Two Significant Stages in the Aridification of the Eastern Chinese Loess Plateau since 1.2 Ma
-
摘要: 重建第四纪时期亚洲内陆干旱过程和沙漠的扩张历史对于我们了解东亚冬季风演变具有重要意义.然而目前对于黄土高原的干旱过程的研究主要聚焦于吕梁山以西的黄土地区,对于其东部还缺乏相应研究.为此,我们对吕梁山东部约1.2 Ma以来的阳曲黄土剖面进行了磁化率和元素含量测试,结果显示阳曲地区在1.2 Ma以来经历了两次明显的干旱事件.第一次干旱化事件发生在0.94 Ma,表现为Si、Fe百分含量和Rb/Sr比值显著减小而Ca含量明显增加,这次事件可能主要与大气CO2浓度下降导致全球冰量增加,特别是北半球冰盖扩张相关.第二次事件发生在0.31 Ma左右,Rb/Sr比值显著下降,Ca含量显著增高,这次事件可能是由于忻定古湖裂解引起区域干旱增强所致.Abstract: Reconstruction of the progressive drying and expansion of deserts in eastern Asia during the Quaternary period is important for understanding the evolution of East Asian winter monsoon. The eolian deposits preserved in the Chinese Loess Plateau (CLP) are an unparalleled record of major wet/dry oscillations superimposed on the general drying trend of the Gobi and other nearby deserts of inland Asia. The element concentrations of these loess deposits in the Yangqu section in the eastern Loess Plateau indicate two major stages in the general aridification since 1.2 Ma. The first major step in aridification occurred at 0.94 Ma as indicated by an abrupt decrease of Si, Fe and Rb/Sr proportions and a significant increase of Ca content. We consider that the dominant factor for this drying step in eastern Loess Plateau was the increase of global ice volume, especially of Northern Hemisphere ice sheets, which force the Intertropical Convergence Zone to shift southward and inhibit the northward movement of moisture monsoon airflows. The second stage toward present aridification occurred at about 0.31 Ma. This step may be a localized regional event, perhaps attributed to the breach of Xin-Ding paleolake.
-
Key words:
- Loess Plateau /
- Yangqu /
- oxygen isotopic composition /
- aridification /
- paleoclimatology
-
图 1 黄土高原东部阳曲的地理位置(黑色圆圈)
黄土分布的范围参考Sun et al. (2010); 红色圆圈代表了黄土高原其他发表了磁化率数据的地区,用于和阳曲地区进行空间上对比; LC.洛川; LT.灵台; JB.靖边; YQ.阳曲; ZJC.赵家川
Fig. 1. Location of the Yangqu site (black dot) in the Chinese Loess Plateau
图 2 阳曲和黄土高原其他地区剖面的磁化率对比
灵台剖面来自于Ding et al. (1999); 赵家川剖面来自于Sun et al. (2006); 靖边剖面来自于Ding et al. (2005); 洛川剖面来自于Hao et al. (2012)
Fig. 2. Spatial linkages of magnetic susceptibility (MS) between the Yangqu site and other parts in the Loess Plateau
图 3 过去1.2 Ma以来阳曲古气候指标和深海氧同位素及天文理论曲线对比
a.北纬65°夏季太阳辐射(绿色)和偏心率曲线(红色)(Laskar et al., 2004); b.底栖有孔虫δ18O LR04序列(Lisiecki and Raymo, 2005); c~g.分别是阳曲剖面的磁化率,Si,Fe,Ca百分含量和Rb/Sr比率
Fig. 3. Comparsion of the paleoclimatic proxies in Yangqu section with other palaeoclimatic data of the past 1.2 Ma
图 5 过去1.2 Ma以来阳曲剖面的Rb/Sr比值和其他古气候记录对比
a.阳曲地区Rb/Sr比值;b.黄土高原中部风尘沉积质量堆积速率(MAR)(Sun and An, 2005); c.海表温度序列(SST)(Martinez-Boti et al., 2015); d.冰芯记录的大气pCO2(绿色)(Lüthi et al., 2008; Petit et al., 1999; Siegenthaler et al., 2005)和海表水记录的大气pCO2(紫色线)(Hönisch et al., 2009);e.来自于ODP1123Mg/Ca记录的冰量(Elderfield et al., 2012)和模拟的结果(Bintanja et al., 2005)
Fig. 5. Comparsion of the Rb/Sr ratio in Yangqu section with other palaeoclimatic data of the past 1.2 Ma
-
[1] An, Z. S., Huang, Y. S., Liu, W. G., et al., 2005. Multiple Expansions of C4 Plant Biomass in East Asia since 7 Ma Coupled with Strengthened Monsoon Circulation. Geology, 33(9):705. https://doi.org/10.1130/g21423.1 [2] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833):62-66. https://doi.org/10.1038/35075035 [3] Bintanja, R., van de Wal, R. S. W., Oerlemans, J., 2005. Modelled Atmospheric Temperatures and Global Sea Levels over the Past Million Years. Nature, 437(7055):125-128. https://doi.org/10.1038/nature03975 [4] Chen, J., An, Z. S., Liu, L. W., et al., 2001. Variations in Chemical Compositions of the Eolian Dust in Chinese Loess Plateau over the Past 2.5 Ma and Chemical Weathering in the Asian Inland. Science in China Series D:Earth Sciences, 44(5):403-413. https://doi.org/10.1007/bf02909779 [5] Clark, P. U., Archer, D., Pollard, D., et al., 2006. The Middle Pleistocene Transition:Characteristics, Mechanisms, and Implications for Long-Term Changes in Atmospheric pCO2. Quaternary Science Reviews, 25(23/24):3150-3184. https://doi.org/10.1016/j.quascirev.2006.07.008 [6] Deng, C. L., Shaw, J., Liu, Q. S., et al., 2006. Mineral Magnetic Variation of the Jingbian Loess/paleosol Sequence in the Northern Loess Plateau of China:Implications for Quaternary Development of Asian Aridification and Cooling. Earth and Planetary Science Letters, 241(1-2):248-259. https://doi.org/10.1016/j.epsl.2005.10.020 [7] Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2002. Stacked 2.6 Ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep-Sea Δ18O Record. Paleoceanography, 17(3):5-1-5-21. https://doi.org/10.1029/2001pa000725 [8] Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2005. Stepwise Expansion of Desert Environment Across Northern China in the Past 3.5 Ma and Implications for Monsoon Evolution. Earth and Planetary Science Letters, 237(1/2):45-55. https://doi.org/10.1016/j.epsl.2005.06.036 [9] Ding, Z. L., Xiong, S. F., Sun, J. M., et al., 1999. Pedostratigraphy and Paleomagnetism of a ~7.0 Ma Eolian Loess-Red Clay Sequence at Lingtai, Loess Plateau, North-Central China and the Implications for Paleomonsoon Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1/2):49-66. https://doi.org/10.1016/s0031-0182(99)00034-6 [10] Ding, Z. L., Yang, S. L., Sun, J. M., et al., 2001. Iron Geochemistry of Loess and Red Clay Deposits in the Chinese Loess Plateau and Implications for Long-Term Asian Monsoon Evolution in the Last 7.0 Ma. Earth and Planetary Science Letters, 185(1-2):99-109. https://doi.org/10.1016/s0012-821x(00)00366-6 [11] Elderfield, H., Ferretti, P., Greaves, M., et al., 2012. Evolution of Ocean Temperature and Ice Volume through the Mid-Pleistocene Climate Transition. Science, 337(6095):704-709. https://doi.org/10.1126/science.1221294 [12] Fang, X., Lü, L., Yang, S., et al., 2002. Loess in Kunlun Mountains and its Implications on Desert Development and Tibetan Plateau Uplift in West China. Science in China Series D, 45(4):289. https://doi.org/10.1360/02yd9031 [13] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Ma ago Inferred from Loess Deposits in China. Nature, 416(6877):159-163. https://doi.org/10.1038/416159a [14] Gylesjö, S., Arnold, E., 2006. Clay Mineralogy of a Red Clay-Loess Sequence from Lingtai, the Chinese Loess Plateau. Global and Planetary Change, 51(3/4):181-194. https://doi.org/10.1016/j.gloplacha.2006.03.002 [15] Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build-Up of Arctic Ice Sheets during 400 000-Year Minima in Insolation Variability. Nature, 490(7420):393-396. https://doi.org/10.1038/nature11493 [16] Hönisch, B., Hemming, N. G., Archer, D., et al., 2009. Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. Science, 324(5934):1551-1554. https://doi.org/10.1126/science.1171477 [17] Hu, Z. B., Pan, B. T., Guo, L. Y., et al., 2016. Rapid Fluvial Incision and Headward Erosion by the Yellow River along the Jinshaan Gorge during the Past 1.2 Ma as a Result of Tectonic Extension. Quaternary Science Reviews, 133:1-14. https://doi.org/10.1016/j.quascirev.2015.12.003 [18] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities Of the Earth. Astronomy & Astrophysics, 428(1):261-285. https://doi.org/10.1051/0004-6361:20041335 [19] Li, J. J., Fang, X. M., Song, C. H., et al., 2014b. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3):400-423. https://doi.org/10.1016/j.yqres.2014.01.002 [20] Li, Y. L., Wang, C. S., Dai, J. G., et al., 2015. Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review. Earth-Science Reviews, 143:36-61. https://doi.org/10.1016/j.earscirev.2015.01.001 [21] Li, Z. J., Sun, D. H., Chen, F. H., et al., 2014a. Chronology and Paleoenvironmental Records of a Drill Core in the Central Tengger Desert of China. Quaternary Science Reviews, 85:85-98. https://doi.org/10.1016/j.quascirev.2013.12.003 [22] Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic Δ18O Records. Paleoceanography, 20(1):10-15. https://doi.org/10.1029/2004pa001071 [23] Liu, X. D., Sun, H., Miao, Y. F., et al., 2015. Impacts of Uplift of Northern Tibetan Plateau and Formation of Asian Inland Deserts on Regional Climate and Environment. Quaternary Science Reviews, 116:1-14. https://doi.org/10.1016/j.quascirev.2015.03.010 [24] Lüthi, D., Le Floch, M., Bereiter, B., et al., 2008. High-Resolution Carbon Dioxide Concentration Record 650 000-800 000 years before Present. Nature, 453(7193):379-382. https://doi.org/10.1038/nature06949 [25] Maher, B. A., Mutch, T. J., Cunningham, D., 2009. Magnetic and Geochemical Characteristics of Gobi Desert Surface Sediments:Implications for Provenance of the Chinese Loess Plateau. Geology, 37(3):279-282. https://doi.org/10.1130/g25293a.1 [26] Martinez-Botí, M. A., Foster, G. L., Chalk, T. B., et al., 2015. Plio-Pleistocene Climate Sensitivity Evaluated Using High-Resolution CO2 Records. Nature, 518(7537):49-54. https://doi.org/10.1038/nature14145 [27] Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735):429-436. https://doi.org/10.1038/20859 [28] Ren, J. J., Zhang, S. M., Meigs, A. J., et al., 2014. Tectonic Controls for Transverse Drainage and Timing of the Xin-Ding Paleolake Breach in the Upper Reach of the Hutuo River, North China. Geomorphology, 206:452-467. https://doi.org/10.1016/j.geomorph.2013.10.016 [29] Ren, J.J., Zhang, S.M, 2006. A Tectonic Movement during Later Stage of Late Pleistocene Epoch in the Xinding Basin. Seismology and Geology, 28(3):487-496 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZDZ200603017.htm [30] Siegenthaler, U., Stocker, T.F., Monnin, E., et al., 2005. Stable Carbon Cycle-Climate Relationship during the Late Pleistocene. Science, 310(5752):1313-1317. https://doi.org/10.1126/science.1120130 [31] Sun, J. M., Lü, T. Y., Zhang, Z. Q., et al., 2012. Stepwise Expansions of C4 Biomass and Enhanced Seasonal Precipitation and Regional Aridity during the Quaternary on the Southern Chinese Loess Plateau. Quaternary Science Reviews, 34:57-65. https://doi.org/10.1016/j.quascirev.2011.12.007 [32] Sun, Y. B., An, Z. S., 2005. Late Pliocene-Pleistocene Changes in Mass Accumulation Rates of Eolian Deposits on the Central Chinese Loess Plateau. Journal of Geophysical Research, 110(D23):1-10. https://doi.org/10.1029/2005jd006064 [33] Sun, Y. B., An, Z. S., Clemens, S. C., et al., 2010. Seven Million Years of Wind and Precipitation Variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 297(3-4):525-535. https://doi.org/10.1016/j.epsl.2010.07.004 [34] Sun, Y. B., Clemens, S. C., An, Z. S., et al., 2006. Astronomical Timescale and Palaeoclimatic Implication of Stacked 3.6 Ma Monsoon Records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1/2):33-48. https://doi.org/10.1016/j.quascirev.2005.07.005 [35] Sun, Y.B., An, Z.S, 2002. Variation of the East Asian Winter Monsoon Recorded by Chinese Loess during the last Four Glacial-Interglacial Cycles. Earth Science, 27(1):19-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200201003.htm [36] Wu, F. L., Fang, X. M., Ma, Y. Z., et al., 2007. Plio-Quaternary Stepwise Drying of Asia:Evidence from a 3 Ma Pollen Record from the Chinese Loess Plateau. Earth and Planetary Science Letters, 257(1/2):160-169. https://doi.org/10.1016/j.epsl.2007.02.029 [37] Wu, Y., Zhu, Z. Y., Qiu, S. F., et al., 2013. A Rock Magnetic Record of Asian Cooling and Aridification Processes during 1.95~0.40 Ma in the Southeastern Chinese Loess Plateau. Chinese Science Bulletin, 58(30):3636-3644. https://doi.org/10.1007/s11434-013-5775-5 [38] Yang, S. L., Ding, F., Ding, Z. L., 2006. Pleistocene Chemical Weathering History of Asian Arid and Semi-Arid Regions Recorded in Loess Deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70(7):1695-1709. https://doi.org/10.1016/j.gca.2005.12.012 [39] Zeng, F.M., Xiang, S.Y., Lu, Y.L., 2007. Environmental Evolution of Late Pleistocene Loess Deposits at Lintao County, Gansu Province. Earth Science, 32(5):703-712 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200705015.htm [40] Zhang, S. M., Ren, J. J., Nie, G. Z., 2007. Paragenesia of Quaternary Pediments and River Terraces on the North Piedmont of Wutai Mountains. Chinese Science Bulletin, 52(4):521-530. https://doi.org/10.1007/s11434-007-0081-8 [41] 任俊杰, 张世民, 2006.忻定盆地晚更新世晚期的一次构造运动.地震地质, 28(3):487-496. doi: 10.3969/j.issn.0253-4967.2006.03.018 [42] 孙有斌, 安芷生, 2002.最后4个冰期旋回中国黄土记录的东亚冬季风变化.地球科学, 27(1):19-24. http://www.earth-science.net/article/id/1056 [43] 曾方明, 向树元, 路玉林, 等, 2007.甘肃临洮晚更新世黄土环境变迁.地球科学, 32(5):703-712. http://www.earth-science.net/article/id/3530