• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义

    王佳营 李志丹 李光耀 文思博 谢瑜 张祺 张锋 丁宁

    王佳营, 李志丹, 李光耀, 文思博, 谢瑜, 张祺, 张锋, 丁宁, 2020. 内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义. 地球科学, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211
    引用本文: 王佳营, 李志丹, 李光耀, 文思博, 谢瑜, 张祺, 张锋, 丁宁, 2020. 内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义. 地球科学, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211
    Wang Jiaying, Li Zhidan, Li Guangyao, Wen Sibo, Xie Yu, Zhang Qi, Zhang Feng, Ding Ning, 2020. Formation Age, Geochemical Signatures and Geological Significance of the Hejiao Iron Deposit, Inner Mongolia. Earth Science, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211
    Citation: Wang Jiaying, Li Zhidan, Li Guangyao, Wen Sibo, Xie Yu, Zhang Qi, Zhang Feng, Ding Ning, 2020. Formation Age, Geochemical Signatures and Geological Significance of the Hejiao Iron Deposit, Inner Mongolia. Earth Science, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211

    内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义

    doi: 10.3799/dqkx.2019.211
    基金项目: 

    中国地质调查项目 12120113057300

    中国地质调查项目 DD20160129

    中国地质调查项目 DD20190119

    中国地质调查项目 DD20201148

    国家自然科学基金项目 41502082

    详细信息
      作者简介:

      王佳营(1986-), 男, 工程师, 硕士, 从事矿床学研究工作.ORCID:0000-0003-4969-2514.E-mail:cugwjy@qq.com

      通讯作者:

      李志丹, ORCID:0000-0002-3011-6392.E-mail:cugcug@qq.com

    • 中图分类号: P597.3;P618.31

    Formation Age, Geochemical Signatures and Geological Significance of the Hejiao Iron Deposit, Inner Mongolia

    • 摘要: 内蒙古合教铁矿位于华北克拉通西部陆块北缘阴山地块,是固阳绿岩带内的一例具有中型规模的BIF型铁矿床.本文对矿区斜长角闪岩、铁矿石开展了年代学和岩石地球化学研究.对斜长角闪岩夹层进行LA-ICP-MS锆石U-Pb定年,锆石普遍发育振荡环带,Th/U比值均大于0.1(0.27~1.00),得到上交点年龄为2 549±29 Ma(MSWD=0.51),可大致代表合教BIF铁矿的形成时代,该时期是华北克拉通早寒武纪构造-变质-热事件和BIF(banded iron formation)形成最为强烈的时期(2.52~2.60 Ga).斜长角闪岩原岩可能为玄武岩,表明合教铁矿为与火山活动关系密切的Algoma型BIF.斜长角闪岩稀土元素球粒陨石标准化配分曲线近于平坦,与E-MORB和弧后盆地玄武岩(BABB)曲线相似,原始地幔标准化蛛网图与BABB曲线相似,均存在Rb、Ba、Sr、K等大离子亲石元素的富集和Nb、Ta、U、Th等高场强元素的亏损,显示了岛弧岩浆岩的特征,结合前人提出的岛弧叠加地幔柱构造模式,认为合教斜长角闪岩原岩形成于弧后盆地构造环境,并有地幔柱的叠加作用,代表了合教BIF沉积时的构造环境.铁矿石LREE亏损,HREE富集[(La/Yb)PAAS=0.29~0.50],具有轻微的La正异常(La/La*=1.00~1.13),不明显的Ce负异常(Ce/Ce*=0.90~0.95),明显的Eu正异常(Eu/Eu*=1.54~2.27)和较明显的Y正异常(Y/Y*=1.07~1.42).铁矿石的稀土配分曲线与固阳绿岩带科马提岩和海底热液海水混合物均极为相似,表明合教BIF的形成与海底热液活动有关,认为合教BIF型铁矿的Fe主要由海底高温热液淋滤科马提岩提供.

       

    • 图  1  内蒙古固阳地区早前寒武纪地质简图

      a据Zhao et al.(2005)修改;b据马旭东等(2013)修改

      Fig.  1.  Simplified Precambrian geological map of the Guyang area, Inner Mongolia

      图  2  合教铁矿区域地质图和矿区地质图

      据内蒙古大中矿业有限责任公司,2005.内蒙古自治区固阳县合教铁矿南区详查报告修改.内蒙古

      Fig.  2.  Regional geological map of Hejiao and geological map of Hejiao iron deposit

      图  3  合教矿区铁矿石与斜长角闪岩野外及镜下特征

      a.产于铁矿体夹层的斜长角闪岩;b.斜长角闪岩主要由斜长石与角闪石组成,含少量磁铁矿(正交偏光);c.条带状铁矿石;d.条带状铁矿石由磁铁矿与石英组成(反射光);e.铁矿石中不规则状嵌布的黄铁矿(反射光);f.铁矿石中分布的黄铁矿、赤铁矿和黄铜矿(反射光)

      Fig.  3.  The field and microscopic characteristics of iron ores and amphibolites in the Hejiao deposit

      图  4  合教铁矿10号勘查线剖面图

      据内蒙古大中矿业有限责任公司,2005.内蒙古自治区固阳县合教铁矿南区详查报告修改.内蒙古

      Fig.  4.  Cross-section map of No.10 prospecting line of Hejiao iron deposit

      图  5  MgO与SiO2、FeO、Al2O3、TiO2、Cr、Ni的相关性变化

      Fig.  5.  Variation diagrams of MgO vs. SiO2, FeO, Al2O3, TiO2, Cr and Ni for the amphibolites

      图  6  斜长角闪岩稀土元素球粒陨石标准化配分图(a)与微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989);BABB数据据杨婧等(2016);N-MORB和E-MORB数据据Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE (a) and primitive mantle-normalized trace element patterns (b) of amphibolites

      图  7  合教铁矿斜长角闪岩的锆石阴极发光图

      Fig.  7.  Cathodoluminescence (CL) images of zircons selected from amphibolite in the Hejiao iron deposit

      图  8  合教铁矿斜长角闪岩的LA-ICP-MS锆石U-Pb年龄一致曲线图

      Fig.  8.  U-Pb concordia diagram for zircons of the amphibolite from the Hejiao iron deposit

      图  9  斜长角闪岩原岩恢复图解

      底图分别据Tarney(1976)周世泰(1984)Winchester and Floyd(1977)Miyashiro(1974)

      Fig.  9.  Diagrams for protolith reconstruction of amphibolites

      图  10  合教铁矿斜长角闪岩的TiO2-MnO-P2O5(a)、Ti-Zr-Sr (b)、Nb-Zr-Y (c)和Y-La-Nb (d)图解

      a据Mullen(1983);b据Pearce and Cann(1973);c据Meschede(1986);d据Cabanis and Lecolle(1989)

      Fig.  10.  Plots of TiO2-MnO-P2O5 (a), Ti-Zr-Sr (b), Nb-Zr-Y (c) and Y-La-Nb (d) from amphibolites in the Hejiao iron deposit

      图  11  合教铁矿石稀土元素PAAS标准化图(a)与球粒陨石标准化配分图(b)

      图a中热液数据据Bau and Dulski(1999);海水数据据Bolhar et al.(2004);混合溶液数据据Dymek and Klein(1988);PASS标准化值据McLennan(1989);图b中Ⅰ和Ⅱ类型玄武质科马提岩数据据陈亮(2007);球粒陨石标准化值据Sun and McDonough(1989)

      Fig.  11.  PASS-normalized REE (a) and chondrite-normalized REE (b) patterns for the ores of Hejiao iron deposit

      图  12  合教铁矿构造背景与成矿模式

      Fig.  12.  Tectonic setting and metallogenic model map of Hejiao iron deposit

    • [1] Bau, M., Dulski, P., 1996.Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa.Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      [2] Bau, M., Dulski, P., 1999.Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge:Implications for Y and REE Behaviour during Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater.Chemical Geology, 155(1-2):77-90. https://doi.org/10.1016/s0009-2541(98)00142-9
      [3] Bekker, A., Slack, J.F., Planavsky, N., et al., 2010.Iron Formation:The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes.Economic Geology, 105(3):467-508. https://doi.org/10.2113/gsecongeo.105.3.467
      [4] Bolhar, R., Kamber, B.S., Moorbath, S., et al., 2004.Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures.Earth and Planetary Science Letters, 222(1):43-60. https://doi.org/10.1016/j.epsl.2004.02.016
      [5] Cabanis, B., Lecolle, M., 1989.Le Diagramme La/10-Y/15-Nb/8:Un Outil Pour La Discrimination Des SÉRies Volcaniques Et La Mise En ÉVidence Des Processus De MÉLange Et/Ou De Contamination Crustale. Comptes Rendus De I'AcadÉMie Des Sciences SÉRies Ⅱ, 309:2023-2029.
      [6] Chang, Q.S., Wang, H.C., Rong, G.L., et al., 2019.Zircon U-Pb Chronology, Geochemistry and Tectonic Significance of Neoarchean High-Mg Andesites and Magnesian Diorites in Qinglong-Shuangshanzi Area, Eastern Hebei.Earth Science, 44(1):23-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201901002
      [7] Chen, L., 2007.Geochemistry and Chronology of the Guyang Greenstone Belt (Dissertation).Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      [8] Condie, K.C., 1989.Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance.Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      [9] Danielson, A., Möller, P., Dulski, P., 1992.The Europium Anomalies in Banded Iron Formations and the Thermal History of the Oceanic Crust.Chemical Geology, 97(1-2):89-100. https://doi.org/10.1016/0009-2541(92)90137-t
      [10] Dymek, R.F., Klein, C., 1988.Chemistry, Petrology and Origin of Banded Iron-Formation Lithologies from the 3 800 Ma Isua Supracrustal Belt, West Greenland.Precambrian Research, 39(4):247-302. https://doi.org/10.1016/0301-9268(88)90022-8
      [11] Fitton, J.G., James, D., Leeman, W.P., 1991.Basic Magmatism Associated with Late Cenozoic Extension in the Western United States:Compositional Variations in Space and Time.Journal of Geophysical Research:Solid Earth, 96(B8):13693-13711. https://doi.org/10.1029/91jb00372
      [12] Frei, R., Polat, A., 2007.Source Heterogeneity for the Major Components of ∼3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland):Tracing the Nature of Interacting Water Masses in BIF Formation.Earth and Planetary Science Letters, 253(1-2):266-281. https://doi.org/10.1016/j.epsl.2006.10.033
      [13] Geng, Y.S., Shen, Q.H., Ren, L.D., 2010.Late Neoarchean to Early Paleoproterozoic Magmatic Events and Tectonothermal Systems in the North China Craton.Acta Petrologica Sinica, 26(7):1945-1966(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007001
      [14] Gill, R., 2010.Igneous Rocks and Processes: A Practical Guide.Wiley-Blackwell, Chichester.
      [15] Gillis, K.M., Banerjee, N.R., 2000.Hydrothermal Alteration Patterns in Supra-Subduction Zone Ophiolites.Geological Society of America, Special Paper, 349:283-297. https://doi.org/10.1130/0-8137-2349-3.283
      [16] Gross, G.A., 1983.Tectonic Systems and the Deposition of Iron-Formation.Precambrian Research, 20(2-4):171-187. https://doi.org/10.1016/0301-9268(83)90072-4
      [17] Hawkins, J.W., Lonsdale, P.F., Macdougall, J.D., et al., 1990.Petrology of the Axial Ridge of the Mariana Trough Backarc Spreading Center.Earth and Planetary Science Letters, 100(1-3):226-250. https://doi.org/10.1016/0012-821x(90)90187-3
      [18] Henderson, P., 1984.Rare Earth Element Geochemistry, Developments in Geochemistry.Elsevier, Oxford, 317-342.
      [19] Huston, D.L., Logan, G.A., 2004.Barite, BIFs and Bugs:Evidence for the Evolution of the Earth's Early Hydrosphere.Earth and Planetary Science Letters, 220(1-2):41-55. https://doi.org/10.1016/S0012-821x(04)00034-2
      [20] James, H.L., 1954.Sedimentary Facies of Iron-Formation.Economic Geology, 49(3):235-293. https://doi.org/10.2113/gsecongeo.49.3.235
      [21] Jian, P., Zhang, Q., Liu, D.Y., et al., 2005.SHRIMP Dating and Geological Significance of Late Achaean High-Mg Diorite (Sanukite) and Hornblende-Granite at Guyang of Inner Mongolia.Acta Petrologica Sinica, 21(l):151-157(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501015
      [22] Klein, E.M., Langmuir, C.H., 1987.Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness.Journal of Geophysical Research Atmospheres, 92(B8):8089-8115. https://doi.org/10.1029/jb092ib08p08089
      [23] Li, G.Y., Li, Z.D., Wang, J.Y., et al., 2019.Zircons LA-ICP-MS Chronology, Geochemical Signatures and Geological Significance of Gaoyaohai BIF-Type Iron Deposit in Guyang Greenstone Belt, Inner Mongolia.Journal of Jilin University (Earth Science Edition), 49(5):1317-1326(in Chinese with English abstract).
      [24] Li, G.Z., Hao, S., Wang, J.S., et al., 2019.The Daily Maintenance of the Multi-Collector Inductively Coupled Plasma Mass Spectrometer.Geological Survey and Research, 42(4):271-277(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201904007
      [25] Li, J.B., Wang, X.L., Hou, L.Y., et al., 2018.Geochemical Characteristics and Its Tectonic Significance of Neoarchean Metamorphic Intrusions in Urad Zhongqi Area, Inner Mongolia.Geological Review, 64(5):1167-1179(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201805010
      [26] Li, Y.H., Hou, K.J., Wan, D.F., et al., 2012.A Compare Geochemistry Study for Algoma-and Superior-Type Banded Iron Formations.Acta Petrologica Sinica, 28(11):3513-3519(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211006
      [27] Liu, F., Guo, J.H., Lu, X.P., et al., 2009.Crustal Growth at~2.5 Ga in the North China Craton:Evidence from Whole-Rock Nd and Zircon Hf Isotopes in the Huai'an Gneiss Terrane.Chinese Science Bulletin, 54(17):2517-2526(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dxqy-e201202005
      [28] Liu, J.Z., Zhang, F.Q., Ouyang, Z.Y., et al., 2001.Study on Geochemistry and Chronology of Se'ertengshan Greenstone, Inner Mongolia.Journal of Changchun University of Science and Technology, 31(3):236-240(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200103006.htm
      [29] Liu, L., Zhang, L.C., Dai, Y.P., et al., 2012.Formation Age, Geochemical Signatures and Geological Significance of the Sanheming BIF-Type Iron Deposit in the Guyang Greenstone Belt, Inner Mongolia.Acta Petrologica Sinica, 28(11):3623-3637(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014
      [30] Liu, S.W., Wang, W., Bai, X., et al., 2018.Lithological Assemblages of Archean Meta-Igneous Rocks in Eastern Hebei-Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications.Earth Science, 43(1):44-56(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801003
      [31] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      [32] Ludwig, K.R., 2003.User's Manual for Isoplot/Ex Version 3.00: A Geochronology Toolkit for Microsoft Excel.Center Special Publication Isoplot v.3.0: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication 4, Berkeley.
      [33] Ma, X.D., Fan, H.R., Guo, J.H., 2013.Neoarchean Magmatism, Metamorphism in the Yinshan Block:Implication for the Genesis of BIF and Crustal Evolution.Acta Petrologica Sinica, 29(7):2329-2339(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201307005
      [34] McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Reviews in Mineralogy and Geochemistry, 21(1):169-200. https://doi.org/10.1515/9781501509032-010
      [35] Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      [36] Miyashiro, A., 1974.Volcanic Rock Series in Island Arcs and Active Continental Margins.American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321
      [37] Mullen, E.D., 1983.MnO/TiO2/P2O5:A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis.Earth and Planetary Science Letters, 62(1):53-62. https://doi.org/10.1016/0012-821x(83)90070-5
      [38] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      [39] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      [40] Shen, B.F., Luo, H., Li, S.B., et al., 1994.Geology and Metallization of Archean Greenstone Belts in North China Platform.Geological Publishing House, Beijing(in Chinese).
      [41] Shen, B.F., Zhai, A.M., Yang, C.L., et al., 2005.Temporal-Spatial Distribution and Evolutional Characters of Precambrian Iron Deposits in China.Geological Survey and Research, 28(4):196-206(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200504003
      [42] Shen, Q.H., Geng, Y.S., Song, H.X., 2016.Constituents and Evolution of the Metamorphic Basement of the North China Craton.Acta Geoscientica Sinica, 37(4):387-406(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201604002
      [43] Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [44] Sun, X.H., Zhu, X.Q., Tang, H.S., et al., 2014.The Gongchangling BIFs from the Anshan-Benxi Area, NE China:Petrological-Geochemical Characteristics and Genesis of High-Grade Iron Ores.Ore Geology Reviews, 60:112-125. https://doi.org/10.1016/j.oregeorev.2013.12.017
      [45] Tarney, J., 1976.Geochemistry of Archaean High-Grade Gneisses, with Implications as to the Origin and Evolution of the Precambrian Crust. In: Windley, R., ed., The Early History of Earth, Wiley, London, 405-417.
      [46] Trendall, A.F., 2002.The Significance of Iron-Formation in the Precambrian Stratigraphic Record.In: Altermann, W., Corcoran, P.L., eds., Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems.Wiley, Oxford, 33-66.https: //doi.org/10.1002/9781444304312.ch3
      [47] Tsikos, H., Beukes, N.J., Moore, J.M., et al., 2003.Deposition, Diagenesis, and Secondary Enrichment of Metals in the Paleoproterozoic Hotazel Iron Formation, Kalahari Manganese Field, South Africa.Economic Geology, 98(7):1449-1462. https://doi.org/10.2113/gsecongeo.98.7.1449
      [48] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2012a.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating.Acta Geologica Sinica, 86(9):1447-1478(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0d261482e0233064f1ea168f6acbadb0&encoded=0&v=paper_preview&mkt=zh-cn
      [49] Wan, Y.S., Liu, D.Y., Wang, S.J., et al., 2012b.Redefinition of Early Precambrian Supracrustal Rocks and Formation Age of BIF in Western Shandong, North China Craton.Acta Petrologica Sinica, 28(11):3457-3475(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211003
      [50] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018.Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area:New Evidence from SHRIMP U-Pb Zircon Dating.Earth Science, 43(1):57-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801004
      [51] Wang, C.L., Zhang, L.C., Dai, Y.P., et al., 2015.Geochronological and Geochemical Constraints on the Origin of Clastic Meta-Sedimentary Rocks Associated with the Yuanjiacun BIF from the Lüliang Complex, North China.Lithos, 212-215:231-246. https://doi.org/10.1016/j.lithos.2014.11.015
      [52] Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2005.Granitoid Evolution in the Late Archean Wutai Complex, North China Craton.Journal of Asian Earth Sciences, 24(5):597-613. https://doi.org/10.1016/j.jseaes.2003.11.006
      [53] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [54] Wyman, D.A., Ayer, J.A., Devaney, J.R., 2000.Niobium-Enriched Basalts from the Wabigoon Subprovince, Canada:Evidence for Adakitic Metasomatism above an Archean Subduction Zone.Earth and Planetary Science Letters, 179(1):21-30. https://doi.org/10.1016/s0012-821x(00)00106-0
      [55] Yang, J., Wang, J.R., Zhang, Q., et al., 2016.Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB.Advances in Earth Science, 31(1):66-77(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006
      [56] Yang, X.Y., Liu, L., Lee, I., et al., 2014.A Review on the Huoqiu Banded Iron Formation (BIF), Southeast Margin of the North China Craton:Genesis of Iron Deposits and Implications for Exploration.Ore Geology Reviews, 63:418-443. https://doi.org/10.1016/j.oregeorev.2014.04.002
      [57] Zhai, M.G., Santosh, M., 2011.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview.Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005
      [58] Zhang, H.F., Wang, H.Z., Dou, J.Z., et al., 2015.Geochemistry and Genesis of the Late Archean Low-Al and High-Al TTGs from the Huai'an Terrane, North China Craton.Acta Petrologica Sinica, 31(6):1518-1534(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506003
      [59] Zhang, L.C., Zhai, M.G., Wan, Y.S., et al., 2012.Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions.Acta Petrologica Sinica, 28(11):3431-3445(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211001
      [60] Zhang, L.L., Dai, F.H., Cui, J.W., et al., 2014.Geochemistry Characteristics and Significance of Metamorphic Intrusions in Guyang Region, Inner Mongolia.Earth Science, 39(3):271-282(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201403003
      [61] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      [62] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1999.Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications.Tectonophysics, 310(1-4):37-53. https://doi.org/10.1016/s0040-1951(99)00152-3
      [63] Zhao, G.C., Wilde, S.A., Guo, J.H., et al., 2010.Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton.Precambrian Research, 177(3-4):266-276. https://doi.org/10.1016/j.precamres.2009.12.007
      [64] Zhou, S.T., 1984.Examination of 17 Petrochemical Methods of Restoring Protoliths of Metamorphic Rocks.Geological Review, 30(1):81-84(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp198401012
      [65] 常青松, 王惠初, 荣桂林, 等, 2019.冀东青龙-双山子地区新太古代高镁安山岩-镁闪长岩锆石U-Pb年代学、地球化学及大地构造意义.地球科学, 44(1):23-36. doi: 10.3799/dqkx.2018.273
      [66] 陈亮, 2007.固阳绿岩带的地球化学和年代学(博士学位论文).北京: 中国科学院地质与地球物理研究所.
      [67] 耿元生, 沈其韩, 任留东, 2010.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制.岩石学报, 26(7):1945-1966. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007001
      [68] 简平, 张旗, 刘敦一, 等, 2005.内蒙古固阳晚太古代赞岐岩(sanukite)——角闪花岗岩的SHRIMP定年及其意义.岩石学报, 21(1):151-157. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501015
      [69] 李光耀, 李志丹, 王佳营, 等, 2019.内蒙古固阳绿岩带高腰海BIF型铁矿锆石LA-ICP-MS年代学、地球化学特征及地质意义.吉林大学学报(地球科学版), 49(5):1317-1326. doi: 10.13278/j.cnki.jjuese.20180290
      [70] 李国占, 郝爽, 王家松, 等, 2019.浅谈多接收器电感耦合等离子体质谱仪的日常维护.地质调查与研究, 42(4):271-277. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201904007
      [71] 李剑波, 王新亮, 侯丽玉, 等, 2018.内蒙古乌拉特中旗新太古代变质侵入岩的地球化学特征及构造意义.地质论评, 64(5):1167-1179. http://d.old.wanfangdata.com.cn/Periodical/dzlp201805010
      [72] 李延河, 侯可军, 万德芳, 等, 2012.Algoma型和Superior型硅铁建造地球化学对比研究.岩石学报, 28(11):3513-3519. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211006
      [73] 刘富, 郭敬辉, 路孝平, 等, 2009.华北克拉通2.5 Ga地壳生长事件的Nd-Hf同位素证据:以怀安片麻岩地体为例.科学通报, 54(17):2517-2526. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406004
      [74] 刘建忠, 张福勤, 欧阳自远, 等, 2001.内蒙古色尔腾山绿岩的地球化学、年代学研究.长春科技大学学报, 31(3):236-240. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200103007
      [75] 刘利, 张连昌, 代堰锫, 等, 2012.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义.岩石学报, 28(11):3623-3637. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014
      [76] 刘树文, 王伟, 白翔, 等, 2018.冀东-辽西太古宙火成岩岩石组合和动力学意义.地球科学, 43(1):44-56. doi: 10.3799/dqkx.2018.003
      [77] 马旭东, 范宏瑞, 郭敬辉, 2013.阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示.岩石学报, 29(7):2329-2339. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201307005
      [78] 沈保丰, 骆辉, 李双保, 等, 1994.华北陆台太古宙绿岩带地质及成矿.北京:地质出版社.
      [79] 沈保丰, 翟安民, 杨春亮, 等, 2005.中国前寒武纪铁矿床时空分布和演化特征.地质调查与研究, 28(4):196-206. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz200504003
      [80] 沈其韩, 耿元生, 宋会侠, 2016.华北克拉通的组成及其变质演化.地球学报, 37(4):387-406. http://d.old.wanfangdata.com.cn/Periodical/dqxb201604002
      [81] 万渝生, 董春艳, 颉颃强, 等, 2012a.华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209008
      [82] 万渝生, 刘敦一, 王世进, 等, 2012b.华北克拉通鲁西地区早前寒武纪表壳岩系重新划分和BIF形成时代.岩石学报, 28(11):3457-3475. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211003
      [83] 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-81. doi: 10.3799/dqkx.2018.004
      [84] 杨婧, 王金荣, 张旗, 等, 2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006
      [85] 张华锋, 王浩铮, 豆敬兆, 等, 2015.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因.岩石学报, 31(6):1518-1534. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506003
      [86] 张莉莉, 代芳华, 崔加伟, 等, 2014.内蒙古固阳地区新太古代变质侵入岩地球化学特征及意义.地球科学, 39(3):271-282. doi: 10.3799/dqkx.2014.026
      [87] 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://d.old.wanfangdata.com.cn/Conference/7895390
      [88] 周世泰, 1984.对17种恢复变质岩原岩的岩石化学方法的检验结果.地质论评, 30(1):81-84. http://d.old.wanfangdata.com.cn/Periodical/OA000004223
    • dqkx-45-6-2135-Table1-2.pdf
    • 加载中
    图(12)
    计量
    • 文章访问数:  660
    • HTML全文浏览量:  127
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-22
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回