Genesis of UHP Eclogite-Vein System and Metamorphic Fluid Evolution in Subduction Zones
-
摘要: 超高压岩石-脉体体系是认识俯冲带流体性质和行为的天然实验室.通过总结大别超高压变质带3个榴辉岩(角闪岩)-脉体体系的研究成果,探讨了大陆俯冲带变质流体的溶解-结晶过程和氧逸度变化规律以及流体对轻元素硼的迁移过程.对榴辉岩-复合高压脉体的研究发现超高压流体通过溶解矿物富集溶质组分,流体随后经历3期结晶过程,分别形成绿辉石-绿帘石脉、绿帘石-石英脉和蓝晶石-绿帘石-石英脉.绿帘石La、Cr和δEu值是判断结晶次序的关键指标.对榴辉岩-角闪岩-低压脉体研究表明大陆俯冲带低压变质流体的氧逸度明显高于高压-超高压变质流体.高氧逸度条件也导致一些反常矿物(如退变金红石)的生长.对含电气石榴辉岩-脉体研究揭示变质碳酸盐岩是大陆俯冲板片中重硼同位素的重要储库,其在汇聚板块边界的脱硼作用显著影响深部硼循环.上述研究成果为理解俯冲带变质流体演化和物质循环提供重要科学依据.Abstract: The system of ultrahigh-pressure (UHP) metamorphic rocks and veins is a natural laboratory to understand the nature and behavior of metamorphic fluids in subduction zones. This paper presents a review of the studies on three suits of eclogite (amphibolite)-vein system from the Dabie UHP terrane in order to discuss the dissolution and crystallization processes of subduction-zone metamorphic fluids, variation in fluid oxygen fugacity (fO2), and fluid-assisted boron (B) transfer. The study of UHP eclogites and enclosed multiple veins indicates that UHP fluid transferred materials by the dissolution of various components. This solute-rich fluid then experienced a three-stage crystallization process, which produced omphacite-epidote vein, epidote-quartz vein, and kyanite-epidote-quartz vein. La and Cr contents and δEu values of vein epidote are critical geochemical indicators for assessing the precipitating sequence of veins. The investigation on an eclogite-amphibolite-vein system indicates that low-pressure fluids have much higher fO2 conditions than high-pressure (HP) and UHP fluids in continental subduction zones. Such high fO2 conditions also lead to the growth of some unusual minerals (e.g., low pressure retrograde rutile). The investigation on tourmaline-bearing eclogite-vein system indicates that metacarbonate is an important reservoir of isotopically heavy boron (B) in subducted continental crust, and the release of B of metacarbonate at convergent boundary exerts a significant influence on deep B cycling. The studies above provide important insights into the fluid evolution and material cycling in subduction zones.
-
Key words:
- UHP eclogite /
- vein /
- subduction-zone fluid /
- crystallization /
- oxygen fugacity /
- petrology /
- boron transfer
-
图 1 花凉亭超高压榴辉岩和复合多期高压脉体的野外分布(a)和绿帘石矿物成分(b和c)
Fig. 1. The field distribution (a) and epidote compositions (b and c) of Hualiangting UHP eclogites and multiple HP veins
图 2 计算的绿片岩相变质流体的氧逸度条件(a)和绿片岩相条件下退变质金红石的形成(b和c)
Fig. 2. Calculated oxygen fugacity conditions of the greenschist-facies retrograde fluid (a) and the growth of retrograde rutile at the greenschist-facies condition (b and c)
图 3 白羊岭含电气石超高压榴辉岩和脉体的手标本(a)和榴辉岩-围岩大理岩的手标本(b)
Fig. 3. Hand specimens of the Baiyangling UHP eclogite-vein system (a) and eclogite-marble system (b)
图 4 大别超高压岩石中电气石的硼同位素与主要硼储库的硼同位素对比
Fig. 4. Boron isotopic compositions of tourmaline from the Dabie UHP rocks in comparison with major boron reservoirs
-
[1] Arculus, R.J., 1985.Oxidation Status of the Mantle:Past and Present.Annual Review of Earth and Planetary Sciences, 13:75-95. https://doi.org/10.1146/annurev.ea.13.050185.000451 [2] Bali, E., Audétat, A., Keppler, H., 2010.The Mobility of U and Th in Subduction Zone Fluids:An Indicator of Oxygen Fugacity and Fluid Salinity.Contributions to Mineralogy and Petrology, 161(4):597-613. https://doi.org/10.1007/s00410-010-0552-9 [3] Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://doi.org/10.1016/j.gca.2009.12.011 [4] Cao, Y., Song, S.G., Niu, Y.L., et al., 2011.Variation of Mineral Composition, Fabric and Oxygen Fugacity from Massive to Foliated Eclogites during Exhumation of Subducted Ocean Crust in the North Qilian Suture Zone, NW China.Journal of Metamorphic Geology, 29(7):699-720. doi: 10.1111/j.1525-1314.2011.00937.x [5] Chen, R.X., Zheng, Y.F., Hu, Z.C., 2012.Episodic Fluid Action during Exhumation of Deeply Subducted Continental Crust:Geochemical Constraints from Zoisite-Quartz Vein and Host Metabasite in the Dabie Orogen.Lithos, 155:146-166. https://doi.org/10.1016/j.lithos.2012.08.023 [6] Chen, Y., Chen, S., Su, B., et al., 2018.Trace Element Systematics of Granulite-Facies Rutile.Earth Science, 43(1):127-149(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.008 [7] Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China:Earth Sciences, 58(10):1679-1699. doi: 10.1007/s11430-015-5148-9 [8] Davies, J.H., 1999.The Role of Hydraulic Fractures and Intermediate-Depth Earthquakes in Generating Subduction-Zone Magmatism.Nature, 398:142-145. https://doi.org/10.1038/18202 [9] De Hoog, J.C.M., Savov, I.P., 2018.Boron Isotopes as aTracer of Subduction Zone Processes.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 217-247. [10] Dutrow, B.L., Henry, D.J., 2011.Tourmaline:A Geologic DVD.Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301 [11] Enami, M., Liou, J.G., Mattinson, C.G., 2004.Epidote Minerals in High P-T Metamorphic Terranes:Subduction Zone and High-to Ultrahigh-Pressure Metamorphism.Reviews in Mineralogy and Geochemistry, 56(1):347-398. https://doi.org/10.2138/gsrmg.56.1.347 [12] Foster, G.L., Pogge von Strandmann, P.A.E., Rae, J.W.B., 2010.Boron and Magnesium Isotopic Composition of Seawater.Geochemistry, Geophysics, Geosystems, 11(8):Q08015. https://doi.org/10.1029/2010gc003201 [13] Franz, L., Rolf, L.R., Klemd, R., et al., 2001.Eclogite-Facies Quartz Veins within Metabasites of the Dabie Shan (Eastern China):Pressure-Temperature-Time-Deformation Path, Composition of the Fluid Phase and Fluid Flow during Exhumation of High-Pressure Rocks.Contributions to Mineralogy and Petrology, 141(3):322-346. doi: 10.1007/s004100000233 [14] Glodny, J., Austrheim, H., Molina, J.F., et al., 2003.Rb\Sr Record of Fluid-Rock Interaction in Eclogites:The Marun-Keu Complex, Polar Urals, Russia.Geochimica et Cosmochimica Acta, 67(22):4353-4371. https://doi.org/10.1016/s0016-7037(03)00370-3 [15] Guo, S., Chen, Y., Ye, K., et al., 2015.Formation of Multiple High-Pressure Veins in Ultrahigh-Pressure Eclogite (Hualiangting, Dabie Terrane, China):Fluid Source, Element Transfer, and Closed-System Metamorphic Veining.Chemical Geology, 417:238-260. https://doi.org/10.1016/j.chemgeo.2015.10.006 [16] Guo, S., Tang, P., Su, B., et al., 2017.Unusual Replacement of Fe-Ti Oxides by Rutile during Retrogression in Amphibolite-Hosted Veins (Dabie UHP Terrane):A Mineralogical Record of Fluid-Induced Oxidation Processes in Exhumed UHP Slabs.American Mineralogist, 102(11):2268-2283. https://doi.org/10.2138/am-2017-6120 [17] Guo, S., Yang, Y.H., Chen, Y., et al., 2016.Grain-Scale Sr Isotope Heterogeneity in Amphibolite (Retrograded UHP Eclogite, Dabie Terrane):Implications for the Origin and Flow Behavior of Retrograde Fluids during Slab Exhumation.Lithos, 266-267:383-405. https://doi.org/10.1016/j.lithos.2016.10.014 [18] Guo, S., Ye, K., Yang, Y.H., et al., 2014.In Situ Sr Isotopic Analyses of Epidote:Tracing the Sources of Multi-Stage Fluids in Ultrahigh-Pressure Eclogite (Ganghe, Dabie Terrane).Contributions to Mineralogy and Petrology, 167(2):975. https://doi.org/10.1007/s00410-014-0975-9 [19] Guo, S., Zhao, K.D., John, T., et al., 2019.Metasomatic Flow of Metacarbonate-Derived Fluids Carrying Isotopically Heavy Boron in Continental Subduction Zones:Insights from Tourmaline-Bearing Ultra-High Pressure Eclogites and Veins (Dabie Terrane, Eastern China).Geochimica et Cosmochimica Acta, 253:159-200. https://doi.org/10.1016/j.gca.2019.03.013 [20] Jiang, S.Y., Yu, J.M., Ling, H.F., et al., 2000.Boron Isotope as a Tracer in the Study of Crust-Mantle Evolution and Subduction Processes.Earth Science Frontiers, 7(2):391-399(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3a88fa1a5b44118c3736f24ff04ec2c1&encoded=0&v=paper_preview&mkt=zh-cn [21] John, T., Gussone, N., Podladchikov, Y.Y., et al., 2012.Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs.Nature Geoscience, 5(7):489-492. https://doi.org/10.1038/ngeo1482 [22] John, T., Klemd, R., Klemme, S., et al., 2010.Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition.Contributions to Mineralogy and Petrology, 161(1):35-45. https://doi.org/10.1007/s00410-010-0520-4 [23] Li, X.P., Zheng, Y.F., Wu, Y.B., et al., 2004.Low-T Eclogite in the Dabie Terrane of China:Petrological and Isotopic Constraints on Fluid Activity and Radiometric Dating.Contributions to Mineralogy and Petrology, 148(4):443-470. https://doi.org/10.1007/s00410-004-0616-9 [24] Luvizotto, G.L., Zack, T., 2009.Nb and Zr Behavior in Rutile during High-Grade Metamorphism and Retrogression:An Example from the Ivrea-Verbano Zone.Chemical Geology, 261(3-4):303-317. https://doi.org/10.1016/j.chemgeo.2008.07.023 [25] Marschall, H.R.M., 2018.Boron Isotopes in the Ocean Floor Realm and the Mantle.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 191-217. [26] Marschall, H.R.M, Korsakov, A.V., Luvizotto, G.L., et al., 2009.On the Occurrence and Boron Isotopic Composition of Tourmaline in (Ultra) High-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):811-823. https://doi.org/10.1144/0016-76492008-042 [27] Martin, L.A.J., Wood, B.J., Turner, S., et al., 2011.Experimental Measurements of Trace Element Partitioning between Lawsonite, Zoisite and Fluid and Their Implication for the Composition of Arc Magmas.Journal of Petrology, 52(6):1049-1075. https://doi.org/10.1093/petrology/egr018 [28] Mattinson, C.G., Zhang, R.Y., Tsujimori, T., et al., 2004.Epidote-Rich Talc-Kyanite-Phengite Eclogites, Sulu Terrane, Eastern China:P-T-O2 Estimates and the Significance of the Epidote-Talc Assemblage in Eclogite.American Mineralogist, 89(11-12):1772-1783. https://doi.org/10.2138/am-2004-11-1224 [29] McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h [30] Ni, H.W., Zheng, Y.F., Mao, Z., et al., 2017.Distribution, Cycling and Impact of Water in the Earth's Interior.National Science Review, 4(6):879-891. https://doi.org/10.1093/nsr/nwx130 [31] Ota, T., Kobayashi, K., Katsura, T., et al., 2008b.Tourmaline Breakdown in a Pelitic System:Implications for Boron Cycling through Subduction Zones.Contributions to Mineralogy and Petrology, 155(1):19-32. https://doi.org/10.1007/s00410-007-0228-2 [32] Ota, T., Kobayashi, K., Kunihiro, T., et al., 2008a.Boron Cycling by Subducted Lithosphere; Insights from Diamondiferous Tourmaline from the Kokchetav Ultrahigh-Pressure Metamorphic Belt.Geochimica et Cosmochimica Acta, 72(14):3531-3541. https://doi.org/10.1016/j.gca.2008.05.002 [33] Palmer, M.R., 2017.Boron Cycling in Subduction Zones.Elements, 13(4):237-242. https://doi.org/10.2138/gselements.13.4.237 [34] Pawley, A.R., Holloway, J.R., McMillan, P.F., 1992.The Effect of Oxygen Fugacity on the Solubility of Carbon-Oxygen Fluids in Basaltic Melt.Earth and Planetary Science Letters, 110(1-4):213-225. https://doi.org/10.1016/0012-821x(92)90049-2 [35] Poli, S., Schmidt, M.W., 2004.Experimental Subsolidus Studies on Epidote Minerals.Reviews in Mineralogy and Geochemistry, 56(1):171-195. https://doi.org/10.2138/gsrmg.56.1.171 [36] Putnis, A., John, T., 2010.Replacement Processes in the Earth's Crust.Elements, 6(3):159-164. https://doi.org/10.2113/gselements.6.3.159 [37] Sheng, Y.M., Zheng, Y.F., Wu, Y.B., 2011.Studies of Metamorphic Vein in Ultrahigh-Pressure Rocks.Acta Petrologica Sinica, 27(2):490-500(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201102009 [38] Spandler, C., Hermann, J., 2006.High-Pressure Veins in Eclogite from New Caledonia and Their Significance for Fluid Migration in Subduction Zones.Lithos, 89(1-2):135-153. https://doi.org/10.1016/j.lithos.2005.12.003 [39] Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004.Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization.Nature, 431:975-978. https://doi.org/10.1038/nature02972 [40] Trumbull, R.B., Slack, J.F., 2018.Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 249-272. [41] Wang, S.J., Wang, L., Brown, M., et al., 2017.Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust:Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China.Journal of Metamorphic Geology, 35(6):601-629. https://doi.org/10.1111/jmg.12248 [42] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 [43] Williams, H.M., Peslier, A.H., McCammon, C., et al., 2005.Systematic Iron Isotope Variations in Mantle Rocks and Minerals:The Effects of Partial Melting and Oxygen Fugacity.Earth and Planetary Science Letters, 235(1-2):435-452. https://doi.org/10.1016/j.epsl.2005.04.020 [44] Wu, Y.B., Gao, S., Zhang, H.F., et al., 2009.U-Pb Age, Trace-Element, and Hf-Isotope Compositions of Zircon in a Quartz Vein from Eclogite in the Western Dabie Mountains:Constraints on Fluid Flow during Early Exhumation of Ultrahigh-Pressure Rocks.American Mineralogist, 94(2-3):303-312. https://doi.org/10.2138/am.2009.3042 [45] Xiao, Y.L., Hoefs, J., Hou, Z.H., et al., 2011.Fluid/Rock Interaction and Mass Transfer in Continental Subduction Zones:Constraints from Trace Elements and Isotopes (Li, B, O, Sr, Nd, Pb) in UHP Rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China.Contributions to Mineralogy and Petrology, 162(4):797-819. https://doi.org/10.1007/s00410-011-0625-4 [46] Zhang, R.Y., Liou, J.G., Ernst, W.G., 2009.The Dabie-Sulu Continental Collision Zone:A Comprehensive Review.Gondwana Research, 16(1):1-26. https://doi.org/10.1016/j.gr.2009.03.008 [47] Zhang, Z.M., Shen, K., Sun, W.D., et al., 2008.Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China.Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://doi.org/10.1016/j.gca.2008.04.014 [48] Zhao, Y.J., Wu, Y.B., Liu, X.C., et al., 2016.Distinct Zircon U-Pb and O-Hf-Nd-Sr Isotopic Behaviour during Fluid Flow in UHP Metamorphic Rocks:Evidence from Metamorphic Veins and Their Host Eclogite in the Sulu Orogen, China.Journal of Metamorphic Geology, 34(4):343-362. https://doi.org/10.1111/jmg.12184 [49] Zheng, Y.F., Gao, T.S., Wu, Y.B., et al., 2007.Fluid Flow during Exhumation of Deeply Subducted Continental Crust:Zircon U-Pb Age and O-Isotope Studies of a Quartz Vein within Ultrahigh-Pressure Eclogite.Journal of Metamorphic Geology, 25(2):267-283. https://doi.org/10.1111/j.1525-1314.2007.00696.x [50] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93 [51] Zheng, Y.F., Zhang, L.F., McClelland, W.C., et al., 2012.Processes in Continental Collision Zones:Preface.Lithos, 136-139:1-9. https://doi.org/10.1016/j.lithos.2011.11.020 [52] 陈意, 陈思, 苏斌, 等, 2018.麻粒岩相金红石微量元素体系.地球科学, 43(1):127-149. https://doi.org/10.3799/dqkx.2018.008 [53] 蒋少涌, 于际民, 凌洪飞, 等, 2000.壳-幔演化和板块俯冲作用过程中的硼同位素示踪.地学前缘, 7(2):391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008 [54] 盛英明, 郑永飞, 吴元保, 2011.超高压岩石中变质脉的研究.岩石学报, 27(2):490-500. http://d.old.wanfangdata.com.cn/Conference/5806439