Mg-Li-Fe-Cr Isotopic Fractionation during Subduction
-
摘要: 金属稳定同位素体系是示踪板块俯冲对壳幔物质再循环影响的全新工具,因此其在俯冲带的地球化学行为备受关注.Mg同位素在俯冲过程中不发生显著分馏,但大陆玄武岩具有低于洋中脊玄武岩的Mg同位素,这可能是碳酸岩的俯冲再循环导致的.与角闪岩继承原岩的Li同位素组成不同,榴辉岩具有轻于原岩的Li同位素组成,可归因于俯冲折返过程中的动力学扩散、脱水反应或低Li同位素的流体交代.作为变价元素,Fe和Cr的同位素在榴辉岩的形成过程中均不发生显著分馏,但是蛇纹岩的Fe同位素和Cr同位素与氧逸度指标具有相关性,指示氧化还原条件变化时脱水过程或流体交代会导致同位素分馏.
-
关键词:
- 俯冲带 /
- Mg-Li-Fe-Cr同位素 /
- 分馏 /
- 地球化学
Abstract: In order to investigate mantle heterogeneities induced by subducted crustal plate, many studies have been focused on geochemical characteristics of stable metal isotopic systematics in subduction zone in recent years. Limited Mg isotopic fractionation occurred during subduction and exhumation, thus lighter Mg isotopic composition of continental basalts might be caused by carbonatite metasomatism. Instead of inherited Li isotopes of amphibolite, eclogite has lighter Li isotopies, which are attributed to kinetic diffusion, dehydration, or rehydration. Isotopes of Fe and Cr have insignificant fractionation during formation of eclogite, however, Fe and Cr isotopic composition of serpentinite are related to oxidation index, suggesting dehydration or alteration of fluids during serpentinization could shift Fe and Cr isotopic composition of serpentinite.-
Key words:
- subduction zone /
- Mg-Li-Fe-Cr isotope /
- fractionation /
- geochemistry
-
图 1 大别造山带不同变质级别变质岩的烧失量与MgO和δ26Mg
据李曙光(2015);数据引自Wang et al.(2014)
Fig. 1. MgO vs. LOI and δ26Mg vs. LOI for greenschists, amphibolites and eclogites from the Dabie orogen
图 3 碧溪岭榴辉岩单矿物的δ56Fe值和Fe3+/ΣFe
Fig. 3. Plot of δ56Fe vs. Fe3+/ΣFe for mineral separated from the Bixiling eclogites
图 4 大别山榴辉岩的δ53Cr vs.烧失量和δ53Cr vs. Cr含量
Fig. 4. δ53Cr vs. LOI and δ53Cr vs. Cr content for eclogites from the Dabie orogen
-
[1] Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11 [2] Debret, B., Millet, M.A., Pons, M.L., et al., 2016.Isotopic Evidence for Iron Mobility during Subduction.Geology, 44(3):215-218. https://doi.org/10.1130/g37565.1 [3] Huang, J., Huang, F., Xiao, Y.L., 2019.Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids.Earth Science, 44(12):4050-4056(in Chinese with English abstract). [4] Li, D.Y., Xiao, Y.L., Li, W.Y., et al., 2016.Iron Isotopic Systematics of UHP Eclogites Respond to Oxidizing Fluid during Exhumation.Journal of Metamorphic Geology, 34(9):987-997. https://doi.org/10.1111/jmg.12217 [5] Li, W.Y., Teng, F.Z., Ke, S., et al., 2010.Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust.Geochimica et Cosmochimica Acta, 74(23):6867-6884. https://doi.org/10.1016/j.gca.2010.08.030 [6] Li, S.G, 2015.Tracing Deep Carbon Recycling by Mg Isotopes.Earth Science Frontiers, 22(5):43-159(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201505012 [7] Liu, H.Y., Sun, H., Xiao, Y.L., et al., 2019.Lithium Isotope Systematics of the Sumdo Eclogite, Tibet:Tracing Fluid/Rock Interaction of Subducted Low-T Altered Oceanic Crust.Geochimica et Cosmochimica Acta, 246(1):385-405. https://doi.org/10.1016/j.gca.2018.12.002 [8] Marschall, H.R., von Strandmann, P.A.E.P., Seitz, H.M., et al., 2007.The Lithium Isotopic Composition of Orogenic Eclogites and Deep Subducted Slabs.Earth and Planetary Science Letters, 262(3-4):563-580. https://doi.org/10.1016/j.epsl.2007.08.005 [9] Penniston-Dorland, S.C., Bebout, G.E., von Strandmann, P.A.E.P., et al., 2012.Lithium and Its Isotopes as Tracers of Subduction Zone Fluids and Metasomatic Processes:Evidence from the Catalina Schist, California, USA.Geochimica et Cosmochimica Acta, 77:530-545. https://doi.org/10.1016/j.gca.2011.10.038 [10] Penniston-Dorland, S.C., Liu, X.M., Rudnick, R.L., 2017.Lithium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):165-217. https://doi.org/10.2138/rmg.2017.82.6 [11] Qin, L.P., Wang, X.L., 2017.Chromium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):379-414. https://doi.org/10.2138/rmg.2017.82.10. [12] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011 [13] Shen, J., Li, W.Y., Li, S.G., et al., 2019.Crust-Mantle Interactions at Different Depths in the Subduction Channel:Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges.Earth Science, 44(12):4102-4111(in Chinese with English abstract). [14] Shen, J., Liu, J., Qin, L.P., et al., 2015.Chromium Isotope Signature during Continental Crust Subduction Recorded in Metamorphic Rocks.Geochemistry, Geophysics, Geosystems, 16(11):3840-3854. https://doi.org/10.1002/2015gc005944 [15] Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7 [16] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004.Lithium Isotopic Composition and Concentration of the Upper Continental Crust.Geochimica et Cosmochimica Acta, 68(20):4167-4178. https://doi.org/10.1016/j.gca.2004.03.031 [17] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2014.Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction.Geochimica et Cosmochimica Acta, 143:34-48. https://doi.org/10.1016/j.gca.2014.03.029 [18] Wang, S.J., Teng, F.Z., Scott, J.M., 2016.Tracing the Origin of Continental HIMU-Like Intraplate Volcanism Using Magnesium Isotope Systematics.Geochimica et Cosmochimica Acta, 185:78-87. https://doi.org/10.1016/j.gca.2016.01.007 [19] Zack, T., Tomascak, P.B., Rudnick, R.L., et al., 2003.Extremely Light Li in Orogenic Eclogites:The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust.Earth and Planetary Science Letters, 208(3-4):279-290. https://doi.org/10.1016/s0012-821x(03)00035-9 [20] 黄建, 黄方, 肖益林, 2019.蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成.地球科学, 44(12):4050-4056. [21] 李曙光, 2015.深部碳循环的Mg同位素示踪.地学前缘, 22(5):143-159. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702002 [22] 沈骥, 李王晔, 李曙光, 等, 2019.俯冲隧道内不同深度的壳幔相互作用——地幔楔超镁铁质岩的镁同位素记录.地球科学, 44(12):4102-4111.