Zircon U-Pb Chronology and Geochemistry of the Wuliji Intrusions in the Northern Alxa Block: Constraints on the Tectonic Evolution of the Southern Altaids
-
摘要: 阿拉善地块北缘是研究古亚洲洋最终闭合过程的重要区域,该区大面积出露的石炭-二叠纪火成岩尚缺乏深入探讨,直接导致古亚洲洋最终闭合时间的认识无法统一,进而制约了中亚造山带南缘中部晚古生代构造演化问题的讨论.通过选取的乌力吉岩体位于恩格乌苏断裂带和巴丹吉林断裂带之间,处于沙拉扎山构造带内,对其开展了系统的岩相学、全岩地球化学及锆石U-Pb年代学研究.结果显示,岩体主要由花岗闪长岩和花岗岩组成,花岗闪长岩2件样品加权平均年龄分别为:266.00±1.00 Ma(MSWD=0.69)、267.76±0.97 Ma(MSWD=0.26).花岗岩3件样品加权平均年龄分别为:254.57±0.99 Ma(MSWD=0.79)、253.70±1.70 Ma(MSWD=2.50)、252.50±2.90 Ma(MSWD=4.70).SiO2含量:花岗闪长岩64.13%~67.17%,花岗岩68.08%~75.29%;Na2O+K2O含量:花岗闪长岩6.40%~7.00%,花岗岩7.09%~7.94%,均属中等分异的Ⅰ型花岗岩.Nb、Ta、P、Ti明显亏损,K、Zr、Hf具明显正异常.轻稀土(LREE)富集,重稀土(HREE)亏损且分馏明显,LREE/HREE=6.49~17.45.(La/Yb)N值:花岗闪长岩6.21~8.80,花岗岩9.21~22.06.地球化学特征反映两期侵入体具壳幔混合特性,以壳源为主,表现分离结晶和晚期流体交代作用特征.综合沉积建造及岩石地球化学认为,古亚洲洋可能在二叠纪前已经闭合,阿拉善地区于二叠纪进入板内演化阶段,乌力吉一带处于区域性同造山挤压向造山后伸展折返或后碰撞伸展环境.Abstract: The northern Alxa block is the key area for studying the closing of the Paleo-Asian Ocean,whereas the Permo-Carboniferous igneous in this area have been rarely investigated,leading to the time and way of the closing of the Paleo-Asian Ocean can not be unified directly,and more importantly,restricting a deeper insight into the tectonic evolution of the central southern Altaids in late Paleozoic.In this paper,we carried out a systematic study of the petrography,whole rock geochemistry,zircon U-Pb dating for the Wuliji intrusions,which are located in the Shalazhashan structural belt that spreading between the Engewusu fault belt and Badanjilin fault belt.Our results demonstrated that the Wuliji intrusions are mainly composed of granodiorite and granite,the weighted average ages of two samples from granodiorite are 266.00±1.00 Ma(MSWD=0.69)、267.76±0.97 Ma(MSWD=0.26),and the weighted average ages of three samples from granite are 254.57±0.99 Ma(MSWD=0.79)、253.70±1.70 Ma(MSWD=2.50)、252.50±2.90 Ma(MSWD=4.70). The SiO2 contents of the granodiorite are between 64.13%-67.17%,while the granite are between 68.08%-75.29%,the Na2O+K2O contents of the granodiorite are between 6.40%-7.00%,while the granite are between 7.09%-7.94%,both are I-type granites with medium degree of differentiation. They are depleted in Nb、Ta、P、Ti and HREEs,but relatively enriched in K、Zr、Hf and LREEs,the total content rations of LREE and HREE are between 6.49-17.45 and the fractionation of the HREEs is obvious. The (La/Yb)N values of granodiorite are between 6.21-8.80,while the granite are between 9.21-22.06. Geochemistry shows that the two stages intrusions were resulted from crust-mantle interaction with the crust as the major magmatic source and the separate crystallization,fluid metasomatism. The geological,elemental and isotopic evidences show that the Paleo-Asian Ocean maybe closed in Pre-Permian,and the Alxa was in-board evolution since Permian,the Wuliji area was under the transformation phase from regional syn-orogenic squeeze to post-orogenic extension or post-collision extension phase.
-
Key words:
- Wuliji intrusions /
- Permo-Carboniferous /
- crust-mantle interaction /
- post-collision /
- Paleo-Asian Ocean /
- geochemistry
-
阿拉善地块北缘位于中亚造山带南缘中部,是研究古亚洲洋最终闭合过程的重要区域.古亚洲洋的闭合与中亚造山带的形成密切相关,尽管如此,关于古亚洲洋最终闭合的时间目前仍存在较大争议.总体来看,有3种观点:早古生代说(Tang,1990;Tang and Yang, 1993;Kheraskova et al., 2003)、泥盆纪-石炭世说(何国琦等,1994;Hendrix et al., 1996;Han et al., 1997;Solomovich and Trifonov, 2002;Charvet et al., 2007;Wang et al., 2007;张文等,2013;郑荣国等,2013;史兴俊等,2014;Shi et al., 2014)、二叠纪-早中三叠世说(吴泰然和何国琦,1993;王廷印等, 1994, 1998;Dobretsov et al., 1995;Xiao et al., 2003, 2009, 2010, 2015;Li,2006;Li et al., 2007;Windley et al., 2007;刘治博和张维杰, 2014a, 2014b;杨立业,2014;张伟等,2014;Zheng et al., 2014;尹海权,2016;许文良等,2019).
该区处于华北板块、塔里木板块和哈萨克斯坦板块及其陆缘的结合部位,古生代构造演化极其复杂,区内火成岩分布广泛,前人对火成岩岩石学、地球化学、年代学及相关的层序地层学、古生物学方面做了大量研究,或认为其形成于大陆边缘裂谷(周立发等,1995),或沟-弧-盆体系(仵康林,2011;李杰,2012;冉皞等,2012;Feng et al., 2013;张磊等,2013;张文等,2013;刘治博和张维杰, 2014a, 2014b;史兴俊等,2014;Zheng et al., 2014),或后碰撞伸展环境(韩宝福等,2010;张文等,2013),或板内裂谷环境,且可能与地幔柱事件有关(Dan et al., 2014).火成岩形成构造环境的分歧,直接导致古亚洲洋最终闭合时间的认识无法统一,进而制约了中亚造山带南缘中部晚古生代构造演化问题的讨论.
基于笔者近几年详细的野外调查和测量,本文以大量前人数据、现象为基础,以作者在乌力吉地区开展的花岗岩地球化学、年代学及地层学研究为补充,探讨研究区二叠纪火成岩的成因、形成的构造环境及大地构造演化意义,以期对古亚洲洋的闭合时间及该地区晚古生代构造演化等研究提供一些新资料.
1. 地质背景与样品
阿拉善地块北缘主要由蛇绿混杂岩、大洋岛弧、陆缘弧与古大陆边缘沉积拼合而成,大型断裂发育,从北向南依次分布着雅干断裂带、恩格乌苏断裂带和查干础鲁断裂带3条具分区意义的构造带,在后两条断裂带中发现蛇绿混杂岩,并据该3条断裂将阿拉善北部自北向南划分为珠斯楞-杭乌拉构造带、宗乃山-沙拉扎山构造带和诺尔公-洪古尔玉林构造带(王廷印等, 1994, 1998).有关该3条断裂的构造意义方面的论述较多,前人研究认为恩格乌苏断裂带是古亚洲洋闭合(Zheng et al., 2014)或板块边界的位置(吴泰然和何国琦,1993;王廷印等, 1994, 1998)或中亚造山带的南界(Feng et al., 2013),近年有学者认为中亚造山带南界应在恩格乌苏断裂带以南(史兴俊等,2014;张建军等, 2015, 2016)(图 1).
图 1 阿拉善地区大地构造位置(a)和地质简图(b)改自史兴俊等(2016);1.前寒武系;2.志留系;3.泥盆系;4.石炭系;5.二叠系;6.三叠系;7.中新生界;8.泥盆纪花岗岩;9.石炭纪花岗岩;10.二叠纪辉长岩;11.二叠纪花岗岩;12.中生代花岗岩;13.碱性岩;14.断层;15.国界;16.研究区;图中所引用的参考文献:任康绪等(2005);李俊建(2006);韩宝福等(2010);仵康林(2011);赵磊等(2011);耿元生和周喜文(2012);李杰(2012);冉皞等(2012);史兴俊等(2012, 2014);张建军等(2012);Feng et al.(2013);张磊等(2013);张文等(2013);Dan et al.(2014, 2015, 2016);刘治博和张维杰(2014a, 2014b);Shi et al.(2014);徐学义等(2014);杨奇荻等(2014);Wang et al.(2014);Wei et al.(2014);Zheng et al.(2014);陈高潮等(2015);史兴俊(2015);郑荣国等(2016)Fig. 1. Tectonic location (a) and geological sketch map (b) of the Alxa area乌力吉地区位于恩格乌苏断裂带和查干础鲁断裂带之间,处于沙拉扎山构造带内,带内花岗岩广布,出露花岗岩东西长200 km,面积大于3 000 km2,多位学者对该花岗岩带开展了研究,认为其为古亚洲洋南部陆缘构造演化的产物,乌力吉花岗岩体是该带具代表性的岩体.
区内沉积地层主要见上石炭统本巴图组和上石炭-下二叠统阿木山组及中新生界,本巴图组为变质碎屑岩、极少量碳酸盐岩.阿木山组为各类碳酸盐岩,碎屑岩和极少量硅质岩,局部夹火山岩.二叠纪时期,受华力西运动影响,构造岩浆活动强烈,地壳隆起,海相沉积结束.中生代时期,在继承早期构造格架的基础上,叠加了北东、北西向构造,在区内及其周边发育大规模断陷盆地,发生了较大范围的陆相沉积,并伴有火山活动,形成了巴音戈壁组、苏红图组、乌兰苏海组.区内经历了多期构造叠加,构造线主体方向为近东西向,后期叠加北东、近南北、北西向构造(张文等,2013).
乌力吉岩体呈东西向不规则岩基、岩株、岩枝状产出.主要岩性有中二叠世花岗岩(P2γ)、二长花岗岩(P2ηγ)、正长花岗岩(P2εγ)、石英二长闪长岩(P2δηο)、花岗闪长岩(P2γδ),晚二叠世花岗岩(P3γ)、黑云母花岗岩(P3γβ)(图 2).岩体内脉岩发育(图 3a),多见石英闪长岩脉、闪长玢岩脉、石英闪长玢岩脉、花岗岩脉、花岗斑岩脉等.岩体侵入石炭系,同化混染现象普遍(图 3b),致使岩石结构构造、矿物成分等均发生一定变化.岩体内包体常见(图 3c),形态多样,塑性、刚性外形均可见,呈椭圆、浑圆及不规则长条状、扁豆状、火焰状及棱角状等,部分包体呈拉长变形状,塑性流变特征常见.在局部岩体面理发育地段,包体延伸方向及其中组分的定向与寄主岩石面理基本一致,强应力作用地段,包体也被拉长呈纺锤状.尽管如此,也并不是所有的包体都遭受了变形,部分刚性包体仍保留棱角状,岩体面理发生弯曲绕过包体.包体多零星分布,局部集中出现,并显示出随寄主岩SiO2含量的增加而减少的趋势.包体与寄主岩石间接触界线截然,但其界面大多呈弯曲状,偶见过渡关系,呈雾迷状.
乌力吉岩体主要为花岗岩和花岗闪长岩,花岗岩具细中粒花岗结构,斑晶主要为斜长石(55%±)、钾长石(15%~20%)、石英(20%+)、黑云母(5%~10%).斜长石呈半自形板状、宽板状,杂乱分布,大小一般2~5 mm,部分0.3~2.0 mm,个别 > 5.0 mm,聚片双晶发育,用⊥(010)晶带最大消光角法测得Np'∧(010)=17,斜长石牌号An=34,为中长石,可见环带构造,与钾长石接触部位可见蠕虫结构、净边结构;钾长石为微斜长石、微斜条纹长石等,呈半自形板状,部分它形粒状,杂乱分布,部分填隙状分布,大小一般0.2~2.0 mm,少量2~3 mm,格子双晶发育,少见粒内包含斜长石等颗粒,交代斜长石;石英呈它形粒状,单晶或集合体分布于长石间,大小一般0.2~5.0 mm,发育少量亚颗粒,粒内明显波状、带状消光;黑云母片状、鳞片状,星散分布,大小一般2.0~2.5 mm,部分0.1~2.0 mm,多色性明显:Ng'=暗褐色,Np'=浅黄色.副矿物为不透明矿物、磷灰石、锆石、榍石、褐帘石(图 4d、4e、4f).
花岗闪长岩具似斑状-基质细粒花岗结构,斑晶主要为斜长石(55%±)、钾长石(10%±)、石英(20%+)、角闪石(5%~10%)、黑云母(5%~10%).斜长石呈半自形板状,杂乱分布,大小一般0.2~2.0 mm,部分宽板状、长板条状,大小为2.0~5.0 mm,为似斑晶,部分隐约可见环带构造,聚片双晶发育,用⊥(010)晶带最大消光角法测得Np'∧(010)=18,斜长石牌号An=36,为中长石,少量与钾长石接触部位可见蠕虫结构;钾长石为微斜长石、正长石,呈它形-半自形板状,填隙状分布,大小为0.2~2.0 mm,沿边缘及裂纹偶可见应力蠕英结构,时粒内及边缘嵌布斜长石颗粒,偶见其交代斜长石;石英呈他形粒状杂乱分布,局部填隙状分布,大小为0.2~3.0 mm,粒内多嵌布长石等颗粒,边缘缝合线状,粒内轻波状、带状消光;角闪石呈半自形柱状,星散分布,大小为0.1~2.5 mm,多色性明显:Ng'=绿褐色,Np'=浅黄褐色,偶见其被黑云母交代;黑云母片状、鳞片状,星散分布,大小为0.1~1.5 mm,局部绿泥石化,多色性明显:Ng'=暗褐色,Np'=浅黄色.副矿物为不透明矿物、榍石、锆石、磷灰石(图 4g、4h、4i).
2. 样品分析方法
本文对花岗岩、花岗闪长岩分别开展了7件、7件薄片鉴定和6件、7件主量、微量、稀土元素含量测试,另分别开展了3件、2件锆石LA-ICP-MS U-Pb年代学测试.
薄片鉴定、主量、微量、稀土元素含量测试由河北省区域地质矿产研究所实验室完成.主要检测仪器为:主量元素用AxiosmaxX射线荧光光谱仪、灼失量用P124S电子分析天平、H2O-、H2O+、FeO用50 mL滴定管、稀土微量元素用X Series2电感耦合等离子体质谱仪.用于年代学分析的样品在河北省区域地质矿产研究所实验室利用标准技术对锆石进行分选,将完整的典型锆石置于DEVCON环氧树脂中,待固结后抛磨,使锆石内部充分暴露,然后在北京锆年领航科技有限公司进行锆石的显微照相(放射光和透射光)和阴极发光(CL)照相.锆石U-Pb同位素分析在天津地质调查中心同位素实验室完成,使用仪器为Neptune多接收电感耦合等离子体质谱仪和193 nm激光取样系统(LA-MC-ICP-MS).激光剥蚀的斑束为35 μm,能量密度为13~14 J/cm2,频率为8~10 Hz,以He为载气将激光剥蚀物质送入Neptune(MC-ICP-MS).数据处理采用ICPMSDataCal、Isoplot3.0程序.锆石标样采用TEMORA标准锆石,采用208Pb对普通铅进行校正,利用NIST作为外标计算锆石样品的Pb、Th、U含量.
3. 锆石U-Pb年代学
对5件样品均挑选25颗锆石进行分析测试,阴极发光图像显示:样品TW4中的锆石多呈自形-半自形结构,短柱状或粒状晶形,单颗粒锆石长约120~350 μm,宽约70~130 μm,部分具清晰的震荡环带. 22个有效数据显示(附表 1,图 4a):Th/U值在0.312 0~1.030 2之间,属岩浆成因. 206Pb/238U加权平均年龄为254.57±0.99 Ma(MSWD=0.79,n=25)(图 5a);样品TW5中的锆石多呈自形-半自形结构,短柱状或粒状晶形,单颗粒锆石长约90~330 μm,宽约80~120 μm,部分具清晰的震荡环带. 23个有效数据显示(附表 1,图 4b):Th/U值在0.257 8~0.683 5之间,属岩浆成因. 206Pb/238U加权平均年龄为266.00±1.00 Ma(MSWD=0.69,n=25)(图 5b);样品TW10中的锆石多呈半自形-他形结构,柱状或粒状晶形,单颗粒锆石长约80~360 μm,宽约50~100 μm,大部分具清晰的震荡环带. 22个有效数据显示(附表 1,图 4c):Th/U值在0.394 7~0.790 3之间,属岩浆成因. 206Pb/238U加权平均年龄为253.70±1.70 Ma(MSWD=2.50,n=25)(图 5c);样品TW11中的锆石多呈自形-半自形结构,短柱状或粒状晶形,单颗粒锆石长约110~370 μm,宽约90~140 μm,大部分具清晰的震荡环带. 23个有效数据显示(附表 1,图 4d):Th/U值在0.325 9~3.098 2之间,属岩浆成因. 206Pb/238U加权平均年龄为252.50± 2.90 Ma(MSWD=4.70,n=25)(图 5d);样品TW14中的锆石多呈自形-半自形结构,短柱状或粒状晶形,单颗粒锆石长约80~380 μm,宽约50~110 μm,大部分具清晰的震荡环带. 25个有效数据显示(附表 1,图 4e):Th/U值在0.416 1~0.858 2之间,属岩浆成因. 206Pb/238U加权平均年龄为267.76±0.97 Ma(MSWD=0.26,n=25)(图 5e).样品TW4、TW10、TW11年龄数据代表了花岗岩的结晶年龄,TW5、TW14年龄数据代表了花岗闪长岩的结晶年龄.
4. 地球化学特征
4.1 主量元素特征
主量元素分析及统计结果见附表 2、附表 3,在阳离子标准矿物Ab-An-Or图解上,TW10、TW14系列样品均分别落在花岗岩区和花岗闪长岩区(图 6a);在铝饱和指数判别图解上(图 6b),花岗岩主要落在过铝质区域,花岗闪长岩落在准铝质区域;在(Na2O+K2O)-SiO2图解上(图 6c),花岗岩和花岗闪长岩全落在亚碱性系列区域;在K2O-SiO2图解上(图 6d),花岗岩主要落在高钾钙碱性系列区域,花岗闪长岩落在高钾钙碱性系列与钙碱性系列过渡区域.从固结指数(SI)可知两期侵入体均经历了一定程度的分异,且花岗闪长岩的分异程度要高于花岗岩.
图 6 An-Ab-Or图解(a)、A/NK-A/CNK图解(b)、Na2O+K2O-SiO2图解(c)、K2O-SiO2图解(d)a.据Baker(1979);b.据Maniar and Piccoli(1989);c.据Middlemost(1994);d.实线据Peccerillo and Taylor(1976), 虚线据Middlemost(1985);其中c,d横纵坐标均表示为百分比数值;5.花岗闪长岩;6.花岗岩;Ir.上碱性, 下亚碱性Fig. 6. Plot of An-Ab-Or(a), A/NK vs. A/CNK(b), Na2O+K2O vs. SiO2(c) and K2O vs. SiO2(d)4.2 稀土元素特征
稀土元素分析及统计结果见附表 2、附表 4,在球粒陨石标准化分配模式图解上(图 7a),两期侵入体轻稀土(LREE)富集,重稀土(HREE)亏损且分馏明显,均显示弱负Eu异常.
4.3 微量元素特征
在微量元素原始地幔标准化蛛网图上(图 7b),两期侵入体微量元素含量分布和变化特征类似,显示了同源演化的特征,Nb、Ta、P、Ti明显亏损,K、Zr、Hf具明显正异常,与中亚造山带晚古生代花岗岩特征基本一致.
5. 讨论
5.1 成岩时代
从整个阿拉善地区看,宗乃山-沙拉扎山构造带内的岩浆岩年龄集中在250~270 Ma之间,其南北的诺尔公-红古尔玉林构造带、珠斯楞-杭乌拉构造带内的岩浆岩年龄集中在270~280 Ma之间.位于宗乃山-沙拉扎山构造带内的侵入岩总体呈北东向带状展布,野外接触关系、岩石岩相学特征显示,该构造带内至少有两期岩浆活动,年代学研究证实了这一野外认识.前人在塔木素及乌力吉一带开展了大量同位素年代学研究,塔木素一带年龄数据在247~274 Ma之间,乌力吉一带年龄数据在248~275 Ma之间.年代学统计发现(图 1),宗乃山-沙拉扎山构造带二叠纪侵入岩主要形成在中二叠世(264~273 Ma)及二叠纪末-早三叠世(247~255 Ma)(史兴俊,2015),且以后者为主(张文等,2013;Shi et al., 2014;史兴俊等,2014),空间分布上两期侵入体包络在一起,规模上后者远大于前者.本次工作2件花岗闪长岩年龄在266.00~267.76 Ma之间,3件花岗岩年龄在252.50~254.57 Ma之间,可见花岗闪长岩形成在中二叠世晚期,花岗岩形成在晚二叠世早期.
5.2 岩石属性及成因信息
5.2.1 成岩结晶温度、压力和深度
利用锆石饱和温度计计算得出,花岗岩锆石饱和温度738.5~767.0 ℃,平均754.7 ℃;花岗闪长岩锆石饱和温度774.0~815.7 ℃,平均794.6 ℃.花岗岩具低Sr低Yb特征,花岗闪长岩具低Sr高Yb特征,二者可能均在中压条件下形成(张旗等, 2006a, 2006b, 2008a).岩石地球化学数据显示,LREE分异不明显,弱δEu负异常,Sr元素轻微亏损,表明源区斜长石残留少,岩浆分异作用中等,据此估计岩浆源区深度可能大于35 km,并可大致判断花岗岩源区深度大于花岗闪长岩.
5.2.2 岩石成因类型
M型花岗岩是由俯冲大洋地壳或上覆地幔衍化而来,K2O含量通常 < 1%,本次工作所采样品K2O含量均 > 1%,所以花岗岩、花岗闪长岩不可能是M型花岗岩(Chappell,1999).典型的S型花岗岩Na2O含量低,SiO2含量与Ba、Zr、La含量负相关,研究区两期侵入体均富Na2O(3.73%~4.20%),SiO2与Ba、Zr、La正相关,与典型的S型花岗岩特征截然不同(Hine et al., 1978;Chappell,1999). M型花岗岩K2O/Na2O值一般较高,且LILE/HFSE值低(LILE指大离子亲石元素,HFSE指高场强元素),研究区两期侵入体K2O/ Na2O值偏低,LILE/HFSE值偏高,不符合A型花岗岩基本特征(Clarke et al., 1992).
Chappell(1992)提出P2O5、Th、Ba、Rb等可作为区分I、S、A、M型花岗岩的可靠依据,根据Chappell(1992)和李献华等(2007)给出的判别图解,在P2O5-SiO2图解上(图 8a),花岗岩和花岗闪长岩均表现为Ⅰ型.在Rb-Y图解上(图 8b),花岗岩Y、Rb具有高含量,表现为Ⅰ型花岗岩特征,Y、Rb含量相关性不明显.花岗闪长岩Y、Rb含量具明显正相关性,表现为Ⅰ型花岗岩特征.在SiO2-Ce图解上(图 8c),花岗岩和花岗闪长岩均表现为Ⅰ型.花岗岩、花岗闪长岩10 000×Ga/Al、(Na2O+K2O)/CaO和Zr+Nb+Ce+Y值均较低,在相关图解中落入Ⅰ型花岗岩区(图 8d),在Na2O-K2O图解上(图 8e),花岗岩、花岗闪长岩均落入Ⅰ型花岗岩区.花岗闪长岩出现特征性矿物角闪石,花岗岩含黑云母,两期侵入体副矿物均出现榍石,缺少富铝矿物(如白云母、电气石、石榴石),据CIPW标准矿物计算,花岗岩出现了刚玉分子,且分子指数 < 1%,显示Ⅰ型花岗岩特征.绝大部分样品A/KNC值、K2O/Na2O值均 < 1,具Ⅰ型花岗岩特征.综上认为,花岗岩、花岗闪长岩均属中等分异的Ⅰ型花岗岩,与众多学者认为阿拉善晚古生代侵入岩多为Ⅰ型的认识一致(仵康林,2011;耿元生和周喜文,2012;史兴俊等, 2012, 2014;张建军等,2012;Dan et al., 2014;刘治博和张维杰,2014a;杨奇荻等,2014;Shi et al., 2014).
图 8 P2O5-SiO2(a)、Rb-Y(b)、SiO2-Ce(c)、10 000×Ga/Al-(Na2O+K2O)/CaO(d)、Na2O-K2O(e)、SiO2-Al2O3(f)、SiO2-MgO(g)、SiO2-TFe2O3(h)、SiO2-TiO2(i)、SiO2-K2O+Na2O(j)图解d.据Whalen et al.(1987);e.据Collins et al.(1982);其中图a, c, e, f, g, i的横纵坐标单位均为%,图b横纵坐标单位为10-6Fig. 8. Plot of P2O5 vs. SiO2(a)、Rb vs. Y(b)、SiO2 vs. Ce(c)、10 000×Ga/Al vs.(Na2O+K2O)/CaO(d)、Na2O vs. K2O(e)、SiO2 vs. Al2O3(f)、SiO2 vs. MgO(g)、SiO2 vs. TFe2O3(h)、SiO2 vs. TiO2(i)、SiO2 vs. K2O+Na2O(j)5.3 岩浆源区
已有研究认为,Ⅰ型花岗岩是由中基性火成岩、变质岩部分熔融而形成(Chappell et al,1988;吴福元等,2007;张旗等,2008b),或者地壳重熔过程中,幔源物质增加较多而形成(Kemp et al., 2007;Collins et al., 2008).研究表明过铝质花岗岩只有泥砂质沉积岩类部分熔融可能形成,不可能由基性岩部分熔融产生(Vielzeuf and Montel, 1994;Chappell and White, 2001),两期侵入体表现为Nb、Ta亏损,LILE和LREE富集,暗示有壳源物质参与(Barth et al., 2000).两期侵入体Zr/Hf值(附附表 5)均接近壳源岩石33左右(Taylor and McLennan, 1985;Green,1995),大部分Nb/Ta值(附附表 5)符合高分异I、S型花岗岩Nb/Ta值(≤10)特征,均明显低于上地幔平均值(17.5,Weyer et al., 2003),接近大陆地壳的比值(10~14,赵振华等,2008),说明两期侵入体的形成与地壳物质部分熔融有关.
有研究认为Rb/Sr > 0.1、Rb/Ba > 0.3,源岩为泥质岩(Sylvester,1998),两期侵入体Rb/Sr、Rb/Ba值见附附表 5,据此判断为杂砂岩或泥质岩熔融形成.两期侵入体CaO/Na2O值(附附表 5)均 > 0.3,实验研究显示在花岗质岩浆中CaO/Na2O值主要受源区成分影响,源于变杂砂岩衍化的岩浆CaO/Na2O > 0.3,平均为0.8(Sylvester,1998),源于变泥质岩的岩浆CaO/Na2O < 0.5,据此可判断花岗岩可能源于变泥质岩,花岗闪长岩源于变杂砂岩.前已述及,两期侵入体Rb/Sr值(附附表 5)均远 < 3,这类花岗质岩石是由流体存在的碎屑质物源发生熔融形成的,显示陆壳重熔型花岗岩特征.两期侵入体Nb/U、Ce/Pb值见附附表 5,类似于陆壳(Nb/U=6.2,Ce/Pb=3.9,Rudnick and Fountain, 1995),而明显不同于洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)(Nb/U=47,Ce/Pb=27,Hofmann et al., 1986),表明两期侵入体均与陆壳物质密切相关.
两期侵入体Rb/Nb值(附附表 5)明显高于全球上地壳Rb/Nb比值(4.5),Th/U值(附附表 5)高于地壳平均值3.8(Taylor and McLennan, 1985),La/Nb、Ba/Nb、Ba/La值(附附表 5)均明显高于大陆地壳平均值,暗示成岩过程中有地幔物质的加入,这一点与岩体中普遍含有暗色包体这一宏观特征相一致.
同时,Nb/U值(附附表 5)介于俯冲带流体(Nb/U≈0.22;Ayers,1998)和全球俯冲沉积物(Nb/U≈5.00,Plank and Langmuir, 1998)之间,但远 > 0.22,进一步证明岩浆源区存在俯冲的洋壳或陆壳沉积物与岩石圈地幔的交代富集作用.前已述及,Ce/Pb值均 < 20,Th/La值(附附表 5)大部分 > 0.25,反映流体交代对本区岩浆源区的影响.实验研究认为,变泥质岩类在水不饱和的条件下产生的过铝质熔体具有较高Rb/Sr(3~6)、低Sr/Ba(0.2~0.1)的特征,而在水饱和状态产生的岩浆具有低Rb/Sr(0.7~1.6)、高Sr/Ba(0.5~1.6)的特征(Stevens et al., 1997),从附附表 5中Sr/Ba值可见,两期侵入体均形成于水饱和状态下.
两期侵入体的MgO、Cr、Ni含量均低于原生岩浆参考值(MgO=10%~12%,Cr=250×10-6,Ni=90×10-6~670×10-6,Arth,1976),表明两期侵入体均经历了一定程度的分异演化(Zhu et al.,2007;Yu et al., 2012).在Harker图解上(图 8f、8g、8h、8i、8a),随SiO2含量增加,花岗岩Al2O3、MgO、TFe2O3、TiO2、P2O5含量均降低,表明有黑云母、基性矿物(辉石或角闪石)和含Ti、P矿物(磁铁矿、榍石、磷灰石等)分离结晶.花岗岩样品显示随Al2O3、CaO含量略微降低,Na2O+K2O含量无明显变化趋势,MgO、TFe2O3、TiO2含量略微降低,Na2O+K2O含量波动式增高;花岗闪长岩样品显示随Al2O3、MgO含量略微降低,Na2O+K2O含量无明显变化趋势,CaO、TFe2O3、TiO2含量略微降低,Na2O+K2O含量波动式增高. SiO2-K2O+Na2O岩浆结晶分异图解(图 8j)亦显示两期侵入体均经历了一定的分离结晶作用.钾长石、富钙斜长石的分离结晶导致Rb、K富集,Sr、Eu、Ba、CaO亏损,磷灰石和Fe-Ti氧化物的分异导致P、Ti亏损,Nb、Ta亏损暗示源区可能有榍石、金红石等矿物的残留或与角闪石的晶出有关,HREE的相对亏损可能与普通角闪石、锆石等矿物的分离结晶有关.
两期侵入体微量元素均亏损高场强元素Nb、Ta、Ti,产生这种地球化学特征的原因可能为:(1)源区存在俯冲带流体的交代作用;(2)岩浆上升过程中与地壳的混染.本文所有样品Nb/La、Ba/Rb值(附附表 5)均低于原始地幔的Nb/La值(1)和Ba/Rb值(50),接近地壳的Nb/La值(0.4)和Ba/Rb值(9.31)(Sun and McDonough, 1989;Rudnick and Gao, 2003),其特征与壳源熔融相似,并可能受到了后期流体交代作用的影响.两期侵入体Nb/Ta值(附附表 5)均低于MORB(Nb/Ta=16.7),远离幔源岩浆值(Nb/Ta=17.5,Weyer et al., 2003),接近壳源岩浆值10~14(赵振华等,2008),具壳源特征. HFSE亏损,LILE富集,以及LREE富集,HREE分异程度较轻的稀土配分模式指示了壳源特征.俯冲带的岩石通常具有明显的负Zr和Hf异常,而大陆地壳富集这两种元素,两期侵入体Zr和Hf均显示正异常,说明岩浆来源于陆壳.上述岩石地球化学特征一方面说明岩浆源区的形成可能与地壳重熔有关,同时暗示流体对本区岩浆的改造.
5.4 成岩构造背景
关于研究区晚古生代岩浆岩形成构造环境有3种主流观点:一种认为石炭-二叠纪为板内裂谷环境(Dan et al., 2014);第二种观点认为阿拉善地块在280~270 Ma经历了广泛的地幔部分熔融和壳幔相互作用,岩浆活动形成于造山后的伸展背景(韩宝福等,2010;张文等,2013;但卫等,2014),两种观点均认为阿拉善在晚古生代形成地幔柱成因的大火成岩省;第三种观点认为阿拉善地区二叠纪-早三叠世岩浆活动时间跨度大(50 Ma),不符合地幔柱作用特点,进而认为二叠纪-早三叠世岩浆岩形成在古亚洲洋向阿拉善地块俯冲增生、碰撞到后碰撞的不同阶段(张建新和宫江华,2018).
研究区以北的恩格尔乌苏蛇绿混杂岩带通常被认为是塔里木板块与华北板块拼合的位置,从研究区及区域一带的沉积建造看,恩格尔乌苏蛇绿混杂岩带与查干础鲁蛇绿混杂岩带夹持的塔木素-乌力吉-海力素一线,主要分布上石炭统-下二叠统碎屑岩-碳酸盐岩-火山岩-硅质岩组合,含蜓类和珊瑚化石.中-上二叠统分布非常局限,火山岩与沉积地层互层,火山岩主要产出在中、上二叠统内,中二叠世为海相火山喷发,晚二叠世则以海陆交互相-陆相火山喷发为主,类型为中酸性火山熔岩.石炭纪、二叠纪沉积序列代表了一个稳定大陆边缘向活动大陆边缘转化的过程.恩格尔乌苏蛇绿混杂岩带以北广泛分布石炭系、二叠系碎屑岩-碳酸盐岩-硅质岩组合.查干础鲁蛇绿混杂岩带以南主要分布中-上二叠统火山岩(尹海权,2016).区域上,由北向南,碎屑岩粒度由细→粗,地层厚度由厚→薄,早石炭世-早二叠世为由北向南的上超沉积,中-晚二叠世为由南向北的下超沉积,前者为沉积鼎盛期.沉积建造表明,晚古生代银额盆地已经进入板内演化阶段,不具有洋盆特征.恩格尔乌苏构造带内未见晚古生代大洋深海复理石和放射虫硅质岩沉积,恩格尔乌苏断裂两侧二叠系中产哲斯动物群,表明二叠纪恩格尔乌苏断裂带已不具分隔意义.以上均说明晚古生代古亚洲洋已经闭合,研究区进入板内演化阶段.
研究区出露最主要地层单元为阿木山组,从下到上可分为火山岩段、碳酸盐岩段和碎屑岩段,局部地区还有枕状气孔状玄武岩,组成了一套典型的复理石建造,显示海陆交互相沉积环境(图 9),碎屑岩以较低成熟度、较差分选以及较高的岩屑含量为特征,碳酸盐岩主要为(硅质)生物碎屑灰岩、砂屑灰岩、泥晶灰岩等,生物碎屑含量高,破碎程度高,反映了动荡的较深水环境,局部可见碳酸盐岩与碎屑岩呈断层接触,说明局限海盆已缩小而进入残余海盆阶段.据近年来研究,阿木山组碎屑岩段应为下二叠统紫松阶层位,乌力吉一带多条剖面显示,中下岩段代表了弧或者弧后沉积环境,上岩段出现典型的页岩-(粉)砂岩-含砾砂岩-砾岩磨拉石建造(图 10a、10b),部分砾石为先期形成的地质体如火山岩、碳酸盐岩(图 10c)、硅质岩等,杨立业(2014)对碎屑岩中的火山岩碎屑或砾石开展年代学测试,获得U-Pb加权平均年龄分别为371.5±2.5 Ma、422.3±7.3 Ma、306.4±1.7 Ma、284.51±0.95 Ma,其物质来源于再循环造山带,认为古亚洲洋在早二叠世已经闭合.另外,分布在宗乃山-沙拉扎山构造带和雅布赖-诺尔公-红古尔玉林构造带内的阿木山组在组成、古生物特征方面无明显差别,这似乎表明在阿木山组形成的早二叠世之前,查干础鲁蛇绿岩所代表的洋已闭合,两个构造带已经成为一个整体了.
图 9 上石炭统阿木山组实测地质剖面图AAx剖面位置见图 2;1.砂砾石;2.变质岩屑砂岩;3.变质岩屑粉砂岩;4.变质砂岩;5.变质粉砂岩;6.变质流纹岩;7.变质砾岩;8.变质岩屑石英砂岩;9.砂屑细晶灰岩;10.结晶灰岩;11.含生物碎屑灰岩;12.泥晶灰岩;13.砾屑灰岩;14.花岗斑岩;15.花岗闪长岩;16.鲕粒;17.推测断层;18.逆断层;Q.晚更新世洪坡积物;C2a2.阿木山组二段;C2a1.阿木山组一段;P2γδ.中二叠世花岗闪长岩Fig. 9. The geological profile AAx of the Upper Carboniferous Amushan Formation宗乃山-沙拉扎山地区花岗岩形成时代集中在二叠纪,石炭纪极少,普遍表现为高分异的Ⅰ型花岗岩,具有正的εHf(t)值(-0.9~+11.6)和年轻的二阶段模式年龄(1 347~533 Ma),显示较年轻物质或年轻和古老地壳物质的混合(张文等,2013;Shi et al., 2014;史兴俊等, 2014, 2015, 2016).从晚石炭世到中二叠世,表现为从钙碱性向高钾钙碱性的转变,可能暗示了构造环境的变化.从研究区及区域一带的侵入岩分布来看,以花岗岩、花岗闪长岩为主,另有少量辉长岩的岩性组合主要分布在塔木素-乌力吉-海力素一线以及查干础鲁蛇绿混杂岩带以南,辉长岩集中形成在早二叠世,构成早二叠世双峰式火山岩组合(Zhang et al., 2008),代表进入了区域后碰撞伸展环境(Shi et al., 2014).叶珂(2015)认为阿木山组形成前的晚石炭世,洋盆可能已经闭合,雅布赖山二叠纪岩浆岩可能形成于宗乃山-沙拉扎山构造带和雅布赖-诺尔公-红古尔玉林构造带拼合的碰撞或碰撞后环境.郑荣国等(2013)认为雅干岩体形成于后碰撞环境,古亚洲洋在阿拉善地块北缘北部地区的分支于早二叠世(283.2±2.2 Ma)之前已经闭合.尹海权(2016)据查干础鲁蛇绿岩带中辉长岩年龄为275±3 Ma,乌力吉后碰撞花岗岩年龄为250.8±2.0 Ma,认为查干础鲁蛇绿岩带所代表的大洋闭合时间在275~ 250 Ma.张伟等(2014)认为古亚洲大洋最南端的南蒙古洋闭合时限应在275~250 Ma.李俊建(2006)认为研究区一带的晚二叠世花岗闪长岩形成在同碰撞环境.邹雷等(2019)认为290~280 Ma的变质-岩浆事件可能是晚古生代与古亚洲洋闭合有关增生造山作用的响应.张拴宏等(2010)从华北地块北缘晚古生代-早中生代岩浆岩特征、演变及构造演化方面,认为二叠纪末-三叠纪岩浆活动与华北地块与西伯利亚南缘蒙古增生褶皱带拼合后的伸展及岩石圈拆沉有关.张青伟等(2011)认为乌拉特中旗乌兰地区花岗岩亦形成在晚二叠世后碰撞环境.大量资料表明,阿尔泰和准噶尔-天山地区早二叠世的花岗岩主要是I-A型的,形成于后造山伸展阶段.
后碰撞时期通常开始于一个陆内环境,主海洋已经消亡,但是大陆块体间的巨大水平剪切仍然存在,并以此有别于板内环境(李杰,2012).整个区域大面积展布的中晚二叠世侵入岩应该形成于后碰撞伸展环境,这与本区构造变形特征相一致,在塔木素和阿尔嘎顺一带发育多条韧性剪切带,吴凤萍(2009)和关晶(2010)对其进行了温压条件计算、EBSD石英组构分析和运动学涡度计算,认为主要的变形时间为晚二叠世早期,二叠纪末发生了高温伸展运动,可能是后碰撞环境的体现.
尽管如此,本次在花岗岩构造判别R1-R2图解上(图 11a),花岗闪长岩落在破坏性活动板块边缘(板块碰撞前)花岗岩区,花岗岩落在同碰撞花岗岩区,微量元素在Pearce系列图解上的投点显示两期侵入体均具火山弧花岗岩特征,显然与前述地层、岩浆岩及构造所反映的构造环境不一致.在微量元素大洋中脊标准化图解中(图 11b),将两期侵入体曲线与典型构造环境下花岗岩曲线对比,显示了与后碰撞花岗岩更加类似(Pearce et al., 1984).已有越来越多的学者认为,单一依靠岩浆岩地球化学投点判断构造环境是不准确的.另外,张文等(2013)、赵泽霖等(2016)对沙拉扎山、乌力吉地区花岗岩的研究认为,该区花岗岩是多期次岩浆活动的产物,其具有火山弧花岗岩性质可能是源区之前经历过岛弧演化阶段所致,前人研究亦表明源区有幔源物质的加入,源区性质的继承及其他物质的加入、混染导致地球化学数据在构造环境判别图上的投影向“弧”区偏移.
图 11 R1-R2构造判别图解(a)及样品与典型的后碰撞花岗岩大洋中脊标准化图解对比(b)a.据Batchelor and Bowden(1985);b.据典型同碰撞花岗岩数据和标准化值据Pearce et al.(1984)Fig. 11. R1-R2 tectonic discrimination diagram (a) and the contrast between ocean ridge granite (ORG) normalized geochemical patterns for the samples from Wuliji intrusions and typical post-collision granites (b)本文综合地质构造、岩石学、年代学、地球化学特征认为,乌力吉地区的花岗岩、花岗闪长岩是两期岩浆作用的产物,第一期岩浆作用发生在265~268 Ma,第二期岩浆作用发生在250~255 Ma.两期具壳幔混合特性的侵入体是区域性同造山挤压向造山后伸展折返或后碰撞伸展体制下俯冲板片断离,软流圈上涌发生地壳深熔,最后通过分离结晶和晚期流体交代作用而形成,古亚洲洋可能在二叠纪前已经闭合.
6. 结论
(1) LA-ICP-MS锆石U-Pb测年结果显示,乌力吉花岗闪长岩2件样品加权平均年龄分别为:266.00±1.00 Ma(MSWD=0.69)、267.76±0.97 Ma(MSWD=0.26).花岗岩3件样品加权平均年龄分别为:254.57±0.99 Ma(MSWD=0.79)、253.70±1.70 Ma(MSWD=2.50)、252.50±2.90 Ma(MSWD=4.70).年代学数据显示乌力吉地区的花岗闪长岩、花岗岩是两期岩浆作用的产物,第一期岩浆作用发生在265~268 Ma,第二期岩浆作用发生在250~255 Ma.
(2) 花岗闪长岩和花岗岩地球化学特征具一定差异,显示其为不同期岩浆作用的产物.但二者均属中等分异的Ⅰ型花岗岩,具壳幔混合特性,以壳源为主,表现分离结晶和晚期流体交代作用特征.
(3) 古亚洲洋可能在二叠纪前已经闭合,阿拉善地区于二叠纪进入板内演化阶段,乌力吉一带处于区域性同造山挤压向造山后伸展折返或后碰撞伸展环境.
致谢:中国建筑材料工业地质勘查中心宁夏总队田海工程师提供了部分资料,审稿专家及编辑部老师对论文提出了宝贵的修改意见,在此一并致以诚挚的谢意!
附表见本刊官网(http://www.earth-science.net).
-
图 1 阿拉善地区大地构造位置(a)和地质简图(b)
改自史兴俊等(2016);1.前寒武系;2.志留系;3.泥盆系;4.石炭系;5.二叠系;6.三叠系;7.中新生界;8.泥盆纪花岗岩;9.石炭纪花岗岩;10.二叠纪辉长岩;11.二叠纪花岗岩;12.中生代花岗岩;13.碱性岩;14.断层;15.国界;16.研究区;图中所引用的参考文献:任康绪等(2005);李俊建(2006);韩宝福等(2010);仵康林(2011);赵磊等(2011);耿元生和周喜文(2012);李杰(2012);冉皞等(2012);史兴俊等(2012, 2014);张建军等(2012);Feng et al.(2013);张磊等(2013);张文等(2013);Dan et al.(2014, 2015, 2016);刘治博和张维杰(2014a, 2014b);Shi et al.(2014);徐学义等(2014);杨奇荻等(2014);Wang et al.(2014);Wei et al.(2014);Zheng et al.(2014);陈高潮等(2015);史兴俊(2015);郑荣国等(2016)
Fig. 1. Tectonic location (a) and geological sketch map (b) of the Alxa area
图 6 An-Ab-Or图解(a)、A/NK-A/CNK图解(b)、Na2O+K2O-SiO2图解(c)、K2O-SiO2图解(d)
a.据Baker(1979);b.据Maniar and Piccoli(1989);c.据Middlemost(1994);d.实线据Peccerillo and Taylor(1976), 虚线据Middlemost(1985);其中c,d横纵坐标均表示为百分比数值;5.花岗闪长岩;6.花岗岩;Ir.上碱性, 下亚碱性
Fig. 6. Plot of An-Ab-Or(a), A/NK vs. A/CNK(b), Na2O+K2O vs. SiO2(c) and K2O vs. SiO2(d)
图 7 球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)
Fig. 7. Chondritc-normalized REE patterns(a) and primitive mantle-normalized trace elements spider(b)
图 8 P2O5-SiO2(a)、Rb-Y(b)、SiO2-Ce(c)、10 000×Ga/Al-(Na2O+K2O)/CaO(d)、Na2O-K2O(e)、SiO2-Al2O3(f)、SiO2-MgO(g)、SiO2-TFe2O3(h)、SiO2-TiO2(i)、SiO2-K2O+Na2O(j)图解
d.据Whalen et al.(1987);e.据Collins et al.(1982);其中图a, c, e, f, g, i的横纵坐标单位均为%,图b横纵坐标单位为10-6
Fig. 8. Plot of P2O5 vs. SiO2(a)、Rb vs. Y(b)、SiO2 vs. Ce(c)、10 000×Ga/Al vs.(Na2O+K2O)/CaO(d)、Na2O vs. K2O(e)、SiO2 vs. Al2O3(f)、SiO2 vs. MgO(g)、SiO2 vs. TFe2O3(h)、SiO2 vs. TiO2(i)、SiO2 vs. K2O+Na2O(j)
图 9 上石炭统阿木山组实测地质剖面图AAx
剖面位置见图 2;1.砂砾石;2.变质岩屑砂岩;3.变质岩屑粉砂岩;4.变质砂岩;5.变质粉砂岩;6.变质流纹岩;7.变质砾岩;8.变质岩屑石英砂岩;9.砂屑细晶灰岩;10.结晶灰岩;11.含生物碎屑灰岩;12.泥晶灰岩;13.砾屑灰岩;14.花岗斑岩;15.花岗闪长岩;16.鲕粒;17.推测断层;18.逆断层;Q.晚更新世洪坡积物;C2a2.阿木山组二段;C2a1.阿木山组一段;P2γδ.中二叠世花岗闪长岩
Fig. 9. The geological profile AAx of the Upper Carboniferous Amushan Formation
图 11 R1-R2构造判别图解(a)及样品与典型的后碰撞花岗岩大洋中脊标准化图解对比(b)
a.据Batchelor and Bowden(1985);b.据典型同碰撞花岗岩数据和标准化值据Pearce et al.(1984)
Fig. 11. R1-R2 tectonic discrimination diagram (a) and the contrast between ocean ridge granite (ORG) normalized geochemical patterns for the samples from Wuliji intrusions and typical post-collision granites (b)
-
[1] Arth, J.G., 1976.Behavior of Trace Elements during Magmatic Processes:A Summary of Theoretical Models and Their Applications. Journal of Research of the U.S. Geological Survey, 4(1): 41-47. http://ci.nii.ac.jp/naid/10030175206 [2] Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid - Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4): 390-404. https://doi.org/10.1007/s004100050431 [3] Baker, F., 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. In: Baker, F., ed., Trondhjemites, Dacites, and Related Rocks. Elsevier, Amsterdam, 1-12. [4] Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4): 197-213. https://doi.org/10.1016/s0009-2541(99)00173-4 [5] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [6] Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x [7] Chappell, B.W., Stephens, W.E., 1988. Origin of Infracrustal (I-Type) Granite Magmas. Transactions of the Royal Society of Edinburgh: Earthy Sciences, 79(2-3): 71. https://doi.org/10.1017/s0263593300014139 [8] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [9] Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [10] Charvet, J., Shu, I., Laurent-Charver, S., 2007.Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-185. https://doi.org/10.1007/s00254-007-0834-3 [11] Chen, G.C., Shi, J.Z., Jiang, T., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Granitoids in Tamusu, Alxa Right Banner, Inner Mongolia. Geological Bulletin of China, 34(10): 1884-1896(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201510012.htm [12] Clarke, D.B., 1992. Granitoid Rocks. Chapman and Hall, London, 280. [13] Collins, W.J., Beams, S.D., White, B.A.J.R., et al., 1982. Nature and Origin of A Type Granites with Paticular Reference to Southeastern Australia. Contrib.Miner.Petro., 80:189-200. https://doi.org/10.1007/BF00374895 [14] Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559. https://doi.org/10.1130/g24658a.1 [15] Dan, W., Li, X.H., Wang, Q., et al., 2014. An Early Permian(Ca.280 Ma)Silicic Igneous Province in the Alxa Block, NW China: A Magmatic Flare-up Triggered by a Mantle -Plume. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences. Contents Lists Available at Sciences Direct.Lithos, 204(1): 144-158. https://doi.org/10.1016/j.lithos.2014.01.018 [16] Dan, W., Li, X.H., Wang, Q., et al., 2014.The Permian Granites in Alxa Block: Implications for Crustal Growth in Alxa Acid Igneous Province.The Proceedings of China Geoscience Joint Academic Conference, Beijing, 2050 (in Chinese). [17] Dan, W., Wang, Q., Wang, X. C., et al., 2015. Overlapping Sr–Nd–Hf–O Isotopic Compositions in Permian Mafic Enclaves and Host Granitoids in Alxa Block, NW China: Evidence for Crust–Mantle Interaction and Implications for the Generation of Silicic Igneous Provinces. Lithos, 230: 133-145. https://doi.org/10.1016/j.lithos.2015.05.016 [18] Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U–Pb Geochronology and Sr–Nd–Pb–Hf–O Isotope Geochemistry. Gondwana Research, 32: 105-121. https://doi.org/10.1016/j.gr.2015.02.011 [19] Dobretsov, N. L., Berzin, N. A., Buslov, M. M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review, 37(4): 335-360. https://doi.org/10.1080/00206819509465407 [20] Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic–ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. https://doi.org/10.1016/j.jseaes.2013.01.020 [21] Geng, Y.S., Zhou, X.W., 2012.Early Permian Magmatic Events in the Alxa Metamorphic Basement: Evidence from Geochronology.Acta Petrologica Sinica, 28(9): 2667-2685 (in Chinese with English abstract). [22] Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x [23] Guan, J., 2010.Study of the Aergashun Ductil Shear Zone in Tamusu Region of Alxa Youqi, Inner Mongolia(Dissertation). China University of Geosciences, Beijing, 1-39 (in Chinese with English abstract). [24] Han, B.F., Wang, S.G., Jahn, B.M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd–Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3-4): 135-159. https://doi.org/10.1016/s0009-2541(97)00003-x [25] Han, B.F., Guo, Z.J., He, G.Q., 2010. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract). [26] He, G.Q., Li, M.S., Liu, D.Q., et al., 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Xinjiang People's Publishing House, Urumqi, 1-437 (in Chinese). [27] Hendrix, M., Graham, S.A., Amory, J.Y., 1996.Noyon Uul Syncline, Southern Mongolia: Lower Mesozoic Sedimentary Record of the Tectonic Amalgamation of Central Asia. Geol. Soc. Am. Bull., 108(10): 1256-1274. https://doi.org/10.1130/0016-7606(1996)108 < 1256:NUSSML > 2.3.CO; 2 doi: 10.1130/0016-7606(1996)108<1256:NUSSML>2.3.CO;2 [28] Hine, R., Williams, I. S., Chappell, B. W., et al., 1978. Contrasts Between I‐ and S‐Type Granitoids of the Kosciusko Batholith. Journal of the Geological Society of Australia, 25(3/4): 219-234. https://doi.org/10.1080/00167617808729029 [29] Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821x(86)90038-5 [30] Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154 [31] Kheraskova, T. N., Volozh, Y. A., Didenko, A. N., et al., 2003. The Vendian-Early Paleozoic History of the Continental Margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt. Russian Journal of Earth Sciences, 5(3): 165-184. https://doi.org/10.2205/2003es000123 [32] Li, J., 2012.Charactteristics and Tectonic Significance of Late Paleozoic Intrusive Rocks along the Yabrai-Bayan Noel of Alxa, Inner Mongolia (Dissertation). China University of Geosciences, Beijing, 1-40 (in Chinese with English abstract). [33] Li, J.J., 2006.Regional Metallogenic System of Alashan Block in Inner Mongolia Autonomous Region (Dissertation). China University of Geosciences, Beijing, 1-165 (in Chinese with English abstract). [34] Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [35] Li, X.H., Li, W.X., Li, Z.X., 2007.On the Genetic Classification and Tectonic Implications of the Early Yanshan Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-991 (in Chinese with English abstract). doi: 10.1360/csb2007-52-9-981 [36] Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0 [37] Liu, Z.B., Zhang, W.J., 2014a.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of the Middle Permian Quartz Diorote in Hanggale, Alxa Right Banner, Inner Mongolia. Acta Geologica Sinica, 88(2): 198-207 (in Chinese with English abstract). [38] Liu, Z.B., Zhang, W.J., 2014b.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of the Late Permian Diorite in Hanggale, Alxa Right Banner, Inner Mongolia.Northwestern Geology, 47(1): 84-95 (in Chinese with English abstract). [39] Maniar, P.D., Piccoli, P.M., 1989.Tectonics Discrimination of Granitoids.Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [40] Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London, 1-266. [41] Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [42] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [43] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [44] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [45] Ran, H., Zhang, W.J., Liu, Z.B., 2012. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb dating of the Late Permian Monzogranite in Hanggale, Alxa Right Banner, Inner Mongolia.Geological Bulletin of China, 31(10): 1565-1575 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201210006.htm [46] Ren, K.X., Yan, G.H., Mou, B.L., et al., 2005. Geochemistry and Nd, Sr and Pb Isotope Characteristics of Alkali-Rich Intrusive Rocks in Alashan Fault Block and Their Significance. Earth Science Frontiers, 12(2): 292-301 (in Chinese with English abstract). http://www.researchgate.net/publication/312829545_Geochemistry_and_Nd_Sr_Pb_isotopic_characteristics_of_the_alkali-rich_intrusive_rocks_in_Alxa_Fault_Block_Western_Inner_Mongolia_and_their_implications [47] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267. https://doi.org/10.1029/95rg01302 [48] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemisry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4 [49] Shi, X.J., Tong, Y., Wang, T., et al., 2012. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Early Premian Halinudeng Granite in Northern Alxa Area, Western Inner Mongolia. Geological Bulletin of China, 31(5): 662-670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201205004.htm [50] Shi, X. J., Wang, T., Zhang, L., et al., 2014. Timing, Petrogenesis and Tectonic Setting of the Late Paleozoic Gabbro–Granodiorite–Granite Intrusions in the Shalazhashan of Northern Alxa: Constraints on the Southernmost Boundary of the Central Asian Orogenic Belt. Lithos, 208-209: 158-177. https://doi.org/10.1016/j.lithos.2014.08.024 [51] Shi, X.J., Zhang, L., Wang, T., et al., 2014. Geochronology and Geochemistry of the Intermediate-Acid Intrusive Rocks from Zongnaishan Area in Northern Alxa, Inner Mongolia, and Their Tectonic Implications. Acta Petrologica et Mineralogica, 33(6): 989-1007 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201406001.htm [52] Shi, X.J., 2015. The Tectonic Affinity of the Zongnaishan-shalazhashan Zone in Northern Alxa and Its Implications: Evidence from Intrusive and Metamorphic Rocks (Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-104 (in Chinese with English abstract). [53] Shi, X.J., Zhang, L., Wang, T., et al., 2016.Zircon Geochronology and Hf Isotopic Compositions for the Mesoproterozoic Gneisses in Zongnaishan Area, Northern Alxa and Its Tectonic Affinity. Acta Petrologica Sinica, 32(11): 3518-3536 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252015158.html [54] Solomovich, L. I., Trifonov, B. A., 2002. Postcollisional Granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan. Journal of Asian Earth Sciences, 21(1): 7-21. https://doi.org/10.1016/s1367-9120(02)00008-1 [55] Stevens, G., Clemens, J. D., Droop, G. T. R., 1997. Melt Production during Granulite-Facies Anatexis: Experimental Data from "Primitive" Metasedimentary Protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370. https://doi.org/10.1007/s004100050314 [56] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [57] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [58] Tang, K. D., 1990. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260. https://doi.org/10.1029/tc009i002p00249 [59] Tang, K. D., Yang, Z. Y., 1993. Regional Metamorphism and Tectonic Evolution of the Inner Mongolian Suture Zone. Journal of Metamorphic Geology, 11(4): 511-522. https://doi.org/10.1111/j.1525-1314.1993.tb00168.x [60] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford, 91-92. [61] Vielzeuf, D., Montel, J. M., 1994. Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. https://doi.org/10.1007/bf00307272 [62] Wang, B., Shu, L. S., Cluzel, D., et al., 2007. Geochemical Constraints on Carboniferous Volcanic Rocks of the Yili Block (Xinjiang, NW China): Implication for the Tectonic Evolution of Western Tianshan. Journal of Asian Earth Sciences, 29(1): 148-159. https://doi.org/10.1016/j.jseaes.2006.02.008 [63] Wang, T.Y., Wang, S.Z., Wang, J.R., 1994.The Formation and Evolution of Paleozoic Continental Crust in Alxaa Region. Lanzhou University Press, Lanzhou, 1-215 (in Chinese). [64] Wang, T.Y., Zhang, M.J., Wang, J.R., et al., 1998.The Characteristics and Tectonic Implications of the Thrust Belt in Engerwusu, China. Scientia Geologica Sinica, 33(4): 358-394 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX804.000.htm [65] Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2014. Geochronology, Geochemistry and Origins of the Paleozoic–Triassic Plutons in the Langshan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 337-351. https://doi.org/10.1016/j.jseaes.2014.08.005 [66] Wei, X., Xu, Y. G., Feng, Y. X., et al., 2014. Plume-Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. https://doi.org/10.2475/01.2014.09 [67] Weyer, S., Münker, C., Mezger, K., 2003. Nb/Ta, Zr/Hf and REE in the Depleted Mantle: Implications for the Differentiation History of the Crust–Mantle System. Earth and Planetary Science Letters, 205(3/4): 309-324. https://doi.org/10.1016/s0012-821x(02)01059-2 [68] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [69] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [70] Wu, F.P., 2009. Study of the NNE Ductil Shear Zone in Tamusu Region of Alxa Youqi, Inner Mongolia (Dissertation). China University of Geosciences, Beijing, 1-44 (in Chinese with English abstract). [71] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [72] Wu, K.L., 2011. Geochemical Characeteristics and Tectonic Setting of Late Varisian Period in Alashan Block (Dissertation). Chang'an University, Xi'an, 1-60 (in Chinese with English abstract). [73] Wu, T.R., He, G.Q., 1993. Tectonic Units and Their Fundamental Characteristics on the Alxa Block. Acta Geol Sin. 67(1): 97-108 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW199304000.htm [74] Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1-20. https://doi.org/10.1029/2002tc001484 [75] Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1219-1220. https://doi.org/10.1007/s00531-009-0419-3 [76] Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007 [77] Xiao, W.J., Windley.B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [78] Xu, W.L., Sun, C.Y., Tang, J., 2019.Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). [79] Xu, X.Y., Li, R.S., Chen, J.L., et al., 2014. New Constrains on the Paleozoic Tectonic Evolution of the Northern Xinjiang Area. Acta Petrologica Sinica, 30(6): 1521-1534 (in Chinese with English abstract). [80] Yang, L.Y., 2014. The Geological Characteristics and Tectonic Evolution of Permian in the North of Alashan Area, Inner Mongolian Autonomous Region(Dissertation). China University of Geosciences, Beijing, 1-67 (in Chinese with English abstract). [81] Yang, Q.D., Zhang, L., Wang, T., et al., 2014.Geochemictry and LA-ICP-MS Zircon U-Pb Age of Late Carboniferous Shalazhashan Pluton on the Northern Margin of the Alxa Block, Inner Mongolia and their Implications. Geological Bulletin of China, 33(6): 776-787 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252281372.html [82] Ye, K., 2015. Geochemistry of Late Paleozoic Igneous Rocks from Yabulaishan Area in Alxa and Its Tectonic Implications (Dissertation). China University of Geosciences, Beijing, 1-46 (in Chinese with English abstract). [83] Yin, H.Q., 2016. Late Paleozoic Sedimentary Characteristics and Its Tectonic Evolution in Northern Alxa Area, Inner Mongolia (Dissertation). China University of Geosciences, Beijing, 1-96 (in Chinese with English abstract). [84] Yu, J. C., Mo, X. X., Yu, X. H., et al., 2012. Geochemical Characteristics and Petrogenesis of Permian Basaltic Rocks in Keping Area, Western Tarim Basin: A Record of Plume-Lithosphere Interaction. Journal of Earth Science, 23(4): 442-454. https://doi.org/10.1007/s12583-012-0267-0 [85] Zhang, J.J., Wang, T., Zhang, Z.C., et al., 2012. Magma Mixing Origin of Yamatu Granite in Nuoergong-Langshan Area, Western Part of the Northern Margin of North China Craton: Petrological and Geochemical Evidences. Geological Review, 58(1): 53-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201201006.htm [86] Zhang, J.J., 2015. Petrogenesis of the Permian Granitoids from the Northern Alxa Block and Their Geodynamic Implications(Dissertation). China University of Geosciences, Beijing, 1-115 (in Chinese with English abstract). [87] Zhang, J.J, Wang, T., Antonio, C., 2016. The Genesis of Multistage Magma tic Mixing and Tectonic Setting of Permian Granite from Magmatic Source Area to Magmatic Invasion in the North Part of Alxa Block. The Proceedings of China Geoscience Joint Academic Conference, Beijing, 145-147 (in Chinese). [88] Zhang, J.X., Gong, J.H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSXB201804008&dbcode=CJFD&year=2018&dflag=pdfdown [89] Zhang, L., Shi, X.J., Zhang, J.J., et al., 2013. LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of the Taohaotuoxiquan Gabbro in Northern Alxa, Inner Mongolia. Geological Bulletin of China, 32(10): 1536-1547 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201310005.htm [90] Zhang, Q., Wang, Y., Li, C.D., et al., 2006a. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract). [91] Zhang, Q., Wang, Y., Li, C.D., et al., 2006b. Classification of Granites by Pressure. Geological Bulletin of China, 25(11): 1274-1278 (in Chinese with English abstract). [92] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008a. Riteria for the Recognition of Pre-, Syn and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract). [93] Zhang, Q., Wang, Y., Pan, G.Q., et al., 2008b.Sources of Granites: Some Crucial Questions on Granite Study. Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract). http://www.researchgate.net/publication/285897167_Sources_of_granites_Some_crucial_questions_on_granite_study_4 [94] Zhang, Q.W., Liu, Z.H., Chai, S.L., et al., 2011. Zircon U-Pb Dating of the Garnet-Bearing Granite from Wulan Area of Urad Zhongqi in Inner Monglia and Its Geological Significance. Journal of Jilin University(Earth Science Edition), 41(3): 745-752 (in Chinese with English abstract). [95] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review. Acta Petrologica et Mineralogica, 29(6):824-842 (in Chinese with English abstract). [96] Zhang, W., Wu, T.R., Feng, J.C., et al., 2013.Time Constraints for the Closing of the Paleo-Asia Ocean in the Northern Alxa Region: Evidence from Wuliji Granites. Science China: Earth Sciences, 43(8): 1299-1311 (in Chinese with English abstract). [97] Zhang, W., Wang, J.R., Chen, W.F., et al., 2014. The Discovery of the Carboniferous Adakite and Its Tectonic Implications in Alxa Youqi. Geological Journal of China Universities, 20(3): 378-387 (in Chinese with English abstract). [98] Zhang, X. H., Zhang, H. F., Tang, Y. J., et al., 2008. Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt. Chemical Geology, 249(3/4): 262-281. https://doi.org/10.1016/j.chemgeo.2008.01.005 [99] Zhao, L., Wu, T.R., Luo, H.L., 2011. SHRIMP U-Pb Dating, Geochemistry and Tectonic Implications of the Beiqigetao Gabbros in Urad Zhongqi Area, Inner Mongolia. Acta Petrologica Sinica, 27(10): 3071-3082 (in Chinese with English abstract). [100] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008.Some Geochemical Problems of Niobium and Tantalum. Geochemistry, 37(4): 304-320 (in Chinese with English abstract). [101] Zhao, Z.L., Li, J.J., Dang, Z.C., et al., 2016.TIMS Zircon U-Pb Isotopic Dating of Salazha Mountain Granites from the North Margin of Alxa, Inner Mongolia, and Its Tectonic Implications. Geological Bulletin of China, 35(4): 599-604 (in Chinese with English abstract). [102] Zheng, R.G., Wu, T.R., Zhang, W., et al., 2013. Geochronology and Geochemistry of the Yagan Granite in the Northern Margin of the Alxa Block: Constrains on the Tectonic Evolution of the Southern Altaids. Acta Petrologica Sinica, 29(8): 2665-2675 (in Chinese with English abstract). [103] Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2): 842-858. https://doi.org/10.1016/j.gr.2013.05.011 [104] Zheng, R.G., Li, J.Y., Xiao, W.J., et al., 2016. Discovery of Silurian Pluton in the Enger Us Region in the Northern Margin of Alxa Block. Acta Geologica Sinica, 90 (8): 1725-1736 (in Chinese with English abstract). [105] Zhou, L.F., Zhao, Z.Y., Guo, Z.M., 1995. The Formation and Evolution of Sedimentation Basin of Alxa and Adjacent Regions. Northwestern University Publishing House, Xi'an, 57-92 (in Chinese). [106] Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya: A Probable Example of Plume–Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2-3): 320-335. https://doi.org/10.1016/j.jseaes.2005.12.004 [107] Zou, L., Liu, P.H., Tian, Z.H., et al., 2019. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Eastern Alxa Block:New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex. Earth Science, 44(4):1406-1423 (in Chinese with English abstract). [108] 陈高潮, 史冀中, 姜亭, 等, 2015.内蒙古阿拉善右旗塔木素地区酸性侵入岩锆石U-Pb年龄与地球化学特征.地质通报, 34(10): 1884-1896. doi: 10.3969/j.issn.1671-2552.2015.10.013 [109] 但卫, 李献华, 王强, 等, 2014.阿拉善地块的二叠纪花岗岩: 对阿拉善酸性火成岩省地壳生长的启示.北京: 中国地球科学联合学术年会论文集, 2050. [110] 耿元生, 周喜文, 2012.阿拉善变质基底中的早二叠世岩浆热事件-来自同位素年代学的证据.岩石学报, 28(9) : 2667-2685. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209002.htm [111] 关晶, 2010.内蒙古阿拉善右旗塔木素地区阿尔嘎顺韧性剪切带研究(硕士学位论文).北京: 中国地质大学, 1-39. [112] 韩宝福, 郭召杰, 何国琦, 2010."钉合岩体"与新疆北部主要缝合带的形成时限.岩石学报, 26(8): 2233-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008002.htm [113] 何国琦, 李茂松, 刘德全, 等, 1994.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社, 1-437. [114] 李杰, 2012.内蒙古阿拉善地区雅布赖-巴音诺尔公晚古生代侵入岩特征及其大地构造意义(硕士学位论文).北京: 中国地质大学, 1-40. [115] 李俊建, 2006.内蒙古阿拉善地块区域成矿系统(博士学位论文).北京: 中国地质大学, 1-165. [116] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [117] 刘治博, 张维杰, 2014a.内蒙古阿拉善右旗杭嘎勒中二叠世石英闪长岩地球化学特征和LA-ICP-MS锆石U-Pb定年.地质学报, 88(2): 198-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402004.htm [118] 刘治博, 张维杰, 2014b.内蒙古阿拉善右旗杭嘎勒晚二叠世闪长岩地球化学特征和LA-ICP-MS锆石U-Pb定年.西北地质, 47(1): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201401006.htm [119] 冉皞, 张维杰, 刘治博, 2012.内蒙古阿拉善右旗杭嘎勒晚二叠世二长花岗岩地球化学特征和LA-ICP-MS锆石U-Pb定年.地质通报, 31(10): 1565-1575. doi: 10.3969/j.issn.1671-2552.2012.10.003 [120] 任康绪, 阎国翰, 牟保磊, 等, 2005.阿拉善断块富碱侵入岩岩石地球化学和Nd、Sr、Pb同位素特征及其意义, 地学前缘, 12(2): 292-301. doi: 10.3321/j.issn:1005-2321.2005.02.030 [121] 史兴俊, 童英, 王涛, 等, 2012.内蒙古西部阿拉善地区哈里努登花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征, 地质通报, 31(5): 662-670. doi: 10.3969/j.issn.1671-2552.2012.05.003 [122] 史兴俊, 张磊, 王涛, 等, 2014.内蒙古阿拉善盟北部宗乃山中酸性侵入岩年代学、地球化学及构造意义.岩石矿物学杂志, 33(6): 989-1007. doi: 10.3969/j.issn.1000-6524.2014.06.001 [123] 史兴俊, 2015.阿拉善北部宗乃山-沙拉扎山构造带构造属性及意义: 来自侵入岩与变质岩证据(博士学位论文).北京: 中国地质科学院, 1-104. [124] 史兴俊, 张磊, 王涛, 等, 2016.阿拉善北部宗乃山地区片麻岩锆石U-Pb年龄、Hf同位素特征及其构造归属探讨.岩石学报, 32(11): 3518-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611021.htm [125] 王廷印, 王士政, 王金荣, 1994.阿拉善地区古生代陆壳的形成和演化.兰州:兰州大学出版社, 1-215. [126] 王廷印, 张铭杰, 王金荣, 等, 1998.恩格尔乌苏冲断带特征及大地构造意义.地质科学, 33(4): 358-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX804.000.htm [127] 吴凤萍, 2009.内蒙古阿拉善右旗塔木素地区NNE向韧性剪切带研究(硕士学位论文).北京: 中国地质大学, 1-44. [128] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [129] 仵康林, 2011.阿拉善地区华力西晚期花岗岩类岩石地球化学特征及其构造意义(硕士学位论文).西安: 长安大学, 1-60. [130] 吴泰然, 何国琦, 1993.内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征.地质学报, 67(1): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199302000.htm [131] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [132] 徐学义, 李荣社, 陈隽璐, 等, 2014.新疆北部古生代构造演化的几点认识.岩石学报, 30(6): 1521-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406001.htm [133] 杨立业, 2014.内蒙古阿拉善北部二叠系地质特征与构造演化(硕士学位论文).北京: 中国地质大学, 1-67. [134] 杨奇荻, 张磊, 王涛, 等, 2014.内蒙古阿拉善地块北缘沙拉扎山晚石炭世岩体地球化学特征与LA-ICP- MS锆石U-Pb年龄.地质通报, 33(6): 776-787. doi: 10.3969/j.issn.1671-2552.2014.06.002 [135] 叶珂, 2015.阿拉善盟雅布赖山地区晚古生代岩浆岩的地球化学特征及构造意义(硕士学位论文).北京: 中国地质大学, 1-46. [136] 尹海权, 2016.内蒙古阿拉善地区北部古生代沉积及其大地构造演化特征(博士学位论文).北京: 中国地质大学, 1-96. [137] 张建军, 王涛, 张招崇, 等, 2012.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因-岩相学和元素地球化学证据.地质评论, 58(1): 53-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201006.htm [138] 张建军, 2015.阿拉善地块北部二叠纪花岗岩类成因及地质意义(博士学位论文).北京: 中国地质大学, 1-115. [139] 张建军, 王涛, A. Castro, 2016.阿拉善地块北部二叠纪花岗岩从浆源区到定位的多阶段岩浆混合成因及构造背景.中国地球科学联合学术年会论文集, 145-147. [140] 张建新, 宫江华, 2018.阿拉善地块性质和归属的再认识.岩石学报, 34(4): 940-962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804008.htm [141] 张磊, 史兴俊, 张建军, 等, 2013.内蒙古阿拉善北部陶豪托西圈辉长岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 32(10): 1536-1547. doi: 10.3969/j.issn.1671-2552.2013.10.005 [142] 张旗, 王焰, 李承东, 等, 2006a.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm [143] 张旗, 王焰, 李承东, 等, 2006b.花岗岩按照压力的分类.地质通报, 25(11): 1274-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200611003.htm [144] 张旗, 王元龙, 金惟俊, 等, 2008a.造山前、造山和造山后花岗岩的识别.地质通报, 27(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200801002.htm [145] 张旗, 王焰, 潘国强, 等, 2008b.花岗岩源岩问题-关于花岗岩研究的思考之四.岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm [146] 张青伟, 刘正宏, 柴社立, 等, 2011.内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义.吉林大学学报(地球科学版), 41(3): 745-752. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103016.htm [147] 张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代-早中生代岩浆活动期次、特征与构造背景.岩石矿物学杂志, 29(6): 824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017 [148] 张文, 吴泰然, 冯继承, 等, 2013.阿拉善地块北缘古大洋闭合的时间制约:来自乌力吉花岗岩体的证据.中国科学:地球科学, 43(8): 1299-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201308006.htm [149] 张伟, 王金荣, 陈万峰, 等, 2014.阿拉善右旗地区晚石炭世埃达克岩的发现及其大地构造意义.高校地质学报, 20(3): 378-387. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403004.htm [150] 赵磊, 吴泰然, 罗红玲, 2011.内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义.岩石学报, 27(10): 3071-3082. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110023.htm [151] 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4): 304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005 [152] 赵泽霖, 李俊建, 党智财, 等, 2016.内蒙古阿拉善地区沙拉扎山花岗岩体TIMS锆石U-Pb年龄.地质通报, 35(4): 599-604. doi: 10.3969/j.issn.1671-2552.2016.04.016 [153] 郑荣国, 吴泰然, 张文, 等, 2013.阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约.岩石学报, 29(8): 2665-2675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308004.htm [154] 郑荣国, 李锦轶, 肖文交, 等, 2016.阿拉善地块北缘恩格尔乌苏地区发现志留纪侵入体.地质学报, 90(8): 1725-1736. doi: 10.3969/j.issn.0001-5717.2016.08.007 [155] 周立发, 赵重远, 郭忠铭, 1995.阿拉善及邻区沉积盆地的形成与演化.西安:西北大学出版社, 57-92. [156] 邹雷, 刘平华, 田忠华, 等, 2019.东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩:来自波罗斯坦庙杂岩LA-ICP-MS锆石U-Pb定年的新证据.地球科学, 44(4): 1406-1423. doi: 10.3799/dqkx.2018.386 期刊类型引用(7)
1. 张进,王振义,赵衡,张北航,曲军峰,杨亚琦,张义平,赵硕,刘建峰,曹鹏,杨旭,郑荣国. 阿拉善地区二叠纪——三叠纪构造变形环境与属性:问题与争论. 地质通报. 2025(01): 1-32 . 百度学术
2. 张超,李志丹,张锋,段明,俞礽安,陈军强,谢瑜. 内蒙古阿拉善左旗亚干铜镍钴矿辉长岩LA–ICP–MS锆石U–Pb定年、Hf同位素特征及其地壳伸展作用. 中国地质. 2024(04): 1368-1386 . 百度学术
3. 雷聪聪,李卫星,张超,王文宝,马军. 阿拉善地块北缘达伦乌苏中酸性侵入岩锆石U-Pb 年龄、岩石地球化学特征及其构造演化意义. 矿物岩石地球化学通报. 2023(04): 860-872 . 百度学术
4. 童勤龙,叶发旺,秦明宽. 巴音戈壁盆地新尼乌苏凹陷下白垩统碎屑锆石U-Pb年代学及其地质意义. 地球科学. 2023(10): 3613-3630 . 本站查看
5. 雷聪聪,薄海军,丁海生,王文宝,马军,李卫星. 内蒙古雅干地区晚石炭世白山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境. 地质通报. 2023(12): 2096-2108 . 百度学术
6. Lu Tao,Hongfei Zhang,Jing Wu,Xiaochun Zhou,Liqi Zhang. Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China. Journal of Earth Science. 2022(01): 161-176 . 必应学术
7. 陈彦,甘立胜,吴泰然,王兴安,张文. 阿拉善地块北缘二叠纪花岗岩类的锆石年代学、地球化学及其对伸展环境的指示意义. 岩石学报. 2022(10): 3003-3020 . 百度学术
其他类型引用(2)
-
dqkxzx-47-10-101-附表.docx
-