• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    攀枝花大田地区前震旦纪斜长角闪岩地球化学特征及构造意义

    郑玉文 陈友良 彭渤洋 胡漾 郭锐 邓舟

    郑玉文, 陈友良, 彭渤洋, 胡漾, 郭锐, 邓舟, 2021. 攀枝花大田地区前震旦纪斜长角闪岩地球化学特征及构造意义. 地球科学, 46(1): 59-72. doi: 10.3799/dqkx.2019.279
    引用本文: 郑玉文, 陈友良, 彭渤洋, 胡漾, 郭锐, 邓舟, 2021. 攀枝花大田地区前震旦纪斜长角闪岩地球化学特征及构造意义. 地球科学, 46(1): 59-72. doi: 10.3799/dqkx.2019.279
    Zheng Yuwen, Chen Youliang, Peng Boyang, Hu Yang, Guo Rui, Deng Zhou, 2021. Geochemical Characteristics and Tectonic Significance of the Neoproterozoic Amphibolites from Datian Area, Panzhihua City. Earth Science, 46(1): 59-72. doi: 10.3799/dqkx.2019.279
    Citation: Zheng Yuwen, Chen Youliang, Peng Boyang, Hu Yang, Guo Rui, Deng Zhou, 2021. Geochemical Characteristics and Tectonic Significance of the Neoproterozoic Amphibolites from Datian Area, Panzhihua City. Earth Science, 46(1): 59-72. doi: 10.3799/dqkx.2019.279

    攀枝花大田地区前震旦纪斜长角闪岩地球化学特征及构造意义

    doi: 10.3799/dqkx.2019.279
    基金项目: 

    国家自然科学基金项目 41472073

    “康滇地轴前寒武纪混合岩中铀成矿远景预测评价” 201807-03

    详细信息
      作者简介:

      郑玉文(1995-), 女, 硕士研究生, 从事构造地质学及矿床地球化学研究工作.ORCID:0000-0002-2227-987X.E-mail:309722182@qq.com

      通讯作者:

      陈友良, ORCID:0000-0001-6844-3105.E-mail:chenyouliang09@cdut.cn

    • 中图分类号: P581;P597

    Geochemical Characteristics and Tectonic Significance of the Neoproterozoic Amphibolites from Datian Area, Panzhihua City

    • 摘要: 对攀枝花大田地区斜长角闪岩进行了系统的主微量地球化学特征、锆石LA-ICP-MS U-Pb年代学以及Lu-Hf同位素特征研究.结果表明:斜长角闪岩的SiO2含量为47.88%~50.05%,原岩为亚碱性-碱性玄武岩.斜长角闪岩稀土总量(ΣREE)较高,稀土元素配分模式为轻稀土富集的右倾型,与洋岛玄武岩相似.微量元素原始地幔标准化蛛网图为"隆起"型,与板内玄武岩特征类似.Zr/Nb、Hf/Th等比值均表明其与板内玄武岩类似,而与岛弧玄武岩具有明显的差异.锆石U-Pb定年结果表明岩浆结晶年龄为816.0~833.6 Ma,同期岩浆结晶锆石的εHf(t)值在-6.8~+3.8之间,其岩浆源区为与OIB类似的富集地幔源区且受到了地壳物质的混染.综合上述资料,认为其形成于Rodinia超级地幔柱活动导致的大陆裂谷环境.

       

    • 图  1  (a) 研究区大地构造位置; (b)攀枝花大田地区区域地质简图

      1.第四系浮土; 2.侏罗系长石石英砂岩; 3.咱里组三段; 4.咱里组二段; 5.咱里组一段; 6.印支期黑云母花岗岩; 7.印支期二云母花岗岩; 8.晋宁期石英闪长岩; 9.晋宁期含角闪石黑云母花岗岩; 10.辉绿岩脉; 11.断层; 12.钾长石化、绿泥石化蚀变带; 13.锆石采样位置; 14.研究区

      Fig.  1.  Tectonic setting map (a) and geological map of Datian area, Panzhihua City (b)

      图  2  斜长角闪岩野外露头(a)和镜下显微照片(b)

      Hbl.角闪石; Bt.黑云母; Pl.斜长石

      Fig.  2.  Photographs of the representative (a) and amphibolites in the Datian area (b)

      图  3  大田地区斜长角闪岩Zr/TiO2-Nb/Y图解

      Winchester and Floyd(1977)

      Fig.  3.  Zr/TiO2 vs. Nb/Y diagrams of the amphibolites in Datian area

      图  4  大田地区斜长角闪岩球粒陨石标准化稀土元素配分模式图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989);俯冲带玄武岩范围据Tatsumi and Eggins(1995)

      Fig.  4.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spider diagram (b) for the amphibolites in Datian are

      图  5  DT1802锆石阴极发光图像

      每颗锆石上面的数值为测点年龄(Ma)和εHf(t), 下面为编号

      Fig.  5.  Zircon CL images from the amphibolite in Datian area (DT 1802)

      图  6  DT1802锆石U-Pb年龄谐和图

      Fig.  6.  SHRIMP U-Pb Concordia diagrams of zircon from the amphibolite in Datianarea(DT 1802)

      图  7  ZK4001-11锆石阴极发光图像及测点年龄

      每颗锆石上面的数值为测点年龄(Ma), 下面为编号

      Fig.  7.  Zircon CL images from the amphibolite in Datian area(ZK4001-11)

      图  8  ZK4001-11锆石U-Pb年龄谐和图(单位:Ma)

      Fig.  8.  SHRIMP U-Pb concordia diagrams of zircon from the amphibolite in Datian area(ZK4001-11)

      图  9  大田地区斜长角闪岩(176Hf/177Hf)i与锆石结晶年龄图解(a)和εHf(t)与锆石结晶年龄图解(b)

      a. 176Lu/177Hf=0.015据Griffin et al.(2002); b. Hf亏损地幔演化线据Dhuime(2011)

      Fig.  9.  Composite plot of (176Hf/177Hf)i vs. U-Pb age (a) and εHf(t) values vs. U-Pb age (b) of zircons for the rocks form Datian area

      图  10  大田地区斜长角闪岩的Zr/Nb-Ce/Y图解(a)和Nb/Yb-Th/Yb图解(b)

      OIB-type.洋岛型; E-MORB-type.富集型洋中脊型; N-MORB-type.正常洋中脊型; SSZ-type.俯冲带型;据Goncuoglu et al.(2010)

      Fig.  10.  Zr/Nb-Ce/Y diagram (a) and Nb/Yb-Th/Yb diagram (b) for the amphibolites in Datian area

      图  11  大田地区斜长角闪岩的Zr/Y-Zr图解(a)和Th-Hf/3-Nb/16图解(b)

      WPB.板内玄武岩; MORB.洋脊玄武岩; IAB.火山弧玄武岩; MORB.洋脊玄武岩; OIB.洋岛玄武岩; IAB.火山弧玄武岩; a.据Pearce(1982);b.据第鹏飞等(2017)

      Fig.  11.  Zr/Y-Zr diagram (a) and Th-Hf/3-Nb/16 diagram (b) for the amphibolites in Datian area

      图  12  大田地区斜长角闪岩的La/10-Y/15-Nb/8图解(a)和Ti/V图解(b)

      图a中:1.火山弧玄武岩; 2.大陆玄武岩; 3.大洋玄武岩; 1A.钙碱性玄武岩; 1C.火山弧拉斑玄武岩; 1B. 1A区和1B区间的重叠区域; 2A.大陆玄武岩; 2B.弧后盆地大陆玄武岩; 3A.大陆内裂谷区的碱性玄武岩; 3B及3C区为富集型洋脊玄武岩(3B区为富集区, 3C区为弱富集区); 3D.正常洋脊玄武岩; a.据Pearce(1982);b.据Shervais(1982)

      Fig.  12.  La/10-Y/15-Nb/8 diagram (a) and Ti/V diagram (b) for the amphibolites in Datian area

      图  13  大田地区斜长角闪岩Th/Hf-Ta/Hf(a)和Th/Zr-Nb/Zr(b)构造环境判别图解

      a.据汪云亮等(2001); b.据孙书勤等(2003)

      Fig.  13.  Th/Hf vs. Ta/Hf (a) and Th/Zr vs. Nb/Zr (b) tectonic setting discrimination diagrams for the amphibolites in Datian area

    • [1] Aldrich, M. J. Jr, Chapin, C. E., Laughlin, A. W., 1986. Stress History and Tectonic Development of the Rio Grande Rift, New Mexico. Journal of Geophysical Research, 91(B6):6199.https://doi.org/10.1029/jb091ib 06p06199 doi: 10.1029/jb091ib06p06199
      [2] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      [3] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      [4] Cong, B. L., 1988. Formation and Evolution of Panxi Ancient Rift Valley. Science Press, Beijing, 1-96(in Chinese).
      [5] Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014): 154-155. https://doi.org/10.1126/science.1201245
      [6] Di, P. F., Wang, J. R., Zhang, Q., et al., 2017. The Evaluation of Basalt Tectonic Discrimination Diagrams: Constraints on the Research of Global Basalt Data. Bulletin of Mineralogy Petrology and Geochemistry, 36(06):891-896, 879 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201706005.htm
      [7] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [8] Goncuoglu, M. C., Sayit, K., Tekin, U. K., 2010. Oceanization of the Northern Neotethys: Geochemical Evidence from Ophiolitic Melange Basalts within the İzmir-Ankara Suture Belt, NW Turkey. Lithos, 116(1/2): 175-187. https://doi.org/10.1016/j.lithos.2010.01.007
      [9] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      [10] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      [11] Guo, C. L., Wang, D. H., Chen Y. C., et al., 2007. SHRIMP U-Pb Zircon Ages and Major Element, Trace Element and Nd-Sr Isotope Geochemical Studies of a Neoproterozoic Granitic Complex in Western Sichuan: Petrogenesis and Tectonic Significance. Acta Petrologica Sinica, 23(10): 2457-2470 (in Chinese with English abstract). http://www.oalib.com/paper/1472885
      [12] Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. J Anal At Spectrom, 26(2): 425-430. https://doi.org/10.1039/c0ja00145g
      [13] Lai, S. C., Qin, J. F., Zhu, R. Z., et al., 2015. Petrogenesis and Tectonic Implication of the Neoproterozoic Peraluminous Granitoids from the Tianquan Area, Western Yangtze Block, South China. Acta Petrologica Sinica, 31(8): 2245-2258 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201508009.htm
      [14] Li, R. B., Pei, X. Z., Yang, S. H., et al., 2016. Mid-Neoproterozoic Tadong Amphibolites at the Junction of the East Kunlun and Western Qinling Orogens - a Record of Continental Rifting during the Break-Up of Rodinia. International Geology Review, 58(4): 455-470. https://doi.org/10.1080/00206814.2015.1089423
      [15] Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002a. U-Pb Zircon Geochronological, Geochemical and Nd Isotopic Study of Neoproterozoic Basaltic Magmatism in Western Sichuan: Petrogenesis and Geodynamic Implications. Earth Science Frontiers, 9(4): 329-338 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200204018.htm
      [16] Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1-2): 135-154. https://doi.org/10.1016/s0301-9268(01)00207-8
      [17] Li, X. H., Zhou, H. W., Li, Z. X., et al., 2002b. Petrogenesis of Neoproterozoic Bimodal Volcanics in Western Sichuan and Its Tectonic Implications: Geochemical and Sm-Nd Isotopic Constraints. Chinese Journal of Geology, 37(3): 264-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200203001.htm
      [18] Li, Z. X., Kinny, P., Zhou, H., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      [19] Lin, G. C., 2008. Petrochemical Characteristics of Wasigou Complex in Western Yangtze Block: Petrogenetic and Tectonic Significance. Acta Petrologica et Mineralogica, 27(5): 398-404 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW200805003.htm
      [20] Lin, G. C., 2010. Zircon U-Pb Age and Petrochemical Characteristics of Shimian Granite in Western Sichuan: Petrogenesis and Tectonic Significance. Earth Science, 35(4): 611-620 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201004014.htm
      [21] Lin, G. C., Li, X. H., Li, X. W., 2006. The Zircon SHRIMP U-Pb Age, Element and Nd-Hf Isotope Geochemistry of Neoproterozoic Basic Dyke Group in Western Sichuan. Science in China. Series D: earth sciences, 36(7): 630-645 (in Chinese).
      [22] Pearce, J. A., 1982. Trace Element Characteristics of Lavas Rom Destructive Plate Boundaries. In Thorps R S, ed. John Wiley and Sons, New York, 525-548.
      [23] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821x(82)90120-0
      [24] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      [25] Sun, S. Q., Wang, Y. L., Zhang, C. J., 2003. Discrimination of the Tectonic Settings of Basalts by Th, Nb and Zr. Geological Review, 49(1): 40-47 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200301006
      [26] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [27] Tang, J., Xu, W. l., Li, Y., et al., 2019. Composition Variations of Mesozoic and Cenozoic Basalts in Northern Great Xing'an Range: Implications for Thermal Evolution of Mantle. Earth Science, 44(4):1096-1112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904004.htm
      [28] Tatsumi, Y., Eggins, S., 1995. Subduction zone magmatism. Blackwell Science, Cambridge, 211.
      [29] Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      [30] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin and Hyman, London, 1-466.
      [31] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [32] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm
      [33] Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica Et Mineralogica, 26(1): 77-89 (in Chinese with English abstract).
      [34] Xu, S. J., Yu, H. B., Wang, R. C., et al., 2002. Sm-Nd and Rb-Sr Isotopic Ages of Shaba Granulite from Western Sichuan Province and Their Geological Significance. Geological Journal of China Universities, 8(4): 399-406 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253568131.html
      [35] Yan, D. P., Zhou, M. F., Song, H. L., et al., 2002. Where Was South China Located in The Reconstruction of Rodinia? Earth Science Frontiers, 9(4): 249-256 (in Chinese with English abstract). http://www.researchgate.net/publication/284875270_where_was_south_china_located_in_the_reconstruction_of_rodinia
      [36] Yuan, H. H., Zhang, S. F., Zhang, P., 1985. An Archaen Age Information in Dukou District Sichuan, China. Journal of Chengdu College of Geology, 8(3): 79-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG198503006.htm
      [37] Zhang, Q., Sun, W. D., Zhao, Y., et al., 2019. New Discrimination Diagrams for Basalts Based on Big Data Research. Big Earth Data, 3(1): 45-55. https://doi.org/10.1080/20964471.2019.1576262
      [38] Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51-67. https://doi.org/10.1016/s0012-821x(01)00595-7
      [39] Zhu, J., Peng, S. G., Peng, L H., et al., 2019. Geochronology of Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for Extension during Breakup of Rodinia. Earth Science, 44(02):5-15 (in Chinese with English abstract). http://www.researchgate.net/publication/332557958_Geochronology_of_Bimodal_Volcanic_Rocks_from_Dingyuan_Formation_in_Western_Dabie_Orogen_Central_China_Implications_for_Extension_during_Breakup_of_Rodinia
      [40] Zhu, W. G., Zhong, H., Li, X. H., et al., 2008. SHRIMP Zircon U-Pb Geochronology, Elemental, and Nd Isotopic Geochemistry of the Neoproterozoic Mafic Dykes in the Yanbian Area, SW China. PrecambrianResearch, 164(1-2): 66-85. https://doi.org/10.1016/j.precamres.2008.03.006
      [41] 丛柏林, 1988.攀西古裂谷的形成与演化.北京:科学出版社, 1-96.
      [42] 第鹏飞, 王金荣, 张旗, 等, 2017.玄武岩构造环境判别图评估——全体数据研究的启示.矿物岩石地球化学通报, 36(6):891-896, 879. doi: 10.3969/j.issn.1007-2802.2017.06.003
      [43] 郭春丽, 王登红, 陈毓川, 等, 2007.川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义.岩石学报, 23(10):2457-2470. doi: 10.3969/j.issn.1000-0569.2007.10.014
      [44] 赖绍聪, 秦江锋, 朱韧之, 等, 2015.扬子地块西缘天全新元古代过铝质花岗岩类成因机制及其构造动力学背景.岩石学报, 31(8):2245-2258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508009.htm
      [45] 李献华, 李正祥, 周汉文, 等, 2002a.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘, 9(4):329-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204018.htm
      [46] 李献华, 周汉文, 李正祥, 等, 2002b.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义.地质科学, 37(3):264-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203001.htm
      [47] 林广春, 2008.扬子西缘瓦斯沟花岗岩的元素-Nd同位素地球化学--岩石成因与构造意义.岩石矿物学杂志, 27(5):398-404. doi: 10.3969/j.issn.1000-6524.2008.05.003
      [48] 林广春, 2010.川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义.地球科学(中国地质大学学报), 35(4):611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004014.htm
      [49] 林广春, 李献华, 李武显, 2006.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义.中国科学.D辑:地球科学, 36(7):630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607003.htm
      [50] 孙书勤, 汪云亮, 张成江, 2003.玄武岩类岩石大地构造环境的Th、Nb、Zr判别.地质论评, 49(1):40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006
      [51] 唐杰, 许文良, 李宇, 等, 2019.大兴安岭北段中—新生代玄武岩成分变异:对地幔热演化过程意义.地球科学, 44(4):1096-1112. doi: 10.3799/dqkx.2019.055
      [52] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3):413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      [53] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [54] 夏林圻, 夏祖春, 徐学义, 等, 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 26(1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011
      [55] 徐士进, 于航波, 王汝成, 等, 2002.川西沙坝麻粒岩的Sm-Nd和Rb-Sr同位素年龄及其地质意义.高校地质学报, 8(4):399-406. doi: 10.3969/j.issn.1006-7493.2002.04.004
      [56] 颜丹平, 周美夫, 宋鸿林, 等, 2002.华南在Rodinia古陆中位置的讨论--扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比.地学前缘, 9(4):249-256. doi: 10.3321/j.issn:1005-2321.2002.04.004
      [57] 袁海华, 张树发, 张平, 1985.渡口市同德混合片麻岩初获太古宙年龄信息.成都地质学院学报, 8(3):79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198503006.htm
      [58] 朱江, 彭三国, 彭练红, 等, 2019.扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义.地球科学, 44(2):5-15. doi: 10.3799/dqkx.2018.541
    • dqkxzx-47-10-59-附表.docx
    • 加载中
    图(13)
    计量
    • 文章访问数:  610
    • HTML全文浏览量:  205
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-14
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回