteristics_of_Sedimentary_Facies_and_Source_Rocks_of_Mesozoic-Paleozoic_in_Central_Uplift_of_South_Yellow_Sea_A_Case_Study_of_CSDP-2_Coring_Well [3] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052 [4] Chen, Q., Fan, J. X., Zhang, L. N., et al., 2018. Paleogeographic Evolution of the Lower Yangtze Region and the Break of the "Platform-Slope-Basin" Pattern during the Late Ordovician. Science China Earth Science, 61(5): 625-636. https://doi.org/10.1007/s11430-018-9170-y [5] Chen, S.B., Qin, Y., Wang, Y., et al., 2015. Pore Structure and Heterogeneity of Marine Shales in the Middle-Upper Yangtze. Natural Gas Geoscience, 26(8):1455-1463 (in Chinese with English abstract). http://www.researchgate.net/publication/283434501_Pore_structure_and_heterogeneity_of_marine_shales_in_the_Middle-Upper_Yangtze [6] Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188 [7] Dai, F. Y., Hao, F., Hu, H. Y., et al., 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7): 1185-1194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707013.htm [8] Dong, M., Zhang, L. Y., Wang, Z. X., et al., 2019. Accumulation Characteristics and Preservation Conditions of the Niutitang Formation of Lower Cambrian Series Shale Gas in Western Hubei: a Case Study of Well XD1. Earth Science, 44(11): 3616-3627 (in Chinese with English abstract). [9] Fan, J.L. 2017. Lithofacies and Depositional Setting of the Lower Cambrian Organic-Rich Shale of the Lower Yangtze Region, China. Geological Science and Technology Information, 36(5): 156-163 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201705021.htm [10] Guo, N.F. 1996. Evolutionary Featureof Basin and Regional Structure in Lower Yangtze Area. Geology of Zhejiong, 12(2): 19-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJDZ199602002.htm [11] Guo, X. S. 2019. Controlling Factors on Shale Gas Accumulations of Wufeng-Longmaxi Formations in Pingqiao Shale Gas Field in Fuling Area, Sichuan Basin. Natural Gas Science, 30(1): 1-10 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X19300355 [12] Guo, X. W., Zhu, X. Q., Mu, L., et al., 2017. Discovery of Permian-Triassic Ammonoids in the Central Uplift of the South Yellow Sea and Its Geological Implications. Marine Geology & Quaternary Geology, 37(3): 121-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201703013.htm [13] Han, S.B., Zhang, J.C., Brian, H., et al. 2013. Pore Types and Characteristics of Shale Gas Reservoir: a Case Study of Lower Paleozoic Shale in Southeast Chongqing. Earth Science Frontiers, 20(3):247-253 (in Chinese with English abstract). http://www.researchgate.net/publication/286995077_Pore_types_and_characteristics_of_shale_gas_reservoir_A_case_study_of_Lower_Paleozoic_shale_in_Southeast_Chongqing [14] Hao, T. Y., Liu, J. H., Huang, Z. X., et al., 2004. Research on the Lithosphere Structure of Chinese Marginal Seas. Progress in Geophysics, 19(3): 583-589 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWJ200403015.htm [15] Hou, F. H., Guo, X. W., Wu, Z.Q., et al., 2019. Research Progress and Discussion on Formation and Tectonics of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 96-105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201901011.htm [16] Jiang, Z, X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Gained Sedimentary Rocks. Acta Petrolei Sinica, 34(6):1031-1039 (in Chinese with English abstract). http://www.researchgate.net/publication/282996114_Several_issues_in_sedimentological_studies_on_hydrocarbon-bearing_fine-grained_sedimentary_rocks [17] Liu, J. Y., Zhang, F. Y., Yin, Y. L., et al., 2018. Lithofacies and Paleogeographic Study on Late Cambrian Hydrocarbon Source Rocks in Lower Yangtze Region. Marine Geology & Quaternary Geology, 38(3): 85-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201803008.htm [18] Liu, Z. B., Fen, D.J., Gao B., et al., 2017. Micropore Characteristics of High Thermal Evolution Shale in the Lower Cambrian Series in Upper Yangtze Area. Natural Gas Geoscience, 28(7): 1672-1926. http://www.researchgate.net/publication/320538974_Micropore_characteristics_of_high_thermal_evolution_shale_in_the_Lower_Cambrian_series_in_Upper_Yangtze_area [19] Long, S.X., Cao, Y., Zhu J., et al., 2016. A Preliminary Study on Prospects for Shale Gas Industry in China and Relevant Issues. Oil & Gas Geology, 37(6): 847-853 (in Chinese with English abstract). http://www.researchgate.net/publication/319041549_A_preliminary_study_on_prospects_for_shale_gas_industry_in_China_and_relevant_issues [20] Lou, Y., Pan, J.P., Wang, L. X., et al., 2018. Problems and Counter Measures in the Exploration and Development of Natural Gas Resources in China. Olicy Research, 26(6): 21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GJJJ201806005.htm [21] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 [22] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 [23] Lu, L. L., Ji, Y. L. 2013. Sequence Stratigraphic Framework and Palaeogeography Evolution of the Cambrian in Lower Yangtze Area. Journal of Palaeogeography, 15(6):765-776 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201306003.htm [24] Ma, X. H. 2017. A Golden Era for Natural Gas Development in the Sichuan Basin. Natural Gas Industry, 37(2): 1-10 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854017300918 [25] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4):561-574 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S187638041830065X [26] Pan, G.T., Lu, S.N., Xiao, Q.H., et al., 2016. Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6): 1-23 (in Chinese with English abstract). http://www.researchgate.net/publication/316514059_Division_of_tectonic_stages_and_tectonic_evolution_in_China [27] Pan, Y.M., Zhang, X.H., Xiao, G. L., et al., 2016. Structural and Geological Characteristics of the South Yellow Sea Basinin Lower Yangtze Block. Geological Review, 62(3): 604-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201603006.htm [28] Peng, N. J., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7):1134-1146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707009.htm [29] Potter, P. E., Maynard, J. B., Depetris, P. J., et al. 2005. Mud and Mudstones. Springer Berlin, Heidelberg. [30] Ross, D. J. K., Bustin, R., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [31] Slatt, R. M., Rodriguez, N. D., 2012. Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales: Commonality or Coincidence? Journal of Natural Gas Science and Engineering, 8: 68-84. https://doi.org/10.1016/j.jngse.2012.01.008 [32] Song, D. J., Tuo, J.C., Wang, Y.T., et al., 2019. Research Advances on Characteristics of Nanopore Structure of Organic-Rich Shales. Acta Sedimentologica Sinica, 37(6):1309-1324(in Chinese with English abstract). http://www.researchgate.net/publication/338486980_Research_Advances_on_Characteristics_of_Nanopore_Structure_of_Organic-rich_Shales [33] Strapoc, D., Mastalerz, M., Schimmelmann, A., et al., 2010. Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian-Mississippian), Eastern Illinois Basin. AAPG Bulletin, 94(11): 1713-1740. https://doi.org/10.1306/06301009197 [34] Tang, S., Zhang, J. C., Elsworth, D., et al., 2016. Lithofacies and Pore Characterization of the Lower Permian Shanxi and Taiyuan Shales in the Southern North China Basin. Journal of Natural Gas Science and Engineering, 36: 644-661. https://doi.org/10.1016/j.jngse.2016.11.013 [35] Wang, B.Z., Ou, W. J., Wang, C.S., et al., 2018. Geochemical Characteristics of the Early Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807003.htm [36] Wang, P. F., Jiang, Z. X., Li, Z., et al., 2017. Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing. Earth Science, 42(7):1147-1156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707010.htm [37] Wang, S. Q. 2017. Shale Gas Exploitation: Status, Issues and Prospects. Natural Gas Industry, 37(6): 115-130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201706025.htm [38] Wang, Y. F., Zhai, G.Y., Bao, S. J., et al., 2018. Shiniulan Formation Characteristics and Fracturing Effect Evaluation of Anye-1 Well in North of Guizhou. Geological Review, 64(3): 741-752 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201803022.htm [39] Wu, Z. R., He, S., He, X. P., 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong Lianyuan Depression. Earth Science, 44(11): 3757-3772 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911016.htm [40] Yan, G. Y., Wei, C. T., Song, Y., et al., 2018. Quantitative Characterization of Shale Pore Structure Based on Ar-SEM and PCAS. Earth Science, 43(5): 1602-1610 (in Chinese with English abstract). http://www.researchgate.net/publication/326346041_Quantitative_Characterization_of_Shale_Pore_Structure_Based_on_Ar-SEM_and_PCAS [41] Yin, F., Yang, F. L., Ye, F., et al., 2013. Late Sinian Middle Ordovician the Prototype Basin Characteristics of Passive Continental Margin in Lower Yangtze. Earth Science, 38(5): 1053-1064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305017.htm [42] Yu, B.S. 2013. Classification and Characterization of Gas Shale Pore System. Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://www.researchgate.net/publication/287706746_Classification_and_characterization_of_gas_shale_pore_system [43] Zheng, M., Li, J.Z., Wu, X. Z., et al., 2018. China's Conventional and Unconventional Natural Gas Resource Potential, Key Exploration Fields and Direction. Natural Gas Science, 29(10): 1383-1397 (in Chinese with English abstract). http://www.researchgate.net/publication/329221393_China's_conventional_and_unconventional_natural_gas_resource_potential_key_exploration_fields_and_direction [44] Zhou, L., Kang, Z. H., Wang, Z. X., et al., 2017. Sedimentary Geochemical Investigation for Paleoenvironment of the Lower Cambrian Niutitang Formation Shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159: 376-386. https://doi.org/10.1016/j.petrol.2017.09.047 [45] Zhu, G., Liu, G. S., Li, S.Y., et al., 2000. "Four-Story" Structure of the Basins in the Lower Yangtze Region and Their Geodynamic Setting. Journal of Hefei University of Technology, 23(1): 47-52. http://d.wanfangdata.com.cn/Periodical/hfgydxxb200001010 [46] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development, 42(6): 753-767. https://doi.org/10.1016/s1876-3804(15)30072-0 [47] 蔡来星, 王蛟, 郭兴伟, 等, 2017.南黄海中部隆起中-古生界沉积相及烃源岩特征——以CSDP-2井为例.吉林大学学报(地球科学版), 47(4): 1030-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704006.htm [48] 陈尚斌, 秦勇, 王阳, 等, 2015.中上扬子区海相页岩气储层孔隙结构非均质性特征.天然气地球科学, 26(8):1455-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508004.htm [49] 戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096 [50] 董敏, 张林炎, 王宗秀, 等, 2019.鄂西地区下寒武统牛蹄塘组页岩气成藏及保存条件分析——以XD1井为例.地球科学, 44(11): 3616-3627. doi: 10.3799/dqkx.2019.127 [51] 樊佳莉, 2017.下扬子地区下寒武统富有机质页岩的岩相与沉积环境.地质科技情报, 36(5): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705021.htm [52] 郭念发, 1996.下扬子盆地与区域地质构造演化特征及油气成藏分析.浙江地质, 12(2): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ199602002.htm [53] 郭兴伟, 朱晓青, 牟林, 等, 2017.南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义.海洋地质与第四纪地质, 37(3): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201703013.htm [54] 郭旭升, 2019.四川盆地涪陵平桥页岩气田五峰组-龙马溪组页岩气富集主控因素.天然气地球科学, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901001.htm [55] 韩双彪, 张金川, Brian, H., 等, 2013.页岩气储层孔隙类型及特征研究:以渝东南下古生界为例.地学前缘, 20(3):247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303030.htm [56] 郝天珧, 刘建华, 黄忠贤, 等, 2004.中国边缘海岩石层结构研究.地球物理学进展, 19(3): 583-589. doi: 10.3969/j.issn.1004-2903.2004.03.015 [57] 侯方辉, 郭兴伟, 吴志强, 等, 2019.南黄海有关地层与构造的研究进展及问题讨论.吉林大学学报(地球科学版), 49(1): 96-105. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901011.htm [58] 姜在兴, 梁超, 吴靖, 等, 2013.含油气细粒沉积岩研究的几个问题, 石油学报, 34(6):1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm [59] 刘计勇, 张飞燕, 印燕铃, 2018.下扬子下寒武统岩相古地理及烃源岩条件研究.海洋地质与第四纪地质, 38(3): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201803008.htm [60] 刘忠宝, 冯动军, 高波, 等, 2017.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学, 28(7): 1672-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201707013.htm [61] 龙胜祥, 曹艳, 朱杰, 等, 2016.中国页岩气发展前景及相关问题初探.石油与天然气地质, 37(6): 847-853. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606008.htm [62] 娄钰, 潘继平, 王陆新, 等, 2018.中国天然气资源勘探开发现状、问题及对策建议.政策研究, 26(6): 21-27. doi: 10.3969/j.issn.1674-2982.2018.06.004 [63] 路琳琳, 纪友亮, 2013.下扬子地区寒武纪层序格架及古地理演化.古地理学报, 15(6):765-776. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201306003.htm [64] 马新华, 2017.四川盆地天然气发展进入黄金时代.天然气工业, 37(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201702003.htm [65] 马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践.石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm [66] 潘桂棠, 陆松年, 肖庆辉, 等, 2016.中国大地构造阶段划分和演化.地学前缘, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm [67] 庞玉茂, 张训华, 肖国林, 等, 2016.下扬子南黄海沉积盆地构造地质特征.地质论评, 62(3): 604-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201603006.htm [68] 彭女佳, 何生, 郝芳, 等, 2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7):1134-1146. doi: 10.3799/dqkx.2017.092 [69] 宋董军, 妥进才, 王晔桐, 等, 2019.富有机质细粒沉积岩纳米级孔隙结构特征研究进展.沉积学报, 37(6):1309-1324. [70] 王保忠, 欧文佳, 王传尚, 等, 2018.桂中坳陷早石炭世泥页岩地球化学特征及近源气成藏模式.地球科学, 43(7): 2222-2233. doi: 10.3799/dqkx.2018.226 [71] 王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7): 1147-1156. doi: 10.3799/dqkx.2017.093 [72] 王世谦, 2017.页岩气资源开采现状、问题与前景.天然气工业, 37(6): 115-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201706025.htm [73] 王玉芳, 翟刚毅, 包书景, 等, 2018.黔北安页1井石牛栏组储层特征及压裂改造效果评价.地质论评, 64(3): 741-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201803022.htm [74] 吴迪, 薛冰. 2018. "十二五"期间中国页岩气进展.科技与创新, 12:12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201812005.htm [75] 吴忠锐, 何生, 何希鹏, 等, 2019.湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相细粒沉积岩孔隙结构特征及对比.地球科学, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084 [76] 闫高原, 韦重韬, 宋昱, 等, 2018.基于Ar-SEM及PCAS页岩孔隙结构定量表征.地球科学, 43(5): 1602-1610. doi: 10.3799/dqkx.2017.525 [77] 印峰, 杨凤丽, 叶芳, 等, 2013.晚震旦至中奥陶世下扬子被动大陆边缘原型盆地特征.地球科学, 38(5): 1053-1064. doi: 10.3799/dqkx.2013.103 [78] 于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4):211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304020.htm [79] 郑民, 李建忠, 吴晓智, 等, 2018.我国常规与非常规天然气资源潜力、重点领域与勘探方向.天然气地球科学, 29(10): 1383-1397. doi: 10.11764/j.issn.1672-1926.2018.09.006 [80] 朱光, 刘国生, 李双应, 等, 2000.下扬子地区盆地的"四层楼"结构及其动力学机制.合肥工业大学学报, 23(1): 47-52. doi: 10.3969/j.issn.1003-5060.2000.01.010