Discovery and P-T-t Paths of Lawsonite Pseudomorph-Bearing Eclogites in the Yuka Terrane, North Qaidam Ultrahigh Pressure Metamorphic Belt and Exploration on Key Factors Controlling Lawsonite Formation
-
摘要: 硬柱石是大洋冷俯冲带的代表性矿物之一,富含水和Sr、Pb及稀土等微量元素,其形成和分解对于俯冲带流体活动、壳幔水和微量元素循环、地幔楔交代和熔融及岛弧岩浆作用等具有重要影响.但由于硬柱石对温度和压力的改变非常敏感,在板片折返过程中很容易分解,因此目前全球出露的硬柱石榴辉岩极为稀少.总结了榴辉岩中早期硬柱石存在的识别标志,并据此确定柴北缘超高压带西段鱼卡地区的含蓝晶石榴辉岩和斜黝帘石榴辉岩是峰期硬柱石榴辉岩退变质改造的结果.该发现说明柴北缘成为继大别造山带之后全球第二例出露硬柱石榴辉岩的大陆俯冲型造山带.利用相平衡计算方法恢复了这两种榴辉岩的变质演化过程,其中含蓝晶石榴辉岩的P-T轨迹和峰期变质条件均与区内大陆俯冲型含柯石英多硅白云母榴辉岩相似,而斜黝帘石榴辉岩峰期变质温压则略低.锆石定年获得含蓝晶石榴辉岩和斜黝帘石榴辉岩的变质时代分别为437 Ma和436 Ma,与带内已有超高压榴辉岩相变质时代相同,同时获得含蓝晶石榴辉岩的原岩结晶时代为1 273 Ma.相似的变质P-T轨迹和变质时代表明含蓝晶石榴辉岩与同剖面含柯石英多硅白云母榴辉岩共同经历了大陆深俯冲作用.这一结果表明,硬柱石榴辉岩并非大洋冷俯冲带特有,决定榴辉岩中是否出现硬柱石的主要因素是原岩成分和变质条件.在鱼卡地区,榴辉岩的矿物组合中能否出现硬柱石的最主要控制因素是原岩中的Mg含量,由高Mg#的基性岩变质形成的榴辉岩峰期矿物组合中易出现硬柱石.Abstract: Lawsonite is a representative mineral in cold oceanic subduction zone. It contains high water and trace element contents,such as Sr,Pb,and REE,and thus its formation and breakdown greatly influence fluid activity in subduction channel,deep water and trace element recycling,metasomatism and partial melting of mantle wedge as well as arc volcanism. However,lawsonite-bearing eclogite is rarely exposed because lawsonite is very delicate that seldom survives exhumation. In this paper,we summarize the methods to identify former presence of lawsonite in eclogite and determine that clinozoisite eclogite and kyanite-bearing eclogite in the Yuka terrane,North Qaidam UHPM belt (NQUB) are retrograde products of lawsonite eclogite. This makes the NQUB being the second continental subduction-type orogenic belt which contains lawsonite eclogite. Phase equilibrium modelling obtains clockwise P-T paths for these two eclogites. The P-T path and peak metamorphic conditions of the kyanite-bearing eclogite are similar to the coesite-bearing phengite eclogite in the Yuka terrane,whereas the clinozoisite eclogite has slightly lower peak P-T conditions. Zircon dating yields metamorphic ages of 437 Ma and 436 Ma for the kyanite-bearing eclogite and clinozoisite eclogite,respectively,which are similar to UHP eclogite facies metamorphic ages in the NQUB,and a protolith age of 1 273 Ma for the kyanite-bearing eclogite. The similar P-T path and metamorphic age of the kyanite-bearing eclogite with coesite-bearing eclogite indicate that these two eclogites underwent continental deep subduction together. This results show that lawsonite eclogite is not peculiar to oceanic cold subduction zone. The main factors controlling the formation of lawsonite eclogite are bulk composition and metamorphic conditions. In the Yuka terrane,eclogite with high Mg# favors lawsonite-bearing peak assemblage.
-
Key words:
- lawsonite pseudomorph /
- eclogite /
- P-T-t path /
- Yuka terrane /
- North Qaidam /
- pertology
-
图 3 鱼卡不同榴辉岩球粒陨石标准化稀土图(a)及原始地幔标准化蛛网图(b)
数据引自Chen et al.(2009);Song et al.(2010);Ren et al.(2017, 2018)
Fig. 3. Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) for Yuka eclogites
图 4 斜黝帘石榴辉岩(a)及含蓝晶石榴辉岩(b)锆石定年结果
Fig. 4. Zircon dating results of the clinozoisite eclogite (a) and kyanite-bearing eclogite (b)
图 5 全岩Mg#对鱼卡榴辉岩峰期矿物组合的影响
Lws.硬柱石;Tlc.滑石;Chl.绿泥石;Hbl.普通角闪石;Ep.绿帘石;Coe.柯石英;其余同图 1;据Ren et al. (2018)
Fig. 5. P-T-Mg# pseudosections showing the peak metamorphic mineral assemblage controlled by bulk Mg#
-
[1] Altherr, R., Topuz, G., Marschall, H., et al., 2004.Evolution of a Tourmaline-Bearing Lawsonite Eclogite from the Elekdağ Area (Central Pontides, N Turkey):Evidence for Infiltration of Slab-Derived B-Rich Fluids during Exhumation.Contributions to Mineralogy and Petrology, 148(4):409-425. https://doi.org/10.1007/s00410-004-0611-1 [2] Ballevre, M., Pitra, P., Bohn, M., 2003.Lawsonite Growth in the Epidote Blueschists from the Ile de Groix (Armorican Massif, France):A Potential Geobarometer.Journal of Metamorphic Geology, 21(7):723-735. https://doi.org/10.1046/j.1525-1314.2003.00474.x [3] Castelli, D., Rolfo, F., Compagnoni, R., et al., 1998.Metamorphic Veins with Kyanite, Zoisite and Quartz in the Zhu-Jia-Chong Eclogite, Dabie Shan, China.The Island Arc, 7(1-2):159-173. https://doi.org/10.1046/j.1440-1738.1998.00185.x [4] Chen, D.L., Liu, L., Sun, Y., et al., 2009.Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China.Journal of Asian Earth Sciences, 35(3-4):259-272. https://doi.org/10.1016/j.jseaes.2008.12.001 [5] Chen, D.L., Sun, Y., Liu, L., et al., 2005.Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China:Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock.Acta Petrologica Sinica, 21(4):1039-1048 (in Chinese with English abstract). [6] El Korh, A., Schmidt, S.T., Ulianov, A., et al., 2009.Trace Element Partitioning in HP-LT Metamorphic Assemblages during Subduction-Related Metamorphism, Ile de Groix, France:A Detailed LA-ICPMS Study.Journal of Petrology, 50(6):1107-1148. https://doi.org/10.1093/petrology/egp034 [7] Groppo, C., Castelli, D., 2010.Prograde P-T Evolution of a Lawsonite Eclogite from the Monviso Meta-Ophiolite (Western Alps):Dehydration and Redox Reactions during Subduction of Oceanic FeTi-Oxide Gabbro.Journal of Petrology, 51(12):2489-2514. https://doi.org/10.1093/petrology/egq065 [8] Guo, S., Ye, K., Wu, T.F., et al., 2013.A Potential Method to Confirm the Previous Existence of Lawsonite in Eclogite:The Mass Imbalance of Sr and LREEs in Multistage Epidote (Ganghe, Dabie UHP Terrane).Journal of Metamorphic Geology, 31(4):415-435. https://doi.org/10.1111/jmg.12027 [9] Krogh Ravna, E.J., 2000.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology, 18(2):211-219. https://doi.org/10.1046/j.1525-1314.2000.00247.x [10] Krogh Ravna, E.J., Terry, M.P., 2004.Geothermobarometry of UHP and HP Eclogites and Schists:An Evaluation of Equilibria among Garnet-Clinopyroxene-Kyanite-Phengite-Coesite/Quartz.Journal of Metamorphic Geology, 22(6):579-592. https://doi.org/10.1111/j.1525-1314.2004.00534.x [11] Li, X.P., Zheng, Y.F., Wu, Y.B., et al., 2004.Low-T Eclogite in the Dabie Terrane of China:Petrological and Isotopic Constraints on Fluid Activity and Radiometric Dating.Contributions to Mineralogy and Petrology, 148(4):443-470. https://doi.org/10.1007/s00410-004-0616-9 [12] Liu, Q., Hermann, J., Zhang, J.F., 2013.Polyphase Inclusions in the Shuanghe UHP Eclogites Formed by Subsolidus Transformation and Incipient Melting during Exhumation of Deeply Subducted Crust.Lithos, 177:91-109. https://doi.org/10.1016/j.lithos.2013.06.010 [13] Martin, L.A.J., Hermann, J., Gauthiez-Putallaz, L., et al., 2014.Lawsonite Geochemistry and Stability:Implication for Trace Element and Water Cycles in Subduction Zones.Journal of Metamorphic Geology, 32(5):455-478. https://doi.org/10.1111/jmg.12093 [14] Mattinson, C.G., Wooden, J.L., Liou, J.G., et al., 2006.Age and Duration of Eclogite-Facies Metamorphism, North Qaidam HP/UHP Terrane, Western China.Geochimica et Cosmochimica Acta, 70(18):A401. https://doi.org/10.1016/j.gca.2006.06.809 [15] Mattinson, C.G., Zhang, R.Y., Tsujimori, T., et al., 2004.Epidote-Rich Talc-Kyanite-Phengite Eclogites, Sulu Terrane, Eastern China:P-T-fO2 Estimates and the Significance of the Epidote-Talc Assemblage in Eclogite.American Mineralogist, 89(11-12):1772-1783. https://doi.org/10.2138/am-2004-11-1224 [16] Orozbaev, R., Hirajima, T., Bakirov, A., et al., 2015.Trace Element Characteristics of Clinozoisite Pseudomorphs after Lawsonite in Talc-Garnet-Chloritoid Schists from the Makbal UHP Complex, Northern Kyrgyz Tian-Shan.Lithos, 226:98-115. https://doi.org/10.1016/j.lithos.2014.10.008 [17] Poli, S., Schmidt, M.W., 1995.H2O Transport and Release in Subduction Zones:Experimental Constraints on Basaltic and Andesitic Systems.Journal of Geophysical Research:Solid Earth, 100(B11):22299-22314. https://doi.org/10.1029/95jb01570 [18] Ren, Y.F., Chen, D.L., Kelsey, D.E., et al., 2017.Petrology and Geochemistry of the Lawsonite (Pseudomorph)-Bearing Eclogite in Yuka Terrane, North Qaidam UHPM Belt:An Eclogite Facies Metamorphosed Oceanic Slice.Gondwana Research, 42:220-242. https://doi.org/10.1016/j.gr.2016.10.011 [19] Ren, Y.F., Chen, D.L., Kelsey, D.E., et al., 2018.Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt.Journal of Metamorphic Geology, 36(4):463-488. https://doi.org/10.1111/jmg.12300 [20] Schmädicke, E., Will, T.M., 2003.Pressure-Temperature Evolution of Blueschist Facies Rocks from Sifnos, Greece, and Implications for the Exhumation of High-Pressure Rocks in the Central Aegean.Journal of Metamorphic Geology, 21(8):799-811. https://doi.org/10.1046/j.1525-1314.2003.00482.x [21] Spandler, C., Hermann, J., Arculus, R., et al., 2003.Redistribution of Trace Elements during Prograde Metamorphism from Lawsonite Blueschist to Eclogite Facies:Implications for Deep Subduction-Zone Processes.Contributions to Mineralogy and Petrology, 146(2):205-222. https://doi.org/10.1007/s00410-003-0495-5 [22] Song, S.G., Su, L., Li, X.H., et al., 2010.Tracing the 850 Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China.Precambrian Research, 183(4):805-816. https://doi.org/10.1016/j.precamres.2010.09.008 [23] Tsujimori, T., Ernst, W.G., 2014.Lawsonite Blueschists and Lawsonite Eclogites as Proxies for Palaeo-Subduction Zone Processes:A Review.Journal of Metamorphic Geology, 32(5):437-454. https://doi.org/10.1111/jmg.12057 [24] Tsujimori, T., Sisson, V., Liou, J., et al., 2006.Very-Low-Temperature Record of the Subduction Process:A Review of Worldwide Lawsonite Eclogites.Lithos, 92(3-4):609-624. https://doi.org/10.1016/j.lithos.2006.03.054 [25] Usui, T., Nakamura, E., Helmstaedt, H., 2006.Petrology and Geochemistry of Eclogite Xenoliths from the Colorado Plateau:Implications for the Evolution of Subducted Oceanic Crust.Journal of Petrology, 47(5):929-964. https://doi.org/10.1093/petrology/egi101 [26] Usui, T., Nakamura, E., Kobayashi, K., et al., 2003.Fate of the Subducted Farallon Plate Inferred from Eclogite Xenoliths in the Colorado Plateau.Geology, 31(7):589-592. doi: 10.1130/0091-7613(2003)031<0589:FOTSFP>2.0.CO;2 [27] Vitale Brovarone, A., Alard, O., Beyssac, O., et al., 2014.Lawsonite Metasomatism and Trace Element Recycling in Subduction Zones.Journal of Metamorphic Geology, 32(5):489-514. https://doi.org/10.1111/jmg.12074 [28] Wei, C.J., Clarke, G.L., 2011.Calculated Phase Equilibria for MORB Compositions:A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite.Journal of Metamorphic Geology, 29(9):939-952. https://doi.org/10.1111/j.1525-1314.2011.00948.x [29] Wei, C.J., Duan, Z.Z., 2019.Phase Relations in Metabasic Rocks:Constraints from the Results of Experiments, Phase Modelling and ACF Analysis.Geological Society, London, Special Publications, 474(1): 25-45. https://doi.org/10.1144/sp474.10 [30] Wei, C.J., Li, Y.J., Yu, Y., et al., 2010.Phase Equilibria and Metamorphic Evolution of Glaucophane-Bearing UHP Eclogites from the Western Dabieshan Terrane, Central China.Journal of Metamorphic Geology, 28(6):647-666. https://doi.org/10.1111/j.1525-1314.2010.00884.x [31] Whitney, D.L., Davis, P.B., 2006.Why is Lawsonite Eclogite So Rare? Metamorphism and Preservation of Lawsonite Eclogite, Sivrihisar, Turkey.Geology, 34(6):473-476. https://doi.org/10.1130/g22259.1 [32] Zhang, G.B., Ellis, D.J., Christy, A.G., et al., 2010.UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China.European Journal of Mineralogy, 21(6):1287-1300. doi: 10.1127/0935-1221/2009/0021-1989 [33] 陈丹玲, 孙勇, 刘良, 等, 2005.柴北缘鱼卡河榴辉岩的变质演化:石榴石成分环带及矿物反应结构的证据.岩石学报, 21(4):1039-1048. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504002