• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高压-超高压变质岩石中不同成因的石榴石

    夏琼霞

    夏琼霞, 2019. 高压-超高压变质岩石中不同成因的石榴石. 地球科学, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235
    引用本文: 夏琼霞, 2019. 高压-超高压变质岩石中不同成因的石榴石. 地球科学, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235
    Xia Qiongxia, 2019. Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks. Earth Science, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235
    Citation: Xia Qiongxia, 2019. Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks. Earth Science, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235

    高压-超高压变质岩石中不同成因的石榴石

    doi: 10.3799/dqkx.2019.235
    基金项目: 

    国家“973”计划项目 2015CB856104

    国家自然科学基金项目 41822201

    国家自然科学基金项目 41772048

    详细信息
      作者简介:

      夏琼霞(1979-), 女, 博士, 特任教授, 主要从事造山带变质岩石学和地球化学

    • 中图分类号: P581

    Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks

    • 摘要: 石榴石是高压-超高压变质岩石中最重要的变质矿物之一,是研究俯冲带深部变质和熔融过程的理想研究对象.通过对俯冲带内不同条件下形成的石榴石进行详细研究,确定了岩浆成因、变质成因和转熔成因石榴石.岩浆石榴石是岩浆熔体在冷却过程中结晶形成,成分主要为锰铝榴石-铁铝榴石,通常含有石英、长石、磷灰石等晶体包裹体.变质石榴石是在亚固相条件下通过变质反应形成,包裹体为参与变质反应的矿物组合;进变质生长的石榴石通常显示核部到边部锰铝榴石降低的特征.转熔石榴石是在超固相条件下通过转熔反应形成,通常含有晶体包裹体,其中既有从转熔熔体结晶的矿物包裹体,也有转熔反应残留的矿物包裹体.对超高压变质岩石中转熔石榴石的识别,可以为深俯冲陆壳岩石的部分熔融提供重要的岩石学证据,是大陆俯冲带部分熔融研究的重要进展之一.

       

    • 图  1  大别山双河地区超高压变质片麻岩中变质成因和转熔成因石榴石

      修改自Xia et al.(2016)

      Fig.  1.  Metamorphic and peritectic garnets in anatectic UHP metamorphic gneiss at Shuanghe in the Dabie orogen

      图  2  喜马拉雅东构造结高压混合岩和脉状花岗岩岩中转熔石榴石和岩浆石榴石

      修改自Xia et al.(2019)

      Fig.  2.  Peritectic and magmatic garnets in HP migmatites and vein granites from eastern Himalayan syntaxis

      图  3  超高压变质花岗岩中岩浆石榴石残斑核和变质生长石榴石幔部和边部

      a.背散射图像; b.Mn元素分布图示; c.主量元素剖面; d.稀土元素剖面; 修改自Xia et al.(2012)

      Fig.  3.  The residual of magmatic garnet in the core and new growth of metamorphic garnet in the mantle and rims from the UHP metamorphosed granites

    • [1] Carswell, D.A., O'Brien, P.J., Wilson, R.N., et al., 1997.Thermobarometry of Phengite-Bearing Eclogites in the Dabie Mountains of Central China.Journal of Metamorphic Geology, 15(2):239-252. https://doi.org/10.1111/j.1525-1314.1997.00014.x
      [2] Carswell, D.A., Wilson, R.N., Zhai, M.G., 2000.Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneisses Hosting Ultra-High Pressure Eclogites in the Dabieshan of Central China.Lithos, 52(1-4): 121-155. https://doi.org/10.1016/s0024-4937(99)00088-2
      [3] Chen, Y.X., Zheng, Y.F., Hu, Z.C., 2013.Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks: Petrological Evidence from Granitic Gneiss in the Sulu Orogen.Lithos, 156: 69-96. https://doi.org/10.1016/j.lithos.2012.10.008
      [4] Chen, Y.X., Zhou, K., Zheng, Y.F., et al., 2015.Garnet Geochemistry Records the Action of Metamorphic Fluids in Ultrahigh-Pressure Dioritic Gneiss from the Sulu Orogen.Chemical Geology, 398: 46-60. https://doi.org/10.1016/j.chemgeo.2015.01.021
      [5] Cheng, H., Liu, X.C., Vervoort, J.D., et al., 2016.Micro-Sampling Lu-Hf Geochronology Reveals Episodic Garnet Growth and Multiple High-P Metamorphic Events.Journal of Metamorphic Geology, 34(4): 363-377. https://doi.org/10.1111/jmg.12185
      [6] Cheng, H., Vervoort, J.D., Li, X., et al., 2011.The Growth Interval of Garnet in the UHP Eclogites from the Dabie Orogen, China.American Mineralogist, 96(8-9): 1300-1307. https://doi.org/10.2138/am.2011.3737
      [7] Cutts, K.A., Kinny, P.D., Strachan, R.A., et al., 2010.Three Metamorphic Events Recorded in a Single Garnet: Integrated Phase Modelling, In Situ LA-ICPMS and SIMS Geochronology from the Moine Supergroup, NW Scotland.Journal of Metamorphic Geology, 28(3): 249-267. https://doi.org/10.1111/j.1525-1314.2009.00863.x
      [8] Dragovic, B., Samanta, L.M., Baxter, E.F., et al., 2012.Using Garnet to Constrain the Duration and Rate of Water-Releasing Metamorphic Reactions during Subduction: An Example from Sifnos, Greece.Chemical Geology, 314-317: 9-22. https://doi.org/10.1016/j.chemgeo.2012.04.016
      [9] Holdaway, M.J., 2000.Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer.American Mineralogist, 85(7-8): 881-892. https://doi.org/10.2138/am-2000-0701
      [10] Holness, M.B., Sawyer, E.W., 2008.On the Pseudomorphing of Melt-Filled Pores during the Crystallization of Migmatites.Journal of Petrology, 49(7): 1343-1363. https://doi.org/10.1093/petrology/egn028
      [11] Kohn, M., Spear, F.S., Valley, J.W., 1997.Dehydration-Melting and Fluid Recycling during Metamorphism: Rangeley Formation, New Hampshire, USA.Journal of Petrology, 38(9): 1255-1277. https://doi.org/10.1093/petrology/38.9.1255
      [12] Konrad-Schmolke, M., Zack, T., O'Brien, P.J., et al., 2008.Combined Thermodynamic and Rare Earth Element Modeling of Garnet Growth During Subduction: Examples from Ultrahigh-Pressure Eclogite of the Western Gneiss Region, Norway.Earth Planet.Science.Letters., 272(1-2): 488-498. https://doi.org/10.1016/j.epsl.2008.05.018
      [13] Liu, P.L., Wu, Y., Liu, Q., et al., 2014.Partial Melting of UHP Calc-Gneiss from the Dabie Mountains.Lithos, 192-195: 86-101. https://doi.org/10.1016/j.lithos.2014.01.012.
      [14] Perchuk, A.L., Burchard, M., Maresch, W.V., et al., 2005.Fluid-Mediated Modification of Garnet Interiors under Ultrahigh-Pressure Conditions.Terra Nova, 17(6): 545-553. https://doi.org/10.1111/j.1365-3121.2005.00647.x
      [15] Perchuk, A.L., Burchard, M., Maresch, W.V., et al., 2008.Melting of Hydrous and Carbonate Mineral Inclusions in Garnet Host during Ultrahigh Pressure Experiments.Lithos, 103(1-2): 25-45. https://doi.org/10.1016/j.lithos.2007.09.008
      [16] Rubatto, D., Hermann, J., 2007.Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks.Chemical Geology, 241(1-2): 38-61. https://doi.org/10.1016/j.chemgeo.2007.01.027
      [17] Sawyer, E.W., 2010.Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid.Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      [18] Wu, C.M., 2004.Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites.Journal of Petrology, 45(9): 1907-1921. https://doi.org/10.1093/petrology/egh038
      [19] Xia, Q.X., Gao, P., Yang, G., et al., 2019.The Origin of Garnets in Anatectic Rocks from the Eastern Himalayan Syntaxis, Southeast Tibet: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships.J. Petrol.(in revision).
      [20] Xia, Q.X., Wang, H.Z., Zhou, L.G., et al., 2016.Growth of Metamorphic and Peritectic Garnets in Ultrahigh-Pressure Metagranite during Continental Subduction and Exhumation in the Dabie Orogen.Lithos, 266-267: 158-181. https://doi.org/10.1016/j.lithos.2016.08.043
      [21] Xia, Q.X., Zheng, Y.F., Lu, X.N., et al., 2012.Formation of Metamorphic and Metamorphosed Garnets in the Low-T/UHP Metagranite during Continental Collision in the Dabie Orogen.Lithos, 136-139: 73-92. https://doi.org/10.1016/j.lithos.2011.10.004
      [22] Xia, Q.X., Zhou, L.G., 2017.Different Origins of Garnet in High Pressure to Ultrahigh Pressure Metamorphic Rocks.Journal of Asian Earth Sciences, 145: 130-148. https://doi.org/10.1016/j.jseaes.2017.03.037
      [23] Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins.Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
    • 加载中
    图(3)
    计量
    • 文章访问数:  4325
    • HTML全文浏览量:  1418
    • PDF下载量:  142
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-29
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回