• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用

    徐峥 郑永飞

    徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
    引用本文: 徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
    Xu Zheng, Zheng Yongfei, 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
    Citation: Xu Zheng, Zheng Yongfei, 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273

    中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用

    doi: 10.3799/dqkx.2019.273
    基金项目: 

    国家自然科学基金项目 41673028

    国家自然科学基金项目 41590620

    中国科学院先导专项 XDB18020303

    科技部“973”计划项目 2015CB856100

    详细信息
      作者简介:

      徐峥(1985—), 男, 副研究员, 从事俯冲带岩浆岩研究工作

    • 中图分类号: P581

    Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China

    • 摘要: 大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.

       

    • 图  1  中国东部新生代玄武岩硅碱图

      引自Xu and Zheng(2017)

      Fig.  1.  TAS diagram of Cenozoic basalts in eastern China

      图  2  中国东部新生代玄武岩Sr⁃Nd⁃Pb同位素组成

      引自Xu and Zheng(2017)

      Fig.  2.  Sr⁃Nd⁃Pb isotope compositions of Cenozoic basalts in eastern China

      图  3  中国东部新生代玄武岩206Pb/204Pb vs. Nb/La图

      引自Xu et al.(2017)

      Fig.  3.  206Pb/204Pb vs. Nb/La diagram for Cenozoic basalts in eastern China

      图  4  中国东部新生代玄武岩成因模式图

      Fig.  4.  Schematic diagrams for origin of Cenozoic basalts in eastern China

    • [1] Allègre, C.J., 1982.Chemical Geodynamics.Tectonophysics, 81(3-4):109-132. https://doi.org/10.1016/0040⁃1951(82)90125⁃1
      [2] Chen, L.H., Zeng, G., Jiang, S.Y., et al., 2009.Sources of Anfengshan Basalts:Subducted Lower Crust in the Sulu UHP Belt, China.Earth and Planetary Science Letters, 286(3-4):426-435. https://doi.org/10.1016/j.epsl.2009.07.006
      [3] Farmer, G.L., 2007.Continental Basaltic Rocks.Treatise on Geochemistry, 3:1-39. https://doi.org/10.1016/b0⁃08⁃043751⁃6/03019⁃x
      [4] Goes, S., Agrusta, R., van Hunen, J., et al., 2017.Subduction⁃Transition Zone Interaction:A Review.Geosphere, 13(3):644-664. https://doi.org/10.1130/ges01476.1
      [5] Hart, S.R., 1984.A Large⁃Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature, 309:753-757. https://doi.org/10.1038/309753a0
      [6] Hu, Y., Teng, F.Z., Zhang, H.F., et al., 2016.Metasomatism⁃Induced Mantle Magnesium Isotopic Heterogeneity:Evidence from Pyroxenites.Geochimica et Cosmochimica Acta, 185:88-111. https://doi.org/10.1016/j.gca.2015.11.001
      [7] Huang, J., Li, S.G., Xiao, Y.L., et al., 2015.Origin of Low δ26 Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications.Geochimica et Cosmochimica Acta, 164:298-317. https://doi.org/10.1016/j.gca.2015.04.054
      [8] Huang, J.L., Zhao, D.P., 2006.High⁃Resolution Mantle Tomography of China and Surrounding Regions.Journal of Geophysical Research :Soild Earth, 111(B9):B09305. https://doi.org/10.1029/2005jb004066
      [9] Kimura, G., Kitamura, Y., Yamaguchi, A., et al., 2019.Origin of the Early Cenozoic Belt Boundary Thrust and Izanagi⁃Pacific Ridge Subduction in the Western Pacific Margin.Island Arc, 28(5). https://doi.org/10.1111/iar.12320
      [10] Li, C., van der Hilst, R.D., 2010.Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography.Journal of Geophysical Research:Soild Earth, 115(B7):B07308. https://doi.org/10.1029/2009jb006882
      [11] Li, Y.Q., Ma, C.Q., Robinson, P.T., et al., 2015.Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone:Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China.Lithos, 230:146-165. https://doi.org/10.1016/j.lithos.2015.05.021
      [12] Li, Y.Q., Ma, C.Q., Robinson, P.T., 2016a.Petrology and Geochemistry of Cenozoic Intra⁃Plate Basalts in East⁃Central China:Constraints on Recycling of an Oceanic Slab in the Source Region.Lithos, 262:27-43. https://doi.org/10.1016/j.lithos.2016.06.012
      [13] Li, H.Y., Xu, Y.G., Ryan, J.G., et al., 2016b.Olivine and Melt Inclusion Chemical Constraints on the Source of Intracontinental Basalts from the Eastern North China Craton:Discrimination of Contributions from the Subducted Pacific Slab.Geochimica et Cosmochimica Acta, 178:1-19. https://doi.org/10.1016/j.gca.2015.12.032
      [14] Li, H.Y., Zhou, Z., Ryan, J.G., et al., 2016c.Boron Isotopes Reveal Multiple Metasomatic Events in the Mantle beneath the Eastern North China Craton.Geochimica et Cosmochimica Acta, 194:77-90. https://doi.org/10.1016/j.gca.2016.08.027
      [15] Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large⁃Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(11):111-120. https://doi.org/10.1093/nsr/nww070
      [16] Liu, S.A., Wang, Z.Z., Li, S.G., et al., 2016.Zinc Isotope Evidence for a Large⁃Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters, 444:169-178. https://doi.org/10.1016/j.epsl.2016.03.051
      [17] Liu, X., Zhao, D.P., Li, S.Z., et al., 2017.Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications.Earth and Planetary Science Letters, 464:166-174. https://doi.org/10.1016/j.epsl.2017.02.024
      [18] Liu, Y.S., Gao, S., Kelemen, P.B., et al., 2008.Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton.Geochimica et Cosmochimica Acta, 72(9):2349-2376. https://doi.org/10.1016/j.gca.2008.02.018
      [19] Morlidge, M., Pawley, A., Droop, G., 2006.Double Carbonate Breakdown Reactions at High Pressures:An Experimental Study in the System CaO⁃MgO⁃FeO⁃MnO⁃CO2.Contributions to Mineralogy and Petrology, 152(3):365-373. https://doi.org/10.1007/s00410⁃006⁃0112⁃5
      [20] Plank, T., 2014.The Chemical Composition of Subducting Sediments.Treatise on Geochemistry, 4:607-629. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00319⁃3
      [21] Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry, 4:1-51. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00301⁃6
      [22] Sato, K., Katsura, T., 2001.Experimental Investigation on Dolomite Dissociation into Aragonite+Magnesite up to 8.5 GPa.Earth and Planetary Science Letters, 184(2):529-534. https://doi.org/10.1016/S0012⁃821x(00)00346⁃0
      [23] Schmid, C., Goes, S., van der Lee, S., et al., 2002.Fate of the Cenozoic Farallon Slab from a Comparison of Kinematic Thermal Modeling with Tomographic Images.Earth and Planetary Science Letters, 204(1-2):17-32. https://doi.org/10.1016/s0012⁃821x(02)00985⁃8
      [24] Scire, A., Zandt, G., Beck, S., et al., 2016.Imaging the Transition from Flat to Normal Subduction:Variations in the Structure of the Nazca Slab and Upper Mantle under Southern Peru and Northwestern Bolivia.Geophysical Journal International, 204(1):457-479. https://doi.org/10.1093/gji/ggv452
      [25] Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere⁃Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. https://doi.org/10.1016/j.chemgeo.2006.03.013
      [26] Wang, X.C., Li, Z.X., Li, X.H., et al., 2012.Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia:A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones? Journal of Petrology, 53(1):177-233. https://doi.org/10.1093/petrology/egr061
      [27] Wang, X.C., Wilde, S.A., Li, Q.L., et al., 2015.Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone.Nature Communications, 6:7700. https://doi.org/10.1038/ncomms8700
      [28] Wang, Y., Zhao, Z.F., Zheng, Y.F., et al., 2011.Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East⁃Central China.Lithos, 125(3-4):940-955. https://doi.org/10.1016/j.lithos.2011.05.007
      [29] Xu, Y.G., 2014.Recycled Oceanic Crust in the Source of 90-40 Ma Basalts in North and Northeast China:Evidence, Provenance and Significance.Geochimica et Cosmochimica Acta, 143:49-67. https://doi.org/10.1016/j.gca.2014.04.045
      [30] Xu, Y.G., Ma, J.L., Frey, F.A., et al., 2005.Role of Lithosphere⁃Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton.Chemical Geology, 224(4):247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004
      [31] Xu, Y.G., Zhang, H.H., Qiu, H.N., et al., 2012a.Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China:Derived from the Mantle Transition Zone? Chemical Geology, 328:168-184. https://doi.org/10.1016/j.chemgeo.2012.01.027
      [32] Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012b.Slab⁃Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146-147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019
      [33] Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust⁃Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010
      [34] Xu, Z., Zheng, Y.F., Zhao, Z.F., 2017.The Origin of Cenozoic Continental Basalts in East⁃Central China:Constrained by Linking Pb Isotopes to other Geochemical Variables.Lithos, 268-271:302-319. https://doi.org/10.1016/j.lithos.2016.11.006
      [35] Yang, Z.F., Li, J., Liang, W.F., et al., 2016.On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China:Implications for Source Lithology and the Origin of Basalts.Earth⁃Science Reviews, 157:18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
      [36] Yang, Z.F., Zhou, J.H., 2013.Can We Identify Source Lithology of Basalt? Scientific Reports, 3:1856. https://doi.org/10.1038/srep01856
      [37] Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East⁃Central China.Lithos, 110(1-4):305-326. https://doi.org/10.1016/j.lithos.2009.01.006
      [38] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
      [39] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049
      [40] Zheng, Y.F., Wu, F.Y., 2009.Growth and Reworking of Cratonic Lithosphere.Chinese Science Bulletin, 54(14):1945-1949(in Chinese). doi: 10.1360/csb2009-54-14-1945
      [41] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018.Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere.Science China:Earth Sciences, 48(4):379-414(in Chinese).
      [42] Zhi, X.C., Song, Y., Frey, F.A., et al., 1990.Geochemistry of Hannuoba Basalts, Eastern China:Constraints on the Origin of Continental Alkalic and Tholeiitic Basalt.Chemical Geology, 88(1-2):1-33. https://doi.org/10.1016/0009⁃2541(90)90101⁃c
      [43] Zhou, X., Armstrong, R., 1982.Cenozoic Volcanic Rocks of Eastern China:Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition.Earth and Planetary Science Letters, 58(3):301-329. https://doi.org/10.1016/0012⁃821x(82)90083⁃8
      [44] 郑永飞, 吴福元, 2009.克拉通岩石圈的生长和再造.科学通报, 54(14):1945-1949. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200914002.htm
      [45] 郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏.中国科学:地球科学, 48(4):379-414. doi: 10.1360/N072017-00235
    • 加载中
    图(4)
    计量
    • 文章访问数:  3600
    • HTML全文浏览量:  1321
    • PDF下载量:  184
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-01
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回