Mafic Igneous Rocks in Continental Collision Orogen Record Recycling of Subducted Paleo-Oceanic Crust
-
摘要: 在大陆碰撞造山带中寻找消失的古洋壳再循环及其壳幔相互作用的证据,对理解从洋壳俯冲到陆壳俯冲化学地球动力学过程的转变,以及板块构造理论的发展具有重要意义.通过对桐柏-红安造山带晚古生代和晚中生代镁铁质岩浆岩的岩石地球化学特征进行总结,可以识别出俯冲古洋壳再循环的岩石学和地球化学记录.晚古生代岛弧型镁铁质岩石具有弧型微量元素特征和相对亏损的放射成因同位素组成,记录了俯冲古洋壳在弧下深度(80~160 km)的流体交代作用;而晚中生代洋岛型镁铁质岩石OIB型微量元素特征和亏损-弱富集的放射成因同位素组成,记录了俯冲古洋壳在弧后深度(>200 km)的熔体交代作用.这一定性的解释也进一步得到了定量计算的证实,其结果表明镁铁质岩浆岩中的不相容元素的含量以及放射性成因同位素的富集程度,主要受控于地幔源区中所加入的地壳组分的性质和比例.因此,碰撞造山带中的岛弧型和洋岛型镁铁质岩浆岩,分别记录了弧下和弧后深度的俯冲古洋壳物质再循环.Abstract: It is of great significance to search for the evidence of paleo-oceanic crust recycling in collisional orogens to understand the geodynamic transition from oceanic subduction to continental subduction, and also the development of plate tectonics.This is illustrated by the petrology and geochemistry of Late Paleozoic and Late Mesozoic mafic magmatic rocks in the Tongbai-Hong'an orogens. The fluid metasomatism of subducted oceanic crust at sub-arc depth (80-160 km) was recorded by the Late Paleozoic mafic rocks, which are characterized by the arc-like trace element features and depleted radiogenic isotopes, while the melt metasomatism of subducted oceanic crust at post-arc depth (>200 km) was recorded by Late Mesozoic mafic rocks, which are characterized by the OIB-like trace element features and depleted-weakly enriched radiogenic isotopes. These qualitative interpretations are further confirmed by quantitative calculations, which indicates that the content of incompatible elements and the enrichment degree of radiogenic isotopes in mafic igneous rocks are mainly controlled by the nature and proportion of crustal components in the mantle sources. Therefore, the recycling of the subducted paleo-oceanic crust at sub-arc and post-arc depths, are confirmed by arc-like and OIB-like mafic igneous rocks in the collisional orogenic belt, respectively.
-
图 1 桐柏-红安造山带晚古生代和晚中生代镁铁质岩浆岩岩石地球化学和同位素组成
数据源自Dai et al.(2017a);Zheng et al.(2019);a.全岩Na2O+K2O⁃SiO2(TAS)图;b. Sr⁃Nd同位素组成;c.稀土元素球粒陨石标准化分布图;d.微量元素原始地幔标准化蛛网图
Fig. 1. Plots of lithochemical and isotopic compositions for the Late Paleozoic and Late Mesozoic mafic rocks in the Tongbai⁃Hong'an orogens
图 2 桐柏-红安造山带晚古生代(a和c)和晚中生代(b和d)镁铁质岩浆岩微量元素和放射性成因Sr⁃Nd同位素模拟计算结果
计算方法参照Xu and Zheng(2017);数据源自Dai et al.(2017b)和Zheng et al.(2019).RDMM.亏损地幔;FIOC.洋壳产生的流体;MIOC.洋壳产生的熔体;Ms.沉积物产生的熔体
Fig. 2. Modal calculation results of the trace elements and radiogenic Sr⁃Nd isotopes for Late Paleozoic(a and c) and Late Mesozoic (b and d) mafic igneous rocks in the Tongbai⁃Hong'an orogens
-
[1] Chen, L., Ma, C.Q., Zhang, J.Y., et al., 2010.Mafic Dykes Derived from Early Cretaceous Depleted Mantle beneath the Dabie Orogenic Belt:Implications for Changling Lithosphere Mantle beneath Eastern China.Geological Journal, 46(4):333-343. https://doi.org/10.1002/gj.1273 [2] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2011.Zircon Hf⁃O Isotope Evidence for Crust⁃Mantle Interaction during Continental Deep Subduction.Earth and Planetary Science Letters, 308(1-2):229-244. https://doi.org/10.1016/j.epsl.2011.06.001 [3] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2012.The Nature of Orogenic Lithospheric Mantle:Geochemical Constraints from Postcollisional Mafic⁃Ultramafic Rocks in the Dabie Orogen.Chemical Geology, 334:99-121. https://doi.org/10.1016/j.chemgeo.2012.10.009 [4] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2017a.Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.Journal of Petrology, 58(5):863-884. https://doi.org/10.1093/petrology/egx038 [5] Dai, L.Q., Zheng, F., Zhao, Z.F., et al., 2017b.Recycling of Paleotethyan Oceanic Crust:Geochemical Record from Postcollisional Mafic Igneous Rocks in the Tongbai⁃Hong'an Orogens.Geological Society of America Bulletin, 129(1-2):179-192. doi: 10.1130/B31461.1 [6] Herzberg, C., 2011.Identification of Source Lithology in the Hawaiian and Canary Islands:Implications for Origins.Journal of Petrology, 52(1):113-146. https://doi.org/10.1093/petrology/egq075 [7] Hirschmann, M.M., Kogiso, T., Baker, M.B., et al., 2003.Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite.Geology, 31(6):481. doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 [8] Pilet, S., Baker, M.B., Stolper, E.M., 2008.Metasomatized Lithosphere and the Origin of Alkaline Lavas.Science, 320(5878):916-919. https://doi.org/10.1126/science.1156563 [9] Poli, S., Schmidt, M.W., 2002.Petrology of Subducted Slabs.Annual Review of Earth and Planetary Sciences, 30:207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550 [10] Portnyagin, M., Hoernle, K., Avdeiko, G., et al., 2005.Transition from Arc to Oceanic Magmatism at the Kamchatka⁃Aleutian Junction.Geology, 33(1):25. https://doi.org/10.1130/g20853.1 [11] Ringwood, A.E., 1990.Slab⁃Mantle Interactions:3.Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle.Chemical Geology, 82(3-4):187-207. https://doi.org/10.1016/0009⁃2541(90)90081⁃H [12] Schmidt, M.W., Poli, S., 2003.Generation of Mobile Components during Subduction of Oceanic Crust.Treatise on Geochemistry, 3:567-591. [13] Skora, S., Blundy, J., 2010.High⁃Pressure Hydrous Phase Relations of Radiolarian Clay and Implications for the Involvement of Subducted Sediment in Arc Magmatism.Journal of Petrology, 51(11):2211-2243. https://doi.org/10.1093/petrology/egq054 [14] Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005.An Olivine⁃Free Mantle Source of Hawaiian Shield Basalts.Nature, 434:590-597. https://doi.org/10.1038/nature03411 [15] Spandler, C., Yaxley, G., Green, D.H., et al., 2007.Phase Relations and Melting of Anhydrous K⁃Bearing Eclogite from 1 200 to 1 600 ℃ and 3 to 5 GPa.Journal of Petrology, 49(4):771-795. https://doi.org/10.1093/petrology/egm039 [16] Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism.Blackwell Science, Oxford, 211. [17] Wang, H., Wu, Y.B., Qin, Z.W., et al., 2013.Age and Geochemistry of Silurian Gabbroic Rocks in the Tongbai Orogen, Central China:Implications for the Geodynamic Evolution of the North Qinling Arc⁃Back⁃Arc System.Lithos, 179:1-15. https://doi.org/10.1016/j.lithos.2013.07.021 [18] Wu, Y.B., Zheng, Y.F., 2013.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling⁃Tongbai⁃Hong'an⁃Dabie⁃Sulu Orogenic Belt in Central China.Gondwana Research, 23(4):1402-1428. https://doi.org/10.1016/j.gr.2012.09.007 [19] Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012.Slab⁃Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146-147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019 [20] Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust⁃Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010 [21] Yaxley, G.M., Green, D.H., 1998, Reactions between Eclogite and Peridotite:Mantle Refertilisation by Subduction of Oceanic Crust.Schweizerische Mineralogische et Petrologische Mitteilung, 78(2):243-255. https://www.researchgate.net/publication/234065726_Reactions_between_eclogite_and_peridotite_Mantle_refertilisation_by_subduction_of_oceanic_crust [22] Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East⁃Central China.Lithos, 110(1-4):305-326. https://doi.org/10.1016/j.lithos.2009.01.006 [23] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013.Postcollisional Mafic Igneous Rocks Record Crust⁃Mantle Interaction during Continental Deep Subduction.Scientific Reports, 3(3413). https://doi.org/ 10.1038/srep03413 [24] Zheng, F., Dai, L.Q., Zhao, Z.F., et al., 2019.Recycling of Paleo⁃Oceanic Crust:Geochemical Evidence from Early Paleozoic Mafic Igneous Rocks in the Tongbai Orogen, Central China.Lithos, 328-329:312-327. https://doi.org/10.1016/j.lithos.2019.01.010 [25] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [26] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 [27] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049 [28] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430⁃015⁃5097⁃3 [29] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie⁃Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth⁃Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012⁃8252(02)00133⁃2