• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲带壳-幔相互作用的高温高压实验:对地幔不均一性成因的启示

    王春光 许文良

    王春光, 许文良, 2019. 俯冲带壳-幔相互作用的高温高压实验:对地幔不均一性成因的启示. 地球科学, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
    引用本文: 王春光, 许文良, 2019. 俯冲带壳-幔相互作用的高温高压实验:对地幔不均一性成因的启示. 地球科学, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
    Wang Chunguang, Xu Wenliang, 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
    Citation: Wang Chunguang, Xu Wenliang, 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230

    俯冲带壳-幔相互作用的高温高压实验:对地幔不均一性成因的启示

    doi: 10.3799/dqkx.2019.230
    基金项目: 

    科技部国家重点基础研究项目 2015CB856101

    详细信息
      作者简介:

      王春光(1986-), 男, 副教授, 博士, 从事火成岩岩石学相关研究工作

      通讯作者:

      许文良(1959-), 男, 教授, 博士, 从事火成岩岩石学相关研究工作

    • 中图分类号: P611

    An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity

    • 摘要: 使用活塞-圆筒式高温高压装置进行一系列榴辉岩部分熔融熔体与橄榄岩反应实验,可以为深入了解俯冲带壳-幔相互作用的影响因素及地幔不均一性的成因提供重要信息.实验使用反应偶的方法,并在0.8~3.0 GPa和1 200~1 425℃条件下进行.实验结果表明,榴辉岩部分熔融熔体-橄榄岩反应的动力学和结果受控于熔体主量元素成分、熔体中的H2O、温度、压力和橄榄岩的物理状态等因素.大陆俯冲带地幔岩石中斜方辉石的富集是再循环陆壳熔体与上覆地幔反应的结果,地幔岩石中斜方辉石岩脉的形成与含水熔体交代有关,地幔岩石中的石榴辉石岩和石榴石岩可能形成于高压、低温条件下的熔体-橄榄岩反应.

       

    • 图  1  熔体-橄榄岩反应实验的初始熔体成分与不同温度、压力条件下榴辉岩/石榴辉石岩部分熔融实验得到的熔体成分对比

      Wang et al.(2013, 2019)

      Fig.  1.  Comparison of starting melt compositions used in melt-peridotite reaction experiments with melt compositions obtained from eclogite/garnet-pyroxenite partial melting experiments conducted at varying temperatures and pressures

      图  2  无水熔体-橄榄岩反应实验和含水熔体-橄榄岩反应实验的样品组装示意

      Wang et al.(2016)修改

      Fig.  2.  Schematic diagram illustrating capsules used in the anhydrous and hydrous melt-rock reaction experiments

      图  3  含水玄武质熔体-二辉橄榄岩反应实验(2 GPa,1 385 ℃)结果的背散射图像

      Wang et al.(2016);QM.淬火熔体,Ol.橄榄石,Opx.斜方辉石

      Fig.  3.  Back-scattered electron images of the hydrous basaltic melt and lherzolite reaction experiment (2 GPa, 1 385 ℃)

      图  4  玄武安山质熔体与不同物理状态的二辉橄榄岩反应实验(2 GPa)结果的背散射图像及成分扫描

      a.二辉橄榄岩未发生部分熔融(低温机制);b.二辉橄榄岩发生部分熔融(高温机制);据Lo Cascio(2008)Wang et al.(2019);Grt.石榴石;Cpx.单斜辉石;Ol.橄榄石;Opx.斜方辉石;Melt.熔体

      Fig.  4.  Back-scattered electron images and element concentration maps of experiments reacting basaltic andesite with lherzolites with different physical states

    • [1] Beck, A.R., Morgan, Z.T., Liang, Y., et al., 2006.Dunite Channels as Viable Pathways for Mare Basalt Transport in the Deep Lunar Mantle.Geophysical Research Letters, 33(1):L01202. https://doi.org/10.1029/2005gl024008
      [2] Hirschmann, M.M., Kogiso, T., Baker, M.B., et al., 2003.Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite.Geology, 31(6):481-484. doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
      [3] Johnston, A.D., Wyllie, P.J., 1989.The System Tonalite-Peridotite-H2O at 30 kbar, with Applications to Hyperdization in Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 102(3):190-202. doi: 10.1007/BF00371296
      [4] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1):387-406. http://cn.bing.com/academic/profile?id=93711ed45d60d72feada9a741633ed70&encoded=0&v=paper_preview&mkt=zh-cn
      [5] Liu, Y.S., Gao, S., Lee, C.T.A., et al., 2005.Melt-Peridotite Interactions:Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust.Earth and Planetary Science Letter, 234(1-2):39-57. https://doi.org/10.1016/j.epsl.2005.02.034
      [6] Lo Cascio, M., 2008.Kinetics of Partial Melting and Melt-Rock Reaction in the Earth's Mantle(Dissertation).Brown University, U.S.A..
      [7] Morgan, Z., Liang, Y., 2005.An Experimental Study of the Kinetics of Lherzolite Reactive Dissolution with Applications to Melt Channel Formation.Contributions to Mineralogy and Petrology, 150(4):369-385. https://doi.org/10.1007/s00410-005-0033-8
      [8] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
      [9] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling.J.Petrol., 36:891-931. doi: 10.1093/petrology/36.4.891
      [10] Sen, C., Dunn, T., 1995.Experimental Modal Metasomatism of a Spinel Lherzolite and the Production of Amphibole-Bearing Peridotite.Contributions to Mineralogy and Petrology, 119(4):422-432. https://doi.org/10.1007/bf00286939
      [11] Su, B., Chen, Y., Guo, S., et al., 2019.Garnetite and Pyroxenite in the Mantle Wedge Formed by Slab-Mantle Interactions at Different Melt/Rock Ratios.Journal of Geophysical Research:Solid Earth, 124(4):6504-6522. http://cn.bing.com/academic/profile?id=ef05de6118e49f4ff647ba0fb878f992&encoded=0&v=paper_preview&mkt=zh-cn
      [12] Wang, C., Liang, Y., Xu, W., 2015.Formations of Amphibole-Gabbro and Amphibole-Bearing Peridotite through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study.Abstract 142-2 Presented at 2015 Annual Meeting, GSA.Baltimore, MD.
      [13] Wang, C.G., Liang, Y., Dygert, N., et al., 2016.Formation of Orthopyroxenite by Reaction between Peridotite and Hydrous Basaltic Melt:An Experimental Study.ContributionstoMineralogy and Petrology, 171(8-9):77. https://doi.org/10.1007/s00410-016-1287-z
      [14] Wang, C.G., Liang, Y., Xu, W.L., et al., 2013.Effect of Melt Composition on Basalt and Peridotite Interaction:Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton.Contributions to Mineralogy and Petrology, 166(5):1469-1488. https://doi.org/10.1007/s00410-013-0938-6
      [15] Wang, C.G., Lo Cascio, M., Liang, Y., et al., 2019.An Experimental Study of Peridotite Dissolution in Eclogite-Derived Melts:Implications for Styles of Melt-Rock Interaction in Lithospheric Mantle beneath the North China Craton.Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.09.022
      [16] Wang, C.G., Xu, W.L., Yang, D.B., et al., 2018.Olivine Oxygen Isotope Evidence for Intracontinental Recycling of Delaminated Continental Crust.Geochemistry, Geophysics, Geosystems, 19(7):1913-1924. https://doi.org/10.1029/2017gc007284
      [17] Xu.W., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth and Planetetary Science Letters, 265:123-137. https://doi.org/10.1016/j.epsl.2007.09.041
      [18] Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chemical Geology, 270(1-4):257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006
      [19] Yaxley, G.M., Green, D.H., 1998.Reactions between Eclogite and Peridotite:Mantle Refertilisation by Subduction of Oceanic Crust.Schweizerische Mineralogische Und Petrographische Mitteilungen, 78(2):243-255. https://www.researchgate.net/publication/234065726_Reactions_between_eclogite_and_peridotite_Mantle_refertilisation_by_subduction_of_oceanic_crust
      [20] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2007.Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton:Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis.Geochimica et Cosmochimica Acta, 71(21):5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
      [21] Zheng, J.P., O'Reilly, S.Y., Griffin, W., et al., 2001.Relict Refractory Mantle beneath the Eastern North China Block:Significance for Lithosphere Evolution.Lithos, 57(1):43-66. https://doi.org/10.1016/s0024-4937(00)00073-6
      [22] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049
    • 加载中
    图(4)
    计量
    • 文章访问数:  4643
    • HTML全文浏览量:  1227
    • PDF下载量:  102
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-01
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回