Characteristics and Sources of Dissolved Inorganic Carbon and Nitrate in Lijiang River Basin
-
摘要: 以漓江流域境内地表河和地下河为研究对象,通过测定、分析水体中的水化学组成以及δ13CDIC、δ15N-NO3-、δ18O-NO3-等,利用同位素质量平衡混合模型,初步探讨了漓江流域境内DIC、硝酸盐的分布特征及其来源.结果表明:漓江流域DIC(即HCO3-)浓度和无机碳稳定同位素(δ13CDIC)分别在12.20~402.60 mg·L-1和-17.29‰~-10.01‰,平均值分别为140.3 mg·L-1和-13.06‰.NO3-浓度在2.37~35.38 mg·L-1,δ15N-NO3-在0.99‰~11.09‰,均展现出明显的空间变异特征.有机肥和污水对漓江流域硝酸盐的贡献最为显著,贡献比达57.00%.其次是化肥、降雨中的NH4+和土壤N,贡献比分别是36.45%,6.55%.流域内DIC主要来源于碳酸盐岩的风化和土壤CO2的溶解,同时也受硝酸溶蚀碳酸盐岩和大气CO2的影响.结果可为定制有效的控制硝酸盐的输入途径,净化水质测略提供依据.Abstract: The distribution characteristics and sources of DIC and nitrate in the Lijiang River basin are studied using isotope mass balance models, by which the hydrochemical composition of the surface and underground rivers in the Lijiang River basin, δ13CDIC, δ15N-NO3- and δ18O-NO3- are measured and analyzed. The results show that the concentration of DIC (HCO3-) and inorganic carbon stable isotopes (δ13CDIC) in Lijiang River basin range from 12.20 to 402.60 mg·L-1, and from -17.29‰ to -10.01‰ respectively, with the average value of 140.3 mg·L-1 and -13.06‰ respectively. The concentration of NO3- is between 2.37 and 35.38 mg·L-1, and δ15N-NO3- is between 0.99‰ and 11.09‰, both showing obvious spatial variation characteristics. It is concluded that organic manure and sewage have the most significant contribution to nitrate in the Lijiang River basin, with a contribution ratio of 57.00%, which is followed by NH4+ in fertilizer and precipitation, and soil N, with contribution ratios of 36.45% and 6.55% respectively. The source of DIC in the drainage basin is mainly due to the weathering of carbonate rocks and the dissolution of soil CO2, which is also affected by the corrosion of carbonate rocks by nitric acid and atmospheric CO2. The corrosion intensity of nitric acid on carbonate rocks is controlled not only by the degree of nitrogen pollution in water, but also by the source of nitrogen pollution. The results can provide a basis for customizing effective nitrate input channels and purifying water quality.
-
Key words:
- Lijiang River /
- δ13CDIC /
- dissolved inorganic carbon (DIC) /
- δ15N-NO3- /
- δ18O-NO3- /
- nitrate /
- hydrogeology
-
图 4 不同来源硝酸盐的δ15N-NO3-和δ18O-NO3-典型值
据Desimone and Howes(1998)和Wu et al.(2018)
Fig. 4. Typical ranges δ15N-NO3- and δ18O-NO3- values of nitrate of different sources
表 1 漓江流域各子流域水文特征信息
Table 1. Hydrological characteristics of sub-catchments of the Lijiang River basin
子流域名称 分叉比Rb 河长比RL 水系分维Db 河网密度(km-2) 径流系数 子流域面积(km2) 漓江干流 3.35 2.49 1.33 0.56 0.748 1 272.08 溶江 3.79 2..41 1.51 0.51 0.714 719.37 小溶江 4.93 2.57 1.69 0.50 0.637 272.54 甘棠河 3.88 1.99 1.97 0.51 0.707 796.11 灵渠 4.19 2.12 1.91 0.54 0.746 245.75 桃花江 4.55 1.54 2.00 0.53 0.800 277.54 良丰河 4.30 1.73 2.00 0.58 0.797 560.94 潮田河 3.57 1.61 2.00 0.50 0.752 461.55 黄沙河 4.33 2.24 1.82 0.57 0.785 213.87 遇龙河 4.00 1.77 2.00 0.56 0.735 341.04 金宝河 5.20 1.57 2.00 0.54 0.711 219.59 大源河 3.83 1.68 2.00 0.52 0.746 137.72 其他 4.02 2.49 1.53 0.49 0.743 305.44 均值 4.15 2.02 1.83 0.53 — — 表 2 漓江流域水样测试数据
Table 2. Data results of water samples from the Lijiang River basin
采样点 pH EC HCO3- Cl- NO3- SO42- Ca2+ Mg2+ K+ Na+ δ13CDIC δ18O-NO3- δ15N-NO3- 土地利用方式 (μS·cm -1) (mg·L-1) (‰) 1XR 7.23 156 67.10 1.98 7.97 7.12 24.27 1.16 2.09 0.78 -14.41 3.74 2.97 G 2XS 7.05 404 244.00 2.61 8.05 36.41 93.83 3.35 1.45 1.42 -14.54 -6.02 6.32 G 3BC 6.87 38 18.30 1.46 4.74 4.67 5.48 1.09 0.82 1.25 -13.99 — — NKA 4BF 6.33 48 12.20 1.28 3.27 4.19 2.92 0.68 0.69 1.31 -14.7 4.80 1.41 F 5BS 6.21 72 18.30 1.58 3.29 5.59 5.45 0.84 1.17 1.97 -16.43 4.32 3.27 F 6BL 6.90 32 18.30 1.35 2.37 4.93 5.20 0.84 1.01 1.93 -14.93 7.92 0.99 NKA 7BT 6.61 46 18.30 1.54 7.11 7.55 6.74 1.75 0.99 1.25 -10.13 3.52 2.04 F 8BN 7.07 39 18.30 1.44 6.48 6.63 5.66 1.50 0.77 1.00 -10.12 5.06 2.33 F 9XG 7.68 226 158.60 1.42 7.25 5.39 53.51 1.76 0.51 0.80 -12.76 -0.72 1.87 G 10BS 7.29 215 122.00 3.38 10.53 16.16 45.98 1.87 2.26 1.84 -13.31 6.38 5.39 KA 11BR 6.97 49 24.40 1.58 4.89 6.62 8.36 1.33 1.02 1.40 -13.15 4.94 3.84 NKA 12BL 7.46 169 91.50 2.80 9.08 12.82 34.97 1.73 1.84 1.64 -12.77 4.54 5.84 KA 13XL 6.21 248 67.10 8.28 35.48 18.48 41.14 2.42 2.44 3.00 -17.24 6.51 11.09 G 14BD 7.44 115 54.90 2.20 7.30 9.04 20.47 1.47 1.65 1.67 -12.97 3.47 5.45 KA 15BN 7.29 100 48.80 2.08 6.77 8.57 19.46 1.41 1.47 1.45 -12.53 4.16 4.88 KA 16BN 6.69 60 18.30 1.34 3.77 4.26 6.29 0.98 0.78 1.19 -14.72 3.35 3.07 F 17BH 6.65 44 24.40 1.41 3.95 4.54 7.37 1.06 0.76 1.23 -15.12 3.53 3.70 NKA 18BX 7.43 78 36.60 1.81 5.75 7.21 14.69 1.36 1.29 1.58 -13.03 2.86 5.05 NKA 19BD 7.23 41 42.70 1.85 5.73 7.44 15.56 1.36 1.18 1.48 -11.95 2.41 6.35 NKA 20BY 7.54 149 85.40 2.95 8.62 12.52 31.10 1.50 1.76 1.97 -11.4 3.34 8.11 C 21BC 7.73 122 54.90 1.99 5.98 7.23 16.68 1.21 0.90 2.25 -10.01 4.86 6.15 KA 22BC 7.47 165 91.50 2.72 7.57 12.77 32.57 2.47 2.51 1.73 -11.04 0.53 6.83 KA 23BM 7.15 215 85.40 4.80 9.13 32.46 35.78 2.75 4.85 3.51 -10.02 0.65 7.18 KA 24BN 7.35 235 103.70 8.36 13.79 43.69 50.96 3.35 5.87 7.16 -10.63 1.10 8.97 C 25BJ 7.77 334 201.30 5.49 15.14 18.66 65.37 7.64 3.75 2.48 -11.88 4.38 9.64 KA 26BY 7.73 355 219.60 6.29 18.57 20.17 72.86 6.92 3.72 3.55 -11.32 2.59 8.80 C 27BL 7.34 151 67.10 4.84 7.97 12.88 26.21 1.75 2.25 4.29 -11.34 4.67 7.38 C 28BS 7.60 386 231.80 5.22 16.29 22.79 90.00 2.77 3.54 2.21 -12.33 0.64 8.99 KA 29BD 7.91 381 225.70 5.66 20.45 26.18 87.05 3.38 3.42 2.64 -11.48 1.59 8.08 KA 30BC 7.95 234 158.60 2.24 11.02 8.88 48.77 4.34 1.00 1.26 -12.83 3.43 6.02 KA 32XZ 7.02 407 268.40 4.02 26.24 12.75 95.20 3.57 1.35 2.11 -13.45 2.13 7.05 G 33XZ 7.28 390 274.50 2.43 11.79 8.52 92.20 4.10 0.72 0.95 -15.38 1.05 7.24 G 34BD 7.26 75 42.70 1.70 6.37 7.29 12.01 3.50 0.72 1.44 -10.04 4.06 6.14 NKA 35XD 7.01 482 366.00 2.03 19.83 7.35 124.00 2.84 0.35 0.74 -16.22 2.43 3.96 G 36XZ 6.60 529 396.50 1.75 12.75 9.07 133.70 5.60 0.36 0.77 -17.05 1.83 5.34 G 37XN 7.45 368 274.50 1.93 6.66 5.94 88.67 2.94 0.40 0.58 -15.19 2.22 6.02 G 38BL 7.33 190 97.60 4.04 10.12 13.67 36.65 2.62 2.22 3.27 -11.17 1.93 7.51 KA 39XL 6.89 452 286.70 2.10 20.13 8.32 106.10 7.44 0.70 0.68 -15.96 — — G 40XT 6.54 520 402.60 4.26 25.62 15.36 149.70 6.80 0.76 1.23 -17.29 1.07 3.59 G 41XJ 7.16 372 237.90 2.89 21.04 14.77 74.03 9.93 0.73 1.96 -13.11 4.23 6.94 G 42BJ 7.67 243 152.50 2.09 16.05 10.45 51.39 5.21 0.79 1.33 -12.71 3.01 7.13 KA 43BX 8.24 254 152.50 2.33 16.27 10.81 53.33 6.87 1.05 1.62 -13.64 2.26 4.69 KA 44BY 8.02 211 115.90 3.89 10.52 12.91 40.35 3.26 1.97 3.19 -11.46 — — C 45BS 8.10 261 134.20 3.09 11.11 10.82 48.37 7.43 1.78 2.20 -11.68 2.48 7.08 C 46BZ 7.92 277 183.00 2.93 11.55 9.22 56.62 8.16 1.20 1.97 -12.23 3.59 7.19 KA 47BD 7.45 149 79.30 2.99 10.18 11.33 24.52 5.56 2.27 1.87 -10.55 3.24 7.04 KA 48BD 7.44 81 42.70 2.38 9.83 7.57 13.02 3.48 1.43 1.67 -10.4 2.88 6.39 NKA 49XM 7.34 434 280.60 2.96 11.65 35.44 78.69 13.42 0.62 12.64 -14.1 2.53 6.67 G 50BC 7.91 277 183.00 2.78 11.26 9.63 54.07 8.27 1.05 1.91 -12.29 4.91 6.38 KA 51XW 7.12 354 237.90 2.36 14.03 10.79 75.51 7.88 1.42 0.92 -13.38 2.97 5.60 G 52XJ 7.08 267 183.00 2.63 9.13 8.99 46.70 12.19 1.51 1.32 -14.16 5.19 7.38 G 注:C代表城镇区;G代表地下水区;F代表森林区;KA代表岩溶农业区;NKA代表非岩溶农业区;“—”表示数据缺失. 表 3 不同土地利用方式下的水化学组分和同位素值
Table 3. Chemical data and isotope values according to land use in the Lijiang River basin
土地利用方式 pH EC Ca2+ Mg2+ K+ Na+ Cl- NO3- HCO3- SO42- δ13CDIC δ18O-NO3- δ15N-NO3- (μS·cm -1) (mg·L-1) (‰) 森林区(5) 最大值 7.07 72.00 6.74 1.75 1.14 1.97 1.58 7.11 18.3 7.55 -10.12 5.06 3.27 最小值 6.21 39.00 2.92 0.68 0.67 1.00 1.28 3.27 12.20 4.19 -16.43 3.35 1.41 平均值 6.58 53.00 5.41 1.15 0.86 1.34 1.43 4.78 17.08 5.64 -13.22 4.21 2.42 地下水区(16) 最大值 7.89 529.00 149.70 13.42 2.38 12.64 8.28 35.48 402.60 36.41 -12.76 6.51 11.09 最小值 6.21 156.00 24.27 1.16 0.34 0.58 1.42 6.66 67.10 5.39 -17.29 -6.02 1.87 平均值 7.09 374.06 84.81 6.00 0.98 1.92 2.80 15.10 251.24 13.12 -14.93 2.02 5.89 城镇区(6) 最大值 8.10 355.00 72.86 7.43 5.72 7.16 8.36 18.57 219.60 43.69 -10.63 4.67 8.97 最小值 7.34 149.00 26.21 1.50 1.72 1.97 2.95 7.97 67.10 10.82 -11.68 1.10 7.08 平均值 7.68 227.00 44.98 4.03 2.82 3.73 4.90 11.76 120.98 18.83 -11.31 2.84 8.07 岩溶农业区(17) 最大值 8.24 386.00 90.00 8.27 4.73 3.51 5.66 20.45 231.80 32.46 -10.01 6.38 9.64 最小值 7.15 100.00 16.68 1.21 0.77 1.26 1.99 5.98 48.80 7.23 -13.31 0.53 3.84 平均值 7.62 225.06 45.51 3.98 2.05 2.04 3.28 11.45 130.25 14.16 -11.96 3.18 6.74 非岩溶农业区(8) 最大值 7.44 81.00 15.56 3.50 1.40 1.93 2.38 9.83 42.70 7.57 -10.04 7.92 6.39 最小值 6.65 32.00 5.20 0.84 0.70 1.23 1.35 2.37 18.30 4.54 -15.12 2.41 0.99 平均值 7.09 54.75 10.21 1.75 1.00 1.50 1.69 5.45 31.26 6.28 -12.77 3.91 4.87 表 4 不同硝酸盐来源的δ15N值和δ18O值
Table 4. δ15N and δ18O values of various NO3- sources
CPN SN MS δ15N(‰) -1.1 3.5 10.6 δ18O(‰) 1.3 1.3 4.3 表 5 主要阴离子与同位素相关性系数
Table 5. Correlation coefficient of main anion and isotope correlation coefficient
NO3- HCO3- SO42- δ13CDIC δ18O-NO3- δ15N-NO3- NO3- 1 HCO3- 0.545** 1 SO42- 0.348* 0.254 1 δ13CDIC -0.214 -0.426** 0.192 1 δ18O-NO3- -0.066 -0.444** -0.455** 0.001 1 δ15N-NO3- 0.576** 0.265 0.542** 0.245 -0.152 1 注:**表示在0.01级别(双侧),相关性显著;*表示在0.05级别(双侧),相关性显著. -
[1] Blum, J.D., Gazis, C.A., Jacobson, A.D., et al., 1998.Carbonate versus Silicate Weathering in the Raikhot Watershed within the High Himalayan Crystalline Series. Geology, 26:411-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef187b9aed84db233f29aae32e114117 [2] Camargo, J.A., Alonso, Á., 2006. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems:A Global Assessment. Environment International, 32(6):831-849. http://cn.bing.com/academic/profile?id=368424514e23e436fe4c48c0fc418f71&encoded=0&v=paper_preview&mkt=zh-cn [3] Cen, H.X., Qiu, R.L., Yang, P., 2000. Discussion on Soil Buffering Mechanisms of Acid Precipitation. Research of Environmental Sciences, 2:49-54 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj200002014 [4] Cerling, T.E., Solomon, D.K., Quade, J., 1991. On the Isotopic Composition of Carbon in Soil Carbon Dioxide. Geochimica et Cosmochiica Acta, 55 (11):3403-3405. doi: 10.1016-0016-7037(91)90498-T/ [5] Chen, Y., Jiang, Y., 2016. The Effects of Agricultural Activities and Atmospheric Acid Deposition on Carbonate Weathering in a Small Karstie Agricultural Aatchment, Southwest China. Acta Carsologica, 45(2):161-172. https://www.researchgate.net/publication/311242145_The_effects_of_agricultural_activities_and_atmospheric_acid_deposition_on_carbonate_weathering_in_a_small_karstic_agricultural_catchment_Southwest_China [6] Dai, J.F., Yang, Y., Fang, R.J., et al., 2017. Water Quality Analysis and Segmentation of the Pollution Loads in Different Spatial Scales of the Upstream of Lijiang River. China Rural Water and Hydropower, (4):67-71 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncslsd201704018 [7] Desimone, L. A., Howes, B. L., 1998. Nitrogen Transport and Transformation in a Shallow Aquifer Receiving Wastewater Discharge:A Mass Balance Approach. Water Resources Research, 2(34):271-285. doi: 10.1029/97WR03040 [8] Devito, K. J., Fitzgerald, D., 2000. Nitrate Dynamics in Relation to Lithology and Hydrologic Flow Path in a Riparian Zone. Journal of Environment Quality, 29:1075-1084. http://cn.bing.com/academic/profile?id=af40759731c786cbe047dd80ae98fd17&encoded=0&v=paper_preview&mkt=zh-cn [9] Gao, Q.Z., Tao, Z., 2003. Advances in Studies on Transported Flux and Properties of Riverine Organic Carbon. Chinese Journal of Applied Ecology, 14(6):1000-1002 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200306036 [10] Guo, W., Li, X.Z., Liu, W.G., 2013. Study on the Content and Carbon Isotopic Composition of Water Dissolved Inorganic Carbon from Rivers around Xian City. Chinese Journal of Environmental Science, 34(4):1291-1297 (in Chinese with English abstract). https://reference.medscape.com/medline/abstract/23798105 [11] Jiang, Y. J., 2013. The Contribution of Human Activities to Dissolved Inorganic Carbon Fluxes in a Karst Underground River System:Evidence from Major Elements and δ13C DIC in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(152):1-11. https://www.sciencedirect.com/science/article/pii/S0169772213000879 [12] Han, Y.Q., Zhou, J., Wu, X.Q., 2007. Natural Geography and Water Quality Survey of Lijiang River. Fisheries Science & Technology of Guangxi, 2:8-16 (in Chinese with English abstract). [13] Kellman, L. M., Hillaire-Marcel, C., 1998.Nitrate Cycling in Streams:Using Natural Abundances of NO3- to Measure in-Situ to Denitrification. Biogeochemistry, 43:273-292. https://www.sciencedirect.com/science/article/pii/S1474706508002428 [14] Kendall, C., 1998. Tracing Nitrogen Sources and Cycling in Catchments. In: Kendall, C., McDonnell, J. J., eds., Isotope Tracers in Catchment Hydrology. Elsevier Science, Amsterdam, 519-576. [15] Li, J.Z., 2009. Stable Carbon Isotope Composition in C3 and C4 Herbaceous Plants and Their Responses to Changing Temperature (Dissertation). Ludong University, Yantai, 31-44 (in Chinese with English abstract). [16] Li, L., Pu, J.B., Li, J.H., et al., 2017.Temporal and Spatial Variations of Dissolved Inorganic Carbon and Its Stable Isotopic Composition in the Surface Stream of Krast Groundwater Recharge. Chinese Journal of Environmental Science, 38(2):527-534 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0009254110002925 [17] Lin, P., Chen, Y.D., Xia, Y., 2016. Types and Causes of Water Pollution under Different Land Use Types in Lijiang River Basin. Journal of Guilin University of Technology, 36(3):539-544 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201603019 [18] Liu, C.Q., 2007. Biogeochemical Process and Surface Material Cycle:Erosion and Source Element Cycle in Southwest Karst Basin.Science Press, Beijing (in Chinese with English abstract). [19] Macilwain, C., 1995. US Report Raises Fears over Nitrate Levels in Water. Nature, 377(6544):4. http://cn.bing.com/academic/profile?id=bfa0124116c1df325d8752c45c5e6055&encoded=0&v=paper_preview&mkt=zh-cn [20] Mcfee, W.W., Kelly, J.M., Beck, R.H., 1977. Acid Precipitation Effects on Soil pH and Base Saturation of Exchange Sites. Water, Air & Soil Pollution, 7:401-408. http://cn.bing.com/academic/profile?id=9705fd2b644a520a73b7260d487daa10&encoded=0&v=paper_preview&mkt=zh-cn [21] Meybeck, M., 1981. Pathways of Major Elements from Land to Ocean through Rivers.In: Martin, J. M., Burton, J. D., et al, eds., River Inputs to Ocean Systems. United Nation Press, New York, 18-30. [22] Miao, Y., Zhang, C., Xiao, Q., et al., 2018. Dynamic Variations and Sources of Nitrate during Dry Season in the Lijiang River. Environmental Science, 39(4):1589-1597 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201804018 [23] Qiu, S.L., Jiang, Y.J., Zhang, X.B., et al., 2012. Hydrochemistry and Variation of δ13CDIC of the Qingmuguan Underground River in Chongqing.Carsologica Sinica, 31(3):279-288 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201203009 [24] Roy, S., Gaillardet, J., Allègre, C. J., 1999. Geochemistry of Dissolved and Suspended Loads of the Seine River, France:Anthropogenic Impact, Carbonate and Silicate Weathering. Geochimica Cosmochimica Acta, 63, 1277-1292. http://cn.bing.com/academic/profile?id=910a48e1f6c1d72c55fc173287d1db48&encoded=0&v=paper_preview&mkt=zh-cn [25] Sebilo, M., Billen, G., 2003. Isotope Composition of Nitrate-Nitrogen as a Marker of Riparian and Benthic Dinitrification at the Scale of the Whole Seine River System. Biogeochemistry, 63:35-51. doi: 10.1023/A:1023362923881 [26] Shen, H.Y., Jiang, G.H., Guo, F., et al., 2015. Distribution Characteristics and Influence Factors of the Ammonia, Nitrite and Nitrate in the Lijiang River, Guilin City. Carsologica Sinica, 34(4):369-374 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201504009 [27] Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5):674-684 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705003 [28] Tang, A M.Y., Xu, X.J., 2018.Study of Water Quality Evaluation and Prediction of Lijiang River. Journal of Qinzhou University, 33(5):27-32 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qzsfgdzkxxxb201805008 [29] Wang, B., Liu, C.Q., Peng, X., et al., 2011.Stable Carbon Isotope as a Proxy for the Change of Phytoplankton Community Structure in Cascade Reservoirs from Wujing River, China. Biogeosciences Discussions, 8(1):831-856. https://ui.adsabs.harvard.edu/abs/2011BGD.....8..831W/abstract [30] Wang, Q., Wu, Y.D., Ding, Q.L., et al., 2017. Temporospatial Variations and Influential Factors of Water Quality in the Flowing River Systems of Western Taihu Lake Basin. China Environmental Science, 37(7):2699-2707 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201707035 [31] Wu, S.M., Wong, Q.N., Tang, X.Q., 1991. The Buffering Process of Karst Underground Water to Acid and Alkali in Guilin City. Land and Resources of Southern China, 4:69-73 (in Chinese with English abstract). [32] Wu, Y., Luo, Z.H., Luo, W., et al., 2018.Multiple Isotope Geochemistry and Hydrochemical Monitoring of Karst Water in a Rapidly Urbanized Region. Journal of Contaminant Hydrology, 218:44-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2182e6861dc5f247da3caaa07e9d03b [33] Wu, Y.G., 2002. Denitrification in Groundwater Systems.Techniques and Equipment for Environmental Pollution Control, 3(3):27-31 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_202605 [34] Yan, Y.N., Ma, T., Zhang, J.W., et al., 2017. Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water. Earth Science, 42(5):783-792 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705014 [35] Yang, C., Telmer, K., Veizer, J., 1996. Chemical Dynamics of the"St.Lawrence"Riverine System:δD-H2O, δ18O-H2O, δ13CDIC, 34S-Sulfate and Dissolved 87Sr/86Sr. Geochimica et Cosmochimica Acta, 60(5):851-866. http://www.sciencedirect.com/science/article/pii/0016703795004459 [36] Yue, F.J., Li, S.L., Liu, C.Q., et al., 2015. Sources and Transport of Nitrate Constrained by the Isotopic Technique in a Karst Catchment:An Example from Southwest China. Hydrological Processes, 29(8):1883-1893. http://cn.bing.com/academic/profile?id=3df2009c596a02638048d6aad568d10c&encoded=0&v=paper_preview&mkt=zh-cn [37] Zhang, C.Y., Zhang, S., Ma, L.N., et al. 2012. Nitrogen Isotope Tracing of Sources of Nitrate Contamination in Groundwater from Wastewater Irrigated Area. Earth Science, 37(2):350-356 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201202021 [38] Zhang, X.B., Jiang, Y.J., Qiu, S.L., et al., 2012. Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China:Dissolving Carbonate Rocks and CO2 Sink. Advance in Earth Sciences, 27(4):466-476 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201204013 [39] Zhang, Y., Shi, P., Li, F.D., et al., 2018. Quantification of Nitrate Sources and Fates in Rivers in an Irrigated Agricultural Area Using Environmental Isotopes and a Bayesian Isotope Mixing Model. Chemosphere, 208:493-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16168b9fd5dc8d1ff6e2ce409fccd404 [40] Zhang, Y., Shi, P., Li, F.D., et al., 2019. Source Identification of Nitrate Contamination of Groundwater in Yellow River Irrigation Districts Using Stable Isotopes and Bayesian Model. Chinese Journal of Eco-Agriculture, 27(3):484-493 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stnyyj201903015 [41] Zhao, H.J., Xiao, Q., Wu, X., et al., 2017a. Impact of Human Activities on Water-Rock Interactions in Surface Water of Lijiang River. Chinese Journal of Environmental Science, 38(10):4108-4119 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201710015 [42] Zhao, H.J., Xiao, Q., Wu, X., et al., 2017b. Sources of Organic Carbon in the Surface Water of Lijiang River. Chinese Journal of Environmental Science, 8:3200-3208 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201708014 [43] 岑慧贤, 仇荣亮, 杨平, 2000.土壤酸沉降缓冲机制的探讨.环境科学研究, 2:49-54. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj200002014 [44] 代俊峰, 杨艺, 方荣杰, 等, 2017.漓江流域上游水质分析和污染物定量分割.中国农村水利水电, (4):67-71. http://d.old.wanfangdata.com.cn/Periodical/zgncslsd201704018 [45] 高全洲, 陶贞, 2003.河流有机碳的输出通量及性质研究进展.应用生态学报, 14 (6):1000-1002. http://d.old.wanfangdata.com.cn/Periodical/yystxb200306036 [46] 郭威, 李祥忠, 刘卫国, 2013.西安周边河流溶解无机碳浓度及同位素组成初探.环境科学, 34(4):1291-1297. http://d.old.wanfangdata.com.cn/Periodical/hjkx201304011 [47] 韩耀全, 周解, 吴祥庆, 2007.漓江的自然地理与水质调查.广西水产科技, (2):8-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxsckj200702002 [48] 李嘉竹, 2009.陆地C3、C4草本植物稳定碳同位素组成及其对温度变化的响应研究(硕士学位论文).烟台: 鲁东大学, 31-44. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1574110 [49] 李丽, 蒲俊兵, 李建鸿, 等, 2017.岩溶地下河补给的地表溪流溶解无机碳及其稳定同位素组成的时空变化.环境科学, 38(2):527-534. http://d.old.wanfangdata.com.cn/Periodical/hjkx201702015 [50] 林鹏, 陈余道, 夏源, 2016.漓江流域不同土地利用类型下水体污染类型与成因.桂林理工大学学报, 36(3):539-544. http://d.old.wanfangdata.com.cn/Periodical/glgxy201603019 [51] 刘丛强, 2007.生物地球化学过程与地表物质循环——西南喀斯特流域侵蚀与生源要素循环.北京:科学出版社, [52] 苗迎, 章程, 肖琼, 等, 2018.漓江段地表水体旱季硝酸盐动态变化特征及其来源.环境科学, 39(4):1589-1597. http://d.old.wanfangdata.com.cn/Periodical/hjkx201804018 [53] 邱述兰, 蒋勇军, 张兴波, 等, 2012.重庆市青木关地下河水化学及其δ13CDIC变化特征.中国岩溶, 31(3):279-288. http://d.old.wanfangdata.com.cn/Periodical/zgyr201203009 [54] 申豪勇, 姜光辉, 郭芳, 等, 2015.漓江桂林市区段三氮分布特征及影响因素分析.中国岩溶, 34(4):369-374. http://d.old.wanfangdata.com.cn/Periodical/zgyr201504009 [55] 沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. doi: 10.3799/dqkx.2017.055 [56] 唐美燕, 徐晓娟, 2018.漓江水质的评价与预测.钦州学院学报, 33(5):27-32. http://d.old.wanfangdata.com.cn/Periodical/qzsfgdzkxxxb201805008 [57] 王倩, 吴亚东, 丁庆玲, 等, 2017.西太湖入湖河流水系污染时空分异特征及解析.中国环境科学, 37(7): 2699-2707. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201707035 [58] 吴水木, 翁全南, 唐孝谦, 1991.桂林市岩溶地下水对酸、碱的缓冲作用.南方国土资源, 4:69-73. http://qikan.cqvip.com/Qikan/Article/Detail?id=1005306649 [59] 吴耀国, 2002.地下水环境中反硝化作用.环境污染治理技术与设备, 3(3):27-31. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200203007 [60] 闫雅妮, 马腾, 张俊文, 等, 2017.地下水与地表水相互作用下硝态氮的迁移转化实验.地球科学, 42(5):783-792. doi: 10.3799/dqkx.2017.066 [61] 张翠云, 张胜, 马琳娜, 等, 2012.污灌区地下水硝酸盐污染来源的氮同位素示踪.地球科学, 37(2):350-356. doi: 10.3799/dqkx.2012.041 [62] 张兴波, 蒋勇军, 邱述兰, 等, 2012.农业活动对岩溶作用碳汇的影响——以重庆青木关地下河流域为例.地球科学进展, 27(4):466-476. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201204013 [63] 张妍, 张秋英, 李发东, 等, 2019.毕直磊, 张强.基于稳定同位素和贝叶斯模型的引黄灌区地下水硝酸盐污染源解析.中国生态农业学报(中英文), 27(3):484-493. http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201903015.htm [64] 赵海娟, 肖琼, 吴夏, 等, 2017a.人类活动对漓江地表水体水-岩作用的影响, 38(10): 4108-4119. http://www.cqvip.com/QK/91181X/201710/673414430.html [65] 赵海娟, 肖琼, 吴夏, 等, 2017b.漓江地表水体有机碳来源.环境科学, 8:3200-3208. http://d.old.wanfangdata.com.cn/Periodical/hjkx201708014