Geological Characteristics of Subduction-Accretionary Complexes in Hellestein District, Inner Mongolia and Its Discovery Significance
-
摘要: 采用"造山带混杂岩区"新理论,首次在贺根山-黑河缝合带中段发现海勒斯台俯冲增生混杂岩,建立由"基质"+"岩块"组成的俯冲增生杂岩体系,其构造样式为整体左行逆冲剪切.基质主要有糜棱岩、千糜岩、超糜棱岩及少量的沉凝灰岩、粉砂岩、细砂岩,构造环境为弧前盆地,时代主要为中寒武世;岩块有洋岛海山岩块、弧后洋盆洋壳残片、火山弧岩块、裂离陆块,岩块的年龄区间主要在中寒武世-中奥陶世,裂离陆块时代为新太古代.结合俯冲增生杂岩基质年龄、岩块的年龄、侵入混杂岩的TTG年龄(449 Ma)和变形程度、接触关系等,将海勒斯台俯冲增生杂岩的形成时代厘定为中晚奥陶世.认为研究区俯冲作用在早寒武世就已经开始,在大陆边缘形成火山岛弧;奥陶纪初期弧后发育弧后盆地,至中奥陶世弧后盆地出现洋壳;此时中寒武世的基质经俯冲下切后在中奥陶世时期折返上升;晚奥陶世时期由于区域的持续汇聚挤压,该弧后洋盆很快夭折;弧陆开始碰撞,导致双向俯冲.在弧陆碰撞过程中,晚期形成的弧后盆地洋壳等新岩块混入早期形成的基质中.海勒斯台俯冲增生混杂岩带的发现填补了贺根山-黑河缝合岩带中段的空白,对区域构造格架厘定具有非常重要的意义,为研究古亚洲构造域演化提供了新的证据.Abstract: The Hellestein subduction accretive mélange occurs in the middle part of the Hegen Mountain-Heihe suture zone, and its structural style is left thrust shear as a whole. The accretive mélange consists of matrix and rock complex. The main matrix is composed of mylonite, phyllonite, ultramylonite and a small amount of tuff, siltstone and fine sandstone. The tectonic environment is a pre-arc basin and the age is mainly Middle Cambrian. The rock complex includes oceanic island seamount rock block, back-arc oceanic basin oceanic crust fragment, volcanic arc block and rift continental block. The age of the complexes ranges mainly from Middle Cambrian to Middle Ordovician. Based on the deformation degree and contact relationship of subduction accretion complex, and combined with the age of matrix, rock complex and TTG rock series, the age of formation of Hellestein subduction accretion complex is determined as Middle-Late Ordovician. The subduction of this area began in the Early Cambrian and formed a volcanic island arc on the continental margin, then the back-arc basin developed in the Early Ordovician, and the oceanic crust appeared in the back-arc basin of the Middle Ordovician. At the same time, the Middle Cambrian matrix returned to rise in the Middle Ordovician after subduction. In the end, the back-arc oceanic basin soon died due to the continuous regional convergence and compression of plate in the Late Ordovician. The arc land began to collide, leading to bidirectional subduction. During the process of arc-continent collision, the new blocks of the back-arc basin formed in the late stage were mixed into the matrix formed in the early stage.
-
Key words:
- Inner Mongolia /
- Hellestein /
- tectonic mélange /
- subduction accretion /
- Early Paleozoic /
- petrology
-
图 4 海勒斯台俯冲增生混杂岩基质原岩判别图解
图a为Si-[(al+fm)-(c+alk)]原岩判别图解(据Simonen, 1953), A.钙质沉积岩;B.火山岩;C.厚层泥岩;D.砂岩;图b为K-A原岩判别图解(据周世泰,1987), A.火成岩区;B.沉积岩区;B1.泥质粉砂岩亚区;B2.碳酸盐亚区; 图c为(Ca+Mg)-(Al+Fe+Ti), D.细碧岩;E.杂砂岩;F.亚杂砂岩;图d为(AT-Na)-(AT-K)(据Moine, 1968), Ⅰ.泥岩;Ⅱ.钙质页岩;Ⅲ.白云质泥灰岩;Ⅳ.长石砂岩;Ⅴ.硬砂岩;Ⅵ.中基性喷出岩;Ⅶ.流纹岩
Fig. 4. Diagrams of the matrix of subduction accretive mélange zone of Hellestein
图 5 构造环境判别图解
图a为沉积岩CaO-Na2O-K2O源岩环境判别图解,A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘.图b为沉积岩Th-Co-Zr/10源岩环境判别图解,A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘.图c为基质中酸性火山岩(Y+Nb)-Rb构造判别图解(据Pearce et al., 1984a),WPG.板内花岗岩;ORG.洋中脊花岗岩;VAG.火山岩弧花岗岩;SYN-COLG.同碰撞花岗岩.图d为基质中酸性火山岩(Yb+Ta)-Rb构造判别图解(据Pearce et al, 1984a),WPG.板内花岗岩;ORG.洋中脊花岗岩;VAG.火山岩弧花岗岩;SYN-COLG.同碰撞花岗岩
Fig. 5. Diagrams of tectonic settings
图 7 玄武岩构造环境判别图解
图a为Nb/Yb-Th/Yb图解,据Pearce(2008);图b为洋岛型岩块Nb/Yb-TiO2/Yb图解, 据Pearce(2008)和Pearce et al.(1984b)
Fig. 7. Diagrams of basalt tectonic settings
图 12 火山弧岩块SiO2-MgO (a)、SiO2-FeO*/MgO (b)、YbN-(La/Yb)N (c)和Y-Sr/Y (d)图解
HMA.高镁安山质岩石系列;MA.镁安山质岩石系列;LF-CA.为低铁钙碱性系列;CA.为钙碱性系列;TH.拉斑玄武岩系列.据Defant and Drummond(1990)
Fig. 12. SiO2-MgO (a), SiO2-FeO*/MgO (b), YbN-(La/Yb)N (c) and Y-Sr/Y (d) diagram of volcanic arc block
图 15 新太古代黑云角闪石英闪长岩La/Yb-Th图解
Fig. 15. La/Yb-Th diagram of Neoarchean biotite amphibolite quartz diorite
表 1 海勒斯台俯冲增生混杂岩带物质组成
Table 1. The material composition list of subduction accretive mélange zone of Hellestein
类型 构造环境 物质成分 时代 基质 弧前盆地 糜棱岩、千糜岩、超糜棱岩及(阳起石化)片理化粉砂岩、细砂岩、沉凝灰岩等,为一套夹火山岩的砂泥质碎屑岩建造 寒武纪(501.6±3.9 Ma、512.5 ±0.92 Ma) 岩块 洋岛海山(OIB) 角闪辉长岩、堆晶角闪石岩、玄武岩、碎裂岩化橄榄玄武岩等 早奥陶世(478.2±2.3 Ma) 弧后洋盆洋壳残片(BAOB) (角闪)辉长岩和(阳起石化)玄武岩以及少量的辉绿岩 中奥陶世(463.0±2.4 Ma) 火山弧(VA) (玄武)安山岩、(角闪石)闪长岩、花岗闪长岩以及少量的粗面岩、凝灰岩 奥陶纪(464.1±2.3 Ma)、寒武纪(540.4±4.8 Ma、512.5±4.0 Ma) 裂离地块(SL) 黑云角闪石英闪长岩 新太古代(2 544±14 Ma) -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Bailey, J.C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 38(2): 27-34. [3] Bao, Z.W., Chen, S.H., Zhang, Z.T., 1994. Study on REE and Sm-Nd Isotopes of Hegenshan Ophiolite, Inner Mongolia. Geochimica, 23(4): 339-349(in Chinese with English abstract). [4] Chen, A.X., Zhou, D., Zhang, Q.K., et al., 2018. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 29(1): 78-92. https://doi.org/10.1007/s12583-017-0817-6 [5] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Magmas by Melting of Young Subducted Lithosphere. Nature, 347:662-665. doi: 10.1038/347662a0 [6] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118(in Chinese with English abstract). [7] Fan, Z.Y., 1996. The Discovery of Oceanic Crust Fragmentation of Carboniferous in the North of Syramulun River, Inner Mongolia and Its Tectonic Significance. Regional Geology of China, 59(4):382(in Chinese). [8] Fu, J.Y., Wang, Y., Na, F.C., et al., 2015. Zircon U-Pb Geochronology and Geochemistry of the Hadayang Mafic-Ultramafic Rocks in Inner Mongolia: Constraints on the Late Devonian Subduction of Nenjiang-Heihe Area, Northeast China. Geology in China, 42(6): 1740-1753(in Chinese with English abstract). [9] Huang, B., Fu, D., Li, S.C., et al., 2016.The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1):158-176(in Chinese with English abstract). [10] Huang, J.X., Zhao, Z.D., Zhang, H.F., et al., 2006.Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Wenduermiao and Bayanaobao-Jiaoqier Ophiolites, Inner Mongolia:Constraints for the Characteristics of the Mantle Domain of Eastern Paleo-Asian Ocean. Acta Petrologica Sinica, 22(12):2889-2900(in Chinese with English abstract). [11] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [12] Li, J.Y., 1986. A Preliminary Study on the Paleosuture Zone between the Sino-Korean and Siberian Plates in Eastern Inner Mongolia. Chinese Science Bulletin, 31(14):1093-1096(in Chinese). doi: 10.1360/csb1986-31-14-1093 [13] Li, Y.J., Wang, J.F., Wang, G.H., , et al., 2018. Discovery and Significance of the Dahate Fore-Arc Basalts from the Diyanmiao Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 34(2) : 469-482(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019 [14] Liang, R.X., 1994.The Features of Ophiolites in the Central Sector of Inner Mongolia and Its Geological Significance. Regional Geology of China, 13(1): 37-45(in Chinese with English abstract). doi: 10.1007-s00404-010-1458-5/ [15] Liu, Y.W., Zhang, T.A., Du, B.Y., 2015. Tectonic Significance of Nenjiang-Heihe Tectonic Melange Belt and Late Carboniferous-Early Permian Granites on Both Sides. Heilongjiang Science and Technology Information, (20):106(in Chinese). [16] Liu, X.M., Gao, S., Diwu, C.R., et al., 2007. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size. Chinese Science Bulletin, 52(9): 1257-1264. https://doi.org/10.1007/s11434-007-0160-x [17] LudwingK.R., 2011. Users Manual for Isoplot/Ex (Rev. 2.49) Geochronological Toolkit for Microsoft Excel.Geochronology Center Special Publication, Berkeley. [18] Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005 [19] Miao, L.C., Fan, W.M., Zhang, F.Q., et al., 2003. Zircon SHRIMP Geochronology of Xinkailing-Kolo Complex in Northwest Xiaoxing'an Mountains and Its Significance. Chinese Science Bulletin, 48(22):2315-2323(in Chinese). doi: 10.1360/csb2003-48-22-2315 [20] Moine, B., 1968. Massif Schisto-Quartzo-Dolomitique: Région d'Ambatofinandrahana Centre-Ouest du Socle Cristallin Précambrien de Madagascar. Centre de I'Institut Géographique National, Tananarive. Scale, 1:200 000. [21] Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3-4): 213-232. https://doi.org/10.1016/0037-0738(94)90039-6 [22] Murray, R. W., Buchholtz Ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. https://doi.org/10.1016/0016-7037(91)90030-9 [23] Na, F.C., Fu, J.Y., Wang, Y., , et al., 2014. LA-ICP-MS Zircon U-Pb Age of the Chlorite-Muscovite Tectonic Schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and Its Tectonic Significance. Geological Bulletin of China, 33(9):1326-1332(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201409007 [24] Pan, G.T., Lu, S.N., Xiao, Q.H., et al., 2016.Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6):1-23(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [25] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [26] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984a. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [27] Pearce, J.A., Lippard, S. J., Roberts, S., 1984b. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06 [28] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. Elsevier Pergamon, Oxford. [29] Ruzhentsev, S.V., Mossakovskiy, A.A., 1996. Geodynamics and Tectonic Evolution of the Central Asian Paleozoic Structures as the Result of the Interaction between the Pacific and Indo-Atlantic Segments of the Earth. Geotectonics, 29(4): 294-311. [30] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth Planet Sci. Lett., 59: 101-118. doi: 10.1016/0012-821X(82)90120-0 [31] Simonen, A., 1953. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland. Bulletin of the Geological Society of Finland, 160: 1-64. [32] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(3): 313-345. http://cn.bing.com/academic/profile?id=030b4721206bed5322afd5ec4299b227&encoded=0&v=paper_preview&mkt=zh-cn [33] Sun, D.Y., Wu, F.Y., Li, H.M., et al., 2000. Age of Post-Orogenic A-Type Granites in the Northwestern Xiaoxing'an Mountains and Their Relationship with the Eastward Extension of the Suolun-Hegenshan-Zhalaite Collision-Assemblage Zone. Chinese Science Bulletin, 45(20):2217-2222(in Chinese). doi: 10.1360/csb2000-45-20-2217 [34] Tang, Y.Q., Lu, Y.L., 1986.The Tectonic Environment and Age of the Ophilites in East Qinling. Journal of Chengdu College of Geology, 13(2):52-65(in Chinese with English abstract). [35] Tian, C.L., Cao, C.Z., Yang, F.L., 1989.Geochemical Features of Ophiolite in the Fold Belt on the North Side of the Sino-Korean Platform. Bulletin of the Chinese Academy of Geological Sciences, 10:107-129(in Chinese with English abstract). [36] Wang, C., Ren, L.M., Zhang, X.J., et al., 2018. Ages, Origin and Geological Implications of Adamellite in Early Permian in Hegenshan, Inner Mongolia. Xinjiang Geology, 36(2):159-168(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xjdz201802004 [37] Wang, D.Y., Wang, C.S., Du, S.Q., 1998. The Tectonic Evolution of the Northeast of Nei Mongol and Its Adjacency in Pre-Mesozoic Era. Journal of Chengdu University of Technology, 25(4):529-536(in Chinese with English abstract). [38] Wang, G.C., Zhang, P., 2019. A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5):1688-1704(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905020 [39] Wang, S.D., Zhang, K.X., Song, B.W., et al., 2018. Detrital Zircon U-Pb Geochronology from Greywackes in the Niujuanzi Ophiolitic Mélange, Beishan Area, NW China: Provenance and Tectonic Implications. Journal of Earth Science, 29(1): 103-113. https://doi.org/10.1007/s12583-018-0824-2 [40] Wang, Y.J., Fan, Z.Y., 1997.Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance. Acta Palaeontologica Sinica, 36(1): 58-69(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700131556 [41] Wilson, M., 1989. Igneous Petrogenesis. Oxford University Press, London, 245-285. [42] Xiao, W.J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8-1-8-21. https://doi.org/10.1029/2002tc001484 [43] Xu, B., Xu, Y., Li, J., et al., 2016.Age of the Ondor Sum Group in Western Inner Mongolia and Its Position in the Central Asia Orogenic Belt. Earth Science Frontiers, 23(6):120-127(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201606009 [44] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt(XMOB).Acta Petrologica Sinica, 30(7):1841-1857(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [45] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5):1620-1646(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017 [46] Zhang, K.X., Yin, H.F., Zhu, Y.H., et al., 2001. Theory, Method and Practice of Geological Mapping in the Orogenic Belt Melange: The Example of Eastern Kunlun Orogenic Belt. China University of Geosciences Press, Wuhan, 100-205(in Chinese). [47] Zhao, X.C., Zhou, W.X., Fu, D., et al., 2018. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 29(2): 280-294. https://doi.org/10.1007/s12583-017-0942-2 [48] Zhou, J.B., Shi, A.G., Jing, Y., 2016. The Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions. Journal of Jilin University(Earth Science Edition), 46(4):1042-1055(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d855b67c7ce93796e37b7994d89fb99f&encoded=0&v=paper_preview&mkt=zh-cn [49] Zhou, S.T., 1987. The Petrochemical Study of the Archean Banded Iron Deposit in Anshan-Benxi District, Liaoning Province. Geology in China, 37(4):1119-1129(in Chinese with English abstract). [50] 包志伟, 陈森煌, 张祯堂, 1994.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究.地球化学, 23(4): 339-349. doi: 10.3321/j.issn:0379-1726.1994.04.004 [51] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 [52] 樊志勇, 1996.内蒙古西拉木伦河北岸杏树洼一带石炭纪洋壳"残片"的发现及其构造意义.中国区域地质, 59(4):382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600705080 [53] 付俊彧, 汪岩, 那福超, 等, 2015.内蒙古哈达阳镁铁-超镁铁质岩锆石U-Pb年代学及地球化学特征:对嫩江-黑河地区晚泥盆世俯冲背景的制约.中国地质, 42(6): 1740-1753. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201506006 [54] 黄波, 付冬, 李树才, 等, 2016.内蒙古贺根山蛇绿岩形成时代及构造启示.岩石学报, 32(1):158-176. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601020 [55] 黄金香, 赵志丹, 张宏飞, 等, 2006.内蒙古温都尔庙和巴彦敖包-交其尔蛇绿岩的元素与同位素地球化学:对古亚洲洋东部地幔域特征的限制.岩石学报, 22(12):2889-2900. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612007 [56] 李锦轶, 1986.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究.科学通报, 31(14):1093-1096. http://www.cnki.com.cn/Article/CJFDTotal-KXTB198614014.htm [57] 李英杰, 王金芳, 王根厚, 等, 2018.内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义.岩石学报, 34(2): 469-482. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019 [58] 梁日暄, 1994.内蒙古中段蛇绿岩特征及地质意义.中国区域地质, 13(1):37-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629562 [59] 刘宇崴, 张铁安, 杜兵盈, 2015.嫩江-黑河构造混杂岩带及其两侧晚石炭-早二叠世花岗岩大地构造意义.黑龙江科技信息, (20):106. doi: 10.3969/j.issn.1673-1328.2015.20.098 [60] 苗来成, 范蔚茗, 张福勤, 等, 2003.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义.科学通报, 48(22):2315-2323. doi: 10.3321/j.issn:0023-074X.2003.22.004 [61] 那福超, 付俊彧, 汪岩, 等, 2014.内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 33(9):1326-1332. doi: 10.3969/j.issn.1671-2552.2014.09.007 [62] 潘桂棠, 陆松年, 肖庆辉, 等, 2016.中国大地构造阶段划分和演化.地学前缘, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [63] 孙德有, 吴福元, 李惠民, 等, 2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报, 45(20):2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019 [64] 汤耀庆, 卢一伦, 1986.东秦岭蛇绿岩的形成时代和构造环境, 成都地质学院学报, 13(2):52-65. http://www.cnki.com.cn/Article/CJFDTotal-CDLG198602004.htm [65] 田昌烈, 曹从周, 杨芳林, 等, 1989.中朝陆台北侧褶皱带(中段)蛇绿岩的地球化学特征.中国地质科学院院报, 10:107-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240754 [66] 王成, 任利民, 张晓军, 等, 2018.内蒙古贺根山地区早二叠世二长花岗岩时代、成因及构造意义.新疆地质. 36(2):159-168. http://d.old.wanfangdata.com.cn/Periodical/xjdz201802004 [67] 王道永, 王成善, 杜思清, 1998.内蒙古东北部及周边地区前中生代构造发展演化史.成都理工学院学报, 25(4):529-536. http://www.cnki.com.cn/Article/CJFDTotal-CDLG804.008.htm [68] 王国灿, 张攀, 2019.蛇绿混杂岩就位机制及其大地构造意义新解:基于残余洋盆型蛇绿混杂岩构造解析的启示.地球科学, 44(5):1688-1704. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905020 [69] 王玉净, 樊志勇, 1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报, 36(1): 58-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700131556 [70] 徐备, 徐严, 栗进, 等, 2016.内蒙古西部温都尔庙群的时代及其在中亚造山带中的位置.地学前缘, 23(6):120-127. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606009 [71] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [72] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017 [73] 张克信, 殷鸿福, 朱云海, 等, 2001.造山带混杂岩区地质填图理论、方法与实践——以东昆仑造山带为例.武汉:中国地质大学出版社, 100-205. [74] 周建波, 石爱国, 景妍, 2016.东北地块群:构造演化与古大陆重建.吉林大学学报(地球科学版), 46(4):1042-1055. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201401002 [75] 周世泰, 1987.鞍山、本溪地区鞍山群变质岩岩石化学研究及条带状铁矿的成矿条件.中国地质, 37(4):1119-1129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002530917 -
dqkx-44-10-3279-F1.pdf