Vertical Changes of Planktonic Bacteria Community and Predictive Functional Analysis in Summer Dali-Nor Lake
-
摘要: 浮游细菌是湖泊水生态系统关键组成部分,在元素、能量迁移转化过程中作用明显.基于16S rRNA基因高通量测序技术,以夏季内蒙古达里诺尔湖(简称“达里湖”)为研究区,对内陆封闭型湖泊水体浮游细菌群落垂向变化特征及影响因素进行了对比分析.结果显示:夏季达里湖浮游细菌群落多样性在表层水中最高,中层水最低;而丰富度则在底层水中最高,中层水最低.此外,浮游细菌群落组成也存在一定程度的垂向差异:在纲类水平上,Actinobacteria丰度优势明显,表层水为24.70%、中层水为21.06%、底层水为24.77%.冗余分析(RDA)结果表明不同深度水体中优势菌群受理化指标影响不同:表层水优势菌群结构受总溶解性固体含量、电导率等理化指标的影响最明显;不同形态营养元素则是中层水优势菌群结构的主要影响因素;在底层水中,优势菌群则受叶绿素、化学需氧量等理化指标的影响最明显.整体上,水深变化引起的湖水理化性质垂向差异成为影响达里湖夏季水体浮游细菌群落结构特征的关键因素之一.Abstract: Planktonic bacteria is the key component of water ecosystem, playing an important role in processes of materials and energy cycle. In this study, we have collected 43 water samples from the surface water, middle water and bottom water in the summer Dali-nor lake, an inland closed lake in the Inner Mongolia Plateau. Based on 16S rRNA gene-based high throughput sequencing technology, the vertical variation characteristics and ecological function of planktonic bacterial community have been analyzed in detail. The results show that: in summer, the diversity of phytoplankton community in Dali lake is the highest in surface water, the lowest in middle water, and the richness is the highest in bottom water, and the lowest in middle water. In addition, the Actinobacteria is the most dominant class, which is 24.70% in the surface water, 21.06% in the middle water, and 24.77% in the bottom water respectively. Redundancy analysis results show that the dominant microbial acceptance indicators in different depths of water have different effects. The dominant microflora in surface water of Dali-nor lake is most affected by TDS and EC, which represent exogenous input. The dominant microflora in middle water is mainly affected by different forms of nutrient elements. In bottom water, the dominant microflora is most obviously affected by Chla and COD. And the change of water depth is also one of the key factors affecting the structure of dominant flora in middle and bottom water. On the whole, the vertical difference of the physical and chemical proxies caused by the change of water depth, has become one of the key factors affecting the structural characteristics of planktonic bacteria in summer Dali-nor lake.
-
图 1 达里湖位置及采样点分布示意
取样点位置分布及5 m等水深线的区域示意图, 修改自Xiao et al.(2008); 王旭阳(2017)
Fig. 1. Distribution of sample sites and water depth profile of Dali-nor lake
表 1 取样点位置及水深情况
Table 1. Locations of sample sites and water depth changes in Dali-nor lake
点位 经度(°E) 纬度(°N) 水深(cm) DL-1 116.667 3 43.376 8 153 DL-2 116.627 1 43.356 4 525 DL-3 116.609 6 43.324 9 515 DL-4 116.661 9 43.322 2 675 DL-5 116.683 1 43.315 8 590 DL-6 116.633 3 43.312 1 680 DL-7 116.593 1 43.296 5 680 DL-8 116.651 3 43.285 2 700 DL-9 116.564 5 43.267 5 45 DL-10 116.693 2 43.266 7 430 DL-11 116.608 8 43.273 7 820 DL-12 116.583 5 43.249 8 720 DL-13 116.681 4 43.245 2 370 DL-14 116.501 1 43.238 6 718 DL-15 116.625 8 43.240 5 750 DL-16 116.599 9 43.233 3 720 DL-17 116.543 8 43.231 6 775 表 2 夏季达里湖不同深度水体环境因子的平均值
Table 2. Average values of physicochemical proxies in summer Dali-nor lake
TN(mg/L) TP(mg/L) DTP(mg/L) DIP(mg/L) WT(℃) SD(cm) DO(mg/L) EC(ms/cm) TDS(mg/L) 表层 4.01 1.97 1.79 1.71 20.24 33.35 6.87 938.24 469.29 中层 4.15 1.93 1.75 1.81 19.97 29.73 6.73 934.73 467.36 底层 4.05 1.94 1.78 1.80 20.20 31.73 6.68 929.53 464.80 注:平均值为每层水体所有取样点的平均值.黑体字代表平均值最高, 斜体字代表平均值最低. 表 3 夏季达里湖浮游细菌垂向结构差异分析
Table 3. Analysis of vertical distribution of planktonic bacteria in summer Dali-nor lake
Shannon Simpson Chao Shannoneven Coverage 表层 3.933 0.062 635.022 0.625 0.997 9 中层 2.947 0.248 580.327 0.477 0.997 6 底层 3.466 0.148 658.841 0.536 0.997 1 注:黑体字代表平均值最高, 斜体字代表平均值最低. 表 4 不同深度湖水门(纲)类水平上浮游细菌群落结构比例(%)
Table 4. Proportion of planktonic bacterial community structure at phylum (class) levels in different depths
门 Actinobacteria Proteobacteria Cyanobacteria 纲 αC Proteobacteria βC Proteobacteria γC Proteobacteria 表 24.70 23.30 5.84 6.96 11.95 中 21.06 15.05 3.18 38.68 8.54 底 24.77 20.00 3.77 22.48 8.82 门 Bacteroidetes Tenenricutes DeincoccusCThermus Verrucomicobia 纲 Bacteroidetes_Incertae_Sedis Flavobacteria Mollicutes Deinococci Spartobacteria 表 3.31 1.82 3.55 4.52 1.34 中 2.06 1.45 2.48 0.26 0.98 底 2.47 1.68 3.42 1.81 1.36 门 Firmicutes Planctomycetes Acidobacteria Chlorobi 纲 Bacilli Clostridia 表 1.35 1.01 1.35 2.15 1.52 中 0.39 0.13 1.11 0.09 1.09 底 0.92 0.52 1.27 1.46 1.04 表 5 浮游细菌群落结构和理化指标的Mantel检验
Table 5. Mantel test for the bacterioplankton community structure and physicochemical proxies
表层 中层 底层 r p r p r p TN 0.243 0.047 0.318 0.031 -0.103 0.461 TP -0.140 0.383 -0.174 0.347 -0.138 0.450 DTP 0.214 0.116 0.407 0.020 -0.023 0.902 DIP 0.001 0.994 0.299 0.065 0.024 0.853 COD -0.076 0.594 0.007 0.978 0.054 0.777 Chl-a -0.041 0.790 0.007 0.957 -0.097 0.527 pH 0.129 0.349 0.011 0.951 -0.161 0.323 WT 0.167 0.132 0.011 0.975 0.104 0.534 SD -0.141 0.287 0.035 0.825 -0.125 0.424 EC 0.243 0.014 0.306 0.055 0.326 0.022 DO -0.111 0.451 0.137 0.489 -0.092 0.580 TDS 0.236 0.030 0.321 0.034 0.313 0.029 Depth 0.147 0.358 0.237 0.184 0.415 0.030 -
[1] Allgaier, M., Grossart, H. P., 2006. Diversity and Seasonal Dynamics of Actinobacteria Populations in Four Lakes in Northeastern Germany. Applied and Environmental Microbiology, 72(5):3489-3497. https://doi.org/10.1128/aem.72.5.3489-3497.2006 [2] Bao, S.M., 2008. Horizontal and Seasonal Dynamics of the Bacterioplankton Community Composition in the Large Shallow Chaohu Lake, China (Dissertation). Anhui Agricultural University, Hefei (in Chinese with English abstract). [3] Bates, S. T., Berg-Lyons, D., Caporaso, J. G., et al., 2011. Examining the Global Distribution of Dominant Archaeal Populations in Soil. The ISME Journal, 5(5):908-917. https://doi.org/10.1038/ismej.2010.171 [4] Bosshard, P.P., Santini, Y., Grüter, D., et al., 2000. Bacterial Diversity and Community Composition in the Chemocline of the Meromictic Alpine Lake Cadagno as Revealed by 16S rDNA Analysis. FEMS Microbiology Ecology, 31(2):173-182. doi: 10.1111/j.1574-6941.2000.tb00682.x [5] Chao, A., 1984. Non-Parametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 11:265-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10978f6e38b953d4ceddf66fd7affde0 [6] Chen, K., Allen, J., Lu, J. R., 2017. Community Structures of Phytoplankton with Emphasis on Toxic Cyanobacteria in an Ohio Inland Lake during Bloom Season. Journal of Water Resource and Protection, 9(11):1299-1318. https://doi.org/10.4236/jwarp.2017.911083 [7] Comeau, A. M., Harding, T., Galand, P. E., et al., 2012. Vertical Distribution of Microbial Communities in a Perennially Stratified Arctic Lake with Saline, Anoxic Bottom Waters. Scientific Reports, 35(2):604-613. https://doi.org/10.1038/srep00604 [8] del Giorgio, P. A., Bouvier, T. C., 2002. Linking the Physiologic and Phylogenetic Successions in Free-Living Bacterial Communities along an Estuarine Salinity Gradient. Limnology and Oceanography, 47(2):471-486. https://doi.org/10.4319/lo.2002.47.2.0471 [9] Deshmukh, K. B., Pathak, A. P., Karuppayil, M. S., 2011. Bacterial Diversity of Lonar Soda Lake of India. Indian Journal of Microbiology, 51(1):107-111. https://doi.org/10.1007/s12088-011-0159-5 [10] Ding, Y.R., Li, D.L., Zhang, Y.M., et al., 2017. The Structure and the Diversity of Sediment Microbial Communities in Gehu Lake. Acta Scientiae Circumstantiae, 37(5):1649-1656 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201705005 [11] Feng, C., Yang, J., Jiang, H.C, 2018. Diversity and Distribution of Nitrogen-Fixing Bacteria in Two Geothermal Channels in Tengchong Geothermal Zone, Yunnan Province. Earth Science, 43(S1):10-18 (in Chinese with English abstract. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2018z1002 [12] Garcia, S. L., Salka, I., Grossart, H. P., et al., 2013. Depth-discrete Profiles of Bacterial Communities Reveal Pronounced Spatio-Temporal Dynamics Related to Lake Stratification. Environmental Microbiology Reports, 5(4):549-555. https://doi.org/10.1111/1758-2229.12044 [13] He, H., Chen, X. J., Hou, F.J., et al., 2017. Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities. Frontiers in Microbiology, 8:606. https://doi.org/10.3389/fmicb.2017.00606. [14] He, M., Lin, W., Zhang, W.S., et al., 2018. Morphological and Phylogenetic Diversity of Magnetotactic Bacteria in Pond Lianhua, Beijing. Earth Science, 43(S1):106-114 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1011 [15] Ji, P., Rhoads, W. J., Edwards, M. A., et al., 2017. Impact of Water Heater Temperature Setting and Water Use Frequency on the Building Plumbing Microbiome. The ISME Journal, 11(6):1318-1330. https://doi.org/10.1038/ismej.2017.14 [16] Jiang, J. G., Shen, Y. F., 2007. Development of the Microbial Communities in Lake Donghu in Relation to Water Quality. Environmental Monitoring and Assessment, 127(1-3):227-236. https://doi.org/10.1007/s10661-006-9275-9 [17] Kanukollu, S., Wemheuer, B., Herber, J., et al., 2016. Distinct Compositions of Free-Living, Particle-Associated and Benthic Communities of the Roseobacter Group in the North Sea. FEMS Microbiology Ecology, 92(1):327-348. https://doi.org/10.1093/femsec/fiv145 [18] Lauro, F. M., DeMaere, M. Z., Yau, S., et al., 2011. An Integrative Study of a Meromictic Lake Ecosystem in Antarctica. The ISME Journal, 5(5):879-895. https://doi.org/10.1038/ismej.2010.185 [19] Li, W.B., Li, C.Y., Liu, X.X., et al., 2015. Changes of Stable Oxygen and Hydrogen Isotopes and Their Responses to Freezing Process in Dali-Nor Lake in Cold-Arid Areas of China. Earth Science, 40(12):2081-2090 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201512010 [20] Li, W.B., Liu, Z.J., Yang, X., et al., 2019. Changes of Stable Oxygen and Hydrogen Isotopes in Summer Dali-nor Lake in Inner Mongolia of Northern China. Journal of Lake Sciences, 31(2):539-550 (in Chinese with English abstract). doi: 10.18307/2019.0222 [21] Liao, X. B., Chen, C., Zhang, J. X., et al., 2015. Operational Performance, Biomass and Microbial Community Structure:Impacts of Backwashing on Drinking Water Biofilter. Environmental Science and Pollution Research, 22(1):546-554. https://doi.org/10.1007/s11356-014-3393-7 [22] Liu, Z.J., 2015. Tests of Hydrodynamics and Hydrogen and Oxygen Stable Isotopes in Lake Dalinuoer (Dissertation). Inner Mongolia Agricultural University, Hohhot (in Chinese with English abstract). [23] Lv, M.J., Wang, J., Fan, Z., et al., 2011. The Spatial Variations of Bacterioplankton Community Composition in Lake Dian Chi and Their Relation to Environmental Factors. Acta Scientiae Circumstantiae, 31(2):299-306 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0043135411002855 [24] Newton, R. J., Jones, S. E., Eiler, A., et al., 2011. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews, 75(1):14-49. https://doi.org/10.1128/mmbr.00028-10 [25] Ren, L.J., He, D., Xing, P., et al., 2013. Bacterial Diversity and Ecological Function in Lake Water Bodies. Biodiversity Science, 21(4):422-433 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8eb80447adcd055cd6ddfacb923f27b0 [26] Rogers, M. B., Firek, B., Shi, M., et al., 2016. Disruption of the Microbiota across Multiple Body Sites in Critically Ill Children. Microbiome, 4(1):66. https://doi.org/10.1186/s40168-016-0211-0 [27] Sims, A., Zhang, Y. Y., Gajaraj, S., et al., 2013. Toward the Development of Microbial Indicators for Wetland Assessment. Water Research, 47(5):1711-1725. https://doi.org/10.1016/j.watres.2013.01.023 [28] Wang, X.Y., 2017. Research on the Water Depth Retrieval of Dali Lake Basing on 3S Technology (Dissertation). Inner Mongolia Agricultural University, Hohhot (in Chinese with English abstract). [29] Wang, Y.S., Guo, Y., 2015. A Study of Groundwater Salinization Mechanism in Arid Areas Using Regional Deuterium Excess. Hydrogeology & Engineering Geology, 42(6):29-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201506005 [30] Wu, Q.L., Jiang, H. L., 2017. China Lake Microbiome Project. Bulletin Chinese Academic Science, 32(3):273-279 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=671702193 [31] Xiao, J. L., Si, B., Zhai, D. Y., et al., 2008. Hydrology of Dali Lake in Central-Eastern Inner Mongolia and Holocene East Asian Monsoon Variability. Journal of Paleolimnology, 40(1):519-528. https://doi.org/10.1007/s10933-007-9179-x [32] Yang, C. Y., Wang, Q., Simon, P. N., et al., 2017. Distinct Network Interactions in Particle-Associated and Free- Living Bacterial Communities during a Microcystis Aeruginosa Bloom in a Plateau Lake. Frontiers in Microbiology, 8:1202. https://doi.org/10.3389/fmicb.2017.01202 [33] Yang, X., Li, C.Y., Li, W.B., et al., 2018. Characteristics of Phosphorus Occurrence and Influence Factors of Sediment Release in Dali-Nor Lake. Bulletin of Soil and Water Conservation, 38(4):92-97, 102 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stbctb201804015 [34] Zhang, F., Tian, W., Sun, F., et al., 2019. Community Structure and Predictive Functional Analysis of Surface Water Bacterioplankton in the Danjiangkou Reservoir. Environmental Science, 40(3):1252-1260 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201903027 [35] Zhang, Y.H., Wu, L., Wu, L.W., 2018. Investigation of Microbial Diversity of Poyang Lake in China by Using Next-Generation Sequencing. Journal of Nanchang University (Natural Science), 42(2):153-160 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ncdxxb201802010 [36] Zhen, Z.L., Zhang, S., Shi, X.H., et al., 2013. Research on the Evolution of Dali Lake Area Based on the Remote Sensing Technology. China Rural Water and Hydropower, (7):6-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncslsd201307002 [37] Zhi, X. Y., Li, W. J., Stackebrandt, E., 2009. An Update of the Structure and 16S rRNA Gene Sequence-Based Definition of Higher Ranks of the Class Actinobacteria, with the Proposal of Two New Suborders and Four New Families and Emended Descriptions of the Existing Higher Taxa. International Journal of Systematic and Evolutionary Microbiology, 59(3):589-608. https://doi.org/10.1099/ijs.0.65780-0 [38] 鲍素敏, 2008.巢湖水体浮游细菌群落结构时空差异的分子生态学研究(硕士学位论文).合肥: 安徽农业大学. http://cdmd.cnki.com.cn/Article/CDMD-10364-2009023258.htm [39] 丁轶睿, 李定龙, 张毅敏, 等, 2017.滆湖底泥细菌群落结构及多样性.环境科学学报, 37(5):1649-1656. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201705005 [40] 冯灿, 杨渐, 蒋宏忱, 2018.云南腾冲两条热泉溪流的固氮细菌群落多样性.地球科学, 43(S1):10-18. doi: 10.3799/dqkx.2018.911 [41] 何敏, 林巍, 张文斯, 等, 2018.北京莲花池趋磁细菌的群落多样性研究.地球科学, 43(S1):106-114. doi: 10.3799/dqkx.2018.560 [42] 李文宝, 李畅游, 刘晓旭, 等, 2015.达里诺尔湖水体稳定氢、氧同位素组成变化对结冰过程的响应.地球科学, 40(12):2081-2090. doi: 10.3799/dqkx.2015.184 [43] 李文宝, 刘志娇, 杨旭, 等, 2019.内蒙古高原达里诺尔湖夏季水体稳定同位素变化特征.湖泊科学, 31(2):539-550. http://d.old.wanfangdata.com.cn/Periodical/hpkx201902022 [44] 刘志娇, 2015.达里诺尔湖水动力条件及氢氧稳定同位素试验研究(硕士学位论文).呼和浩特: 内蒙古农业大学. [45] 吕明姬, 汪杰, 范铮, 等, 2011.滇池浮游细菌群落组成的空间分布特征及其与环境因子的关系.环境科学学报, 31(2):299-306. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201102010 [46] 任丽娟, 何聃, 邢鹏, 等, 2013.湖泊水体细菌多样性及其生态功能研究进展.生物多样性, 21(4):422-433. http://d.old.wanfangdata.com.cn/Periodical/swdyx201304005 [47] 王旭阳, 2017.基于3S技术的达里诺尔湖水深反演研究(硕士学位论文).呼和浩特: 内蒙古农业大学. http://cdmd.cnki.com.cn/Article/CDMD-10129-1017211645.htm [48] 王雨山, 郭媛, 2015.干旱区地下水咸化机制的区域氘盈余解析.水文地质工程地质, 42(6):29-35. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201506005 [49] 吴庆龙, 江和龙, 2017.中国湖泊微生物组研究.中国科学院院刊, 32(3):273-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=671702193 [50] 杨旭, 李畅游, 李文宝, 等, 2018.达里诺尔湖磷赋存特征及底泥释放影响因素.水土保持通报, 38(4):92-97, 102. http://d.old.wanfangdata.com.cn/Periodical/stbctb201804015 [51] 张菲, 田伟, 孙峰, 等, 2019.丹江口库区表层浮游细菌群落组成与PICRUSt功能预测分析.环境科学, 40(3):1252-1260. http://d.old.wanfangdata.com.cn/Periodical/hjkx201903027 [52] 张煜晗, 吴兰, 吴凌伟, 2018.基于高通量测序的鄱阳湖浮游细菌多样性分析:以康山、梅溪、星子、南矶乡和吴城为例.南昌大学学报(理科版), 42(2):153-160. doi: 10.3969/j.issn.1006-0464.2018.02.010 [53] 甄志磊, 张生, 史小红, 等, 2013.基于遥感技术的达里诺尔湖湖面演化研究.中国农村水利水电, (7):6-9. doi: 10.3969/j.issn.1007-2284.2013.07.002