• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义

    李成志 杨文光 朱利东 吝利民 苏鑫 张洪亮

    李成志, 杨文光, 朱利东, 吝利民, 苏鑫, 张洪亮, 2020. 西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义. 地球科学, 45(5): 1556-1572. doi: 10.3799/dqkx.2019.196
    引用本文: 李成志, 杨文光, 朱利东, 吝利民, 苏鑫, 张洪亮, 2020. 西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义. 地球科学, 45(5): 1556-1572. doi: 10.3799/dqkx.2019.196
    Li Chengzhi, Yang Wenguang, Zhu Lidong, Lin Limin, Su Xin, Zhang Hongliang, 2020. Geochemistry, Petrogenesis and Geological Significance of Early Jurassic Granite in Mozhugongka Area, Tibet. Earth Science, 45(5): 1556-1572. doi: 10.3799/dqkx.2019.196
    Citation: Li Chengzhi, Yang Wenguang, Zhu Lidong, Lin Limin, Su Xin, Zhang Hongliang, 2020. Geochemistry, Petrogenesis and Geological Significance of Early Jurassic Granite in Mozhugongka Area, Tibet. Earth Science, 45(5): 1556-1572. doi: 10.3799/dqkx.2019.196

    西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义

    doi: 10.3799/dqkx.2019.196
    基金项目: 

    中国地质调查局项目 DD20160015

    国家自然科学基金项目 410002055

    教育部博士点基金项目 20125122110010

    详细信息
      作者简介:

      李成志(1993-), 男, 硕士研究生, 矿物学、岩石学、矿床学专业.ORCID:0000-0003-2873-0956.E-mail:825454048@qq.com

      通讯作者:

      杨文光, E-mail:yangwg1018@gmail.com

    • 中图分类号: P581;P597.3

    Geochemistry, Petrogenesis and Geological Significance of Early Jurassic Granite in Mozhugongka Area, Tibet

    • 摘要: 为了研究南冈底斯晚三叠世-早侏罗世时期岩浆岩的成因类型和构造背景,针对墨竹工卡地区的松多黑云母二长花岗岩体进行岩相学、年代学、全岩地球化学研究.LA-ICP-MS锆石U-Pb定年结果显示,松多黑云母二长花岗岩结晶年龄为190.2±2.9 Ma,形成于早侏罗世.在地球化学组成上,黑云母二长花岗岩具有低TiO2(0.68%~0.75%),富SiO2(65.22%~66.13%)、Al2O3(16.26%~16.73%)、Na2O(4.05%~4.29%)、K2O(3.96%~4.24%)的特点,显示钾玄岩系列和弱过铝质(A/CNK=1.04~1.11)的主量元素地球化学特征;在微量元素蛛网图上,具有富集Rb、Th、K、Zr、Hf元素和亏损Ba、Nb、Ta、Sr、Ti、P元素的特征;锆石饱和温度介于805~835℃,FeOT/MgO比值高,样品显示出具有部分A型花岗岩特征.结合前人研究表明,晚三叠世-早侏罗世时期南冈底斯岩浆岩构造背景与新特提斯洋北向俯冲有关,松多黑云母二长花岗岩形成于新特提斯洋板片北向俯冲引起的弧后伸展环境;其成因与软流圈上涌导致幔源岩浆底侵引起下地壳的部分熔融有关.

       

    • 图  1  冈底斯构造划分(a)和冈底斯岩浆岩分布(b)

      a.据Zhu et al.(2011)修改; b.据Wang et al.(2016); 图b中晚三叠世-早侏罗世岩浆岩年龄数据来自Chu et al., 2006; 耿全如等, 2006; 和钟铧等, 2006; 张宏飞等, 2007a; 陈炜等, 2009; Ji et al., 2009b; 唐菊兴等, 2010; Zhu et al., 2011; 董昕和张泽明, 2013; Guo et al., 2013; Kang et al., 2014; Lang et al., 2014; 宋绍玮等, 2014; Meng et al., 2016a, 2016b; 水新芳等, 2016; Wang et al., 2016; Ma et al., 2017; Xu et al., 2017; 卢志友等, 2018; 孟元库等, 2018a, 2018b; 王旭辉等, 2018; 邹洁琼等, 2018

      Fig.  1.  Tectonic framework of the Gangdese (a) and diagram showing the distribution of magmatic rocks in the Gandese (b)

      图  2  松多黑云母二长花岗岩体野外地质简图(a)、野外照片(b~c)和镜下照片(d~e)

      Qtz.石英; Pl.斜长石; Kfs.钾长石; Bt.黑云母

      Fig.  2.  Simplified geological map (a), field photographs (b-c) and photomicrographs (d-e) of the Songduo biotite monzogranite plutons

      图  3  松多黑云母二长花岗岩体部分锆石阴极发光(CL)图像

      Fig.  3.  CL image of zircons from part of the Songduo biotite monzogranite plutons

      图  4  松多黑云母二长花岗岩体锆石U-Pb谐和图

      Fig.  4.  U-Pb concordia diagrams of zircons from the Songduo biotite monzogranite plutons

      图  5  松多黑云母二长花岗岩体Na2O+K2O-SiO2(a)、K2O-SiO2(b)、A/NK-A/CNK(c)、Zr+Nb+Ce+Y-(Na2O+K2O)/CaO、Zr+Nb+Ce+Y-FeOT/MgO和10 000Ga/Al-Zr(d, e, f)图解

      a.据Middlemost(1994); b.据Richwood(1989); c.据Peccerillo and Taylor(1976); d, e, f.据Whalen et al.(1987)

      Fig.  5.  Na2O+K2O-SiO2 (a), K2O-SiO2 (b), A/NK-A/CNK(c), Zr+Nb+Ce+Y-(Na2O+K2O)/CaO, Zr+Nb+Ce+Y-FeOT/MgO and 10 000Ga/Al-Zr (d, e, f) diagrams of the Songduo biotite monzogranite plutons

      图  6  松多黑云母二长花岗岩体球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)

      Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE patterns (a) and primitive mantle normalized muti-element diagrams (b) of the Songduo biotite monzogranite plutons

      图  7  松多黑云母二长花岗岩体Th/Y-Nb/Y(a)和Zr/Sm-Zr(b)图解

      a.据Boztuğ et al.(2007);b.据Schiano et al.(2010)

      Fig.  7.  Th/Y-Nb/Y (a) and Zr/Sm-Zr (b) diagrams of the Songduo biotite monzogranite plutons

      图  8  松多黑云母二长花岗岩体CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解

      Altherr et al.(2000)

      Fig.  8.  CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT) diagrams of the Songduo biotite monzogranite plutons

      图  9  松多黑云母二长花岗岩体A1、A2类型判别图

      Eby(1992)

      Fig.  9.  Diagram for division of A1-and A2-type of the Songduo biotite monzogranite plutons

      图  10  松多岩体和曲龙寺岩体Rb/30-Hf-3Ta(a)、Rb-Y+Nb、Nb-Y及Ta-Yb(b, c, d)图解

      b, c, d.据Pearce et al.(1984); 曲龙寺花岗岩数据卢志友等(2018)

      Fig.  10.  Rb/30-Hf-3Ta (a), Rb-Y+Nb, Nb-Y and Ta-Yb (b, c, d) diagrams of the Songduo and Qulongsi plutons

      图  11  松多黑云母二长花岗岩体的形成构造演化模式

      Fig.  11.  Tectonic evolution models showing the petrogensis of the Songduo biotite monzogranite plutons

      表  1  松多黑云母二长花岗岩体锆石LA-ICP-MS U-Pb测年结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating result of the Songduo biotite monzogranite plutons

      编号 Total
      Pb(10-6)
      Th(10-6) U(10-6) Th/U 比值 年龄(Ma)
      207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      D0862-N2(松多黑云母二长花岗岩)
      D0862-N2-01 30.7 188 222 0.85 0.05 190 0.00 338 0.21 269 0.01 369 0.03 002 0.00 052 280 155 196 11 191 3
      D0862-N2-02 27.0 157 225 0.70 0.04 885 0.00 286 0.19 808 0.01 128 0.02 964 0.00 051 139 133 184 10 188 3
      D0862-N2-03 22.6 137 136 1.01 0.05 149 0.00 375 0.20 692 0.01 341 0.02 938 0.00 050 261 167 191 11 187 3
      D0862-N2-04 26.8 158 216 0.73 0.05 095 0.00 336 0.20 199 0.01 190 0.02 912 0.00 046 239 152 187 10 185 3
      D0862-N2-07 37.6 222 342 0.65 0.05 063 0.00 249 0.20 503 0.01 014 0.02 942 0.00 044 233 119 189 9 187 3
      D0862-N2-08 23.4 140 163 0.86 0.04 983 0.00 337 0.20 389 0.01 334 0.02 913 0.00 056 187 162 188 11 185 4
      D0862-N2-09 42.4 265 253 1.05 0.05 065 0.00 297 0.19 519 0.01 136 0.02 810 0.00 036 233 135 181 10 179 2
      D0862-N2-11 24.9 144 231 0.62 0.04 508 0.00 255 0.18 665 0.01 029 0.03 016 0.00 047 error 174 9 192 3
      D0862-N2-12 28.1 165 252 0.65 0.05 368 0.00 295 0.21 880 0.01 251 0.02 963 0.00 042 367 124 201 10 188 3
      D0862-N2-15 40.0 239 329 0.73 0.04 643 0.00 243 0.19 307 0.00 986 0.03 035 0.00 053 20 122 179 8 193 3
      D0862-N2-16 21.1 130 139 0.93 0.04 702 0.00 419 0.20 099 0.01 806 0.03 088 0.00 068 50 200 186 15 196 4
      D0862-N2-17 107 633 694 0.91 0.05 196 0.00 182 0.22 018 0.00 794 0.03 053 0.00 032 283 75 202 7 194 2
      D0862-N2-18 25.3 150 183 0.82 0.05 228 0.00 333 0.22 496 0.01 360 0.03 171 0.00 059 298 144 206 11 201 4
      D0862-N2-19 13.4 84.0 123 0.68 0.05 561 0.00 682 0.21 736 0.02 312 0.02 877 0.00 076 435 250 200 19 183 5
      D0862-N2-20 34.0 207 256 0.81 0.05 132 0.00 362 0.21 858 0.01 610 0.03 128 0.00 065 254 163 201 13 199 4
      D0862-N2-21 60.0 344 369 0.93 0.05 513 0.00 295 0.23 915 0.01 285 0.03 142 0.00 050 417 116 218 11 199 3
      D0862-N2-22 34.6 196 306 0.64 0.05 473 0.00 304 0.23 325 0.01 305 0.03 096 0.00 047 467 124 213 11 197 3
      D0862-N2-24 13.7 86.6 113 0.77 0.05 180 0.00 471 0.20 823 0.01 768 0.03 008 0.00 065 276 209 192 15 191 4
      D0862-N2-25 36.3 202 323 0.63 0.05 141 0.00 268 0.21 240 0.01 066 0.03 013 0.00 041 261 88 196 9 191 3
      D0862-N2-05 19.0 119 183 0.65 0.05 465 0.00 512 0.20 068 0.01 826 0.02 642 0.00 071 398 211 186 15 168 4
      D0862-N2-06 28.0 172 131 1.31 0.04 678 0.00 379 0.17 848 0.01 236 0.02 783 0.00 054 39 181 167 11 177 3
      D0862-N2-10 14.0 88.0 131 0.67 0.05 865 0.01 081 0.18 549 0.02 212 0.02 521 0.00 072 554 411 173 19 160 5
      D0862-N2-13 21.4 143 209 0.68 0.04 606 0.00 564 0.16 497 0.01 684 0.02 692 0.00 061 400 -128 155 15 171 4
      D0862-N2-14 278 92.8 1 400 0.07 0.09 203 0.00 154 2.92 169 0.05 712 0.22 863 0.00 272 1 533 32 1 388 15 1 327 14
      D0862-N2-23 19.4 112 165 0.67 0.05 577 0.00 532 0.29 027 0.03 141 0.03 825 0.00 216 443 213 259 25 242 13
      下载: 导出CSV

      表  2  松多黑云母二长花岗岩体花岗岩全岩主量(%)、微量(10-6)及稀土元素(10-6)分析结果

      Table  2.   Analytic results of the major (%), trace (10-6) and rare earth elements (10-6) of the Songduo biotite monzogranite plutons

      样品编号 D0862-DH1 D0862-DH2 D0862-DH3 D0862-DH4 D0862-DH5
      SiO2 65.93 65.34 66.13 65.22 65.69
      TiO2 0.75 0.75 0.68 0.71 0.71
      Al2O3 16.73 16.37 16.26 16.43 16.33
      Fe2O3 0.54 0.61 0.52 0.59 0.55
      FeO 3.08 3.46 2.93 3.33 3.10
      MnO 0.29 0.30 0.27 0.29 0.28
      MgO 1.25 1.19 1.15 1.48 1.26
      CaO 2.05 2.30 2.41 2.19 2.31
      Na2O 4.29 4.07 4.11 4.12 4.05
      K2O 3.96 4.21 4.20 4.24 4.13
      P2O5 0.41 0.40 0.48 0.42 0.41
      LOI 0.20 0.65 0.79 0.61 0.63
      Total 99.11 99.03 99.26 99.04 99.17
      K2O/ Na2O 0.92 1.03 1.02 1.03 1.01
      FeOT 3.63 4.07 3.45 3.92 3.64
      Fe2O3T 4.07 4.59 3.89 4.43 4.11
      FeOT/MgO 2.90 3.42 3.00 2.65 2.89
      A/CNK 1.11 1.06 1.04 1.07 1.07
      A/NK 2.41 2.49 2.45 2.47 2.49
      DI(分异指数) 47.85 50.08 53.88 54.49 59.89
      Mg# 35.60 31.94 34.86 37.70 35.67
      Li 113.75 103.04 93.52 106.34 102.82
      Be 1.83 1.66 1.72 1.69 1.75
      Sc 15.77 14.34 15.07 14.62 15.34
      Ti 4 742.13 4 565.57 4 195.07 4 384.72 4 514.83
      V 49.87 55.62 51.40 52.06 53.87
      Cr 16.12 15.88 29.97 18.45 17.96
      Mn 2 724.57 2 800.36 2 737.29 2 748.09 2 784.35
      Co 8.65 8.60 8.24 8.43 8.62
      Ni 3.32 2.97 7.64 3.36 3.54
      Cu 9.44 8.38 9.35 9.14 9.23
      Zn 65.78 67.48 59.72 63.71 64.88
      Ga 20.19 20.28 19.75 20.08 20.24
      Rb 177.09 225.74 249.63 214.83 221.63
      Sr 139.57 143.51 158.10 146.34 149.31
      Y 68.44 83.51 89.82 81.47 80.96
      Zr 265.35 315.94 399.89 354.26 331.36
      Nb 25.53 23.77 23.07 23.02 24.13
      Mo 0.49 0.38 0.58 0.43 0.46
      Sn 4.34 4.39 3.99 4.21 4.31
      Cs 9.79 11.73 12.49 11.52 10.96
      Ba 269.09 267.97 268.50 268.24 267.83
      La 75.16 83.39 88.51 84.63 86.14
      Ce 162.10 182.79 201.21 193.02 186.11
      Pr 17.49 19.03 20.59 19.36 18.51
      Nd 61.67 67.03 72.39 65.72 64.89
      Sm 13.35 14.40 15.79 14.33 15.09
      Eu 0.89 0.91 0.96 0.92 0.94
      Gd 11.03 12.23 13.36 12.08 13.1
      Tb 1.91 2.15 2.36 2.12 2.21
      Dy 12.24 14.22 15.39 14.16 13.97
      Ho 2.43 2.91 3.10 2.81 2.74
      Er 6.44 7.87 8.30 7.16 8.03
      Tm 1.00 1.23 1.29 1.21 1.12
      Yb 6.26 7.57 8.17 6.93 7.42
      Lu 1.00 1.21 1.33 1.16 1.23
      Hf 8.28 9.47 11.95 9.83 8.91
      Ta 1.37 1.17 1.29 1.26 1.31
      W 0.48 0.46 0.58 0.51 0.49
      Pb 13.42 13.20 14.63 13.32 13.64
      Bi 0.07 0.07 0.09 0.08 0.09
      Th 29.63 31.17 38.55 35.99 36.26
      U 3.63 4.04 5.29 4.26 4.47
      ΣREE 372.96 416.95 452.76 425.61 421.50
      LREE 330.66 367.55 399.46 377.98 371.68
      HREE 42.30 49.39 53.29 47.63 49.82
      LREE/HREE 7.81 7.44 7.49 7.94 7.46
      (La/Yb)N 8.62 7.91 7.77 8.76 8.33
      δEu 0.22 0.21 0.20 0.21 0.20
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High- Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      [2] Bonin, B., Frost, C.D., Ramo, O.T., et al., 2007.A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      [3] Boztug, D., Harlavan, Y., Arehart, G., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divriği-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97(1/2):193-218. https://doi.org/10.1016/j.lithos.2006.12.014
      [4] Chappell, B.W., Sial, A.N., Stephens, W.E., et al., 1999.Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      [5] Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      [6] Chen, P.R., 1998. Geochemical Characteristics and Tectonic Geological Significance of the A-Type Granite in the Zhaibei, Gannan.Acta Petrologica Sinica, 14(3):289-298 (in Chinese).
      [7] Chen, W., Ma, C.Q., Bian, Q.J., et al., 2009.Geochemical Characteristics and Isotopic U-Pb Age Evidence of the Yeba Formation Volcanic Rocks in the Demingding Area, Tibet. Geological Science and Technology Information, 28(3):31-40 (in Chinese).
      [8] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745. https://doi.org/10.1130/g22725.1
      [9] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      [10] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      [11] Dong, X., 2008.Chronology and Geochemistry of the Mesozoic and Cenozoic Granites in the Southwestern Part of the Gangdese Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese).
      [12] Dong, X., Zhang, Z.M., 2013.Genesis and Tectonic Significance of Early Jurassic Magmatic Rocks in the South of Lhasa Ground Mass. Acta Petrologica Sinica, 29(6):1933-1948 (in Chinese).
      [13] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      [14] Frost, C. D., Frost, B. R., Chamberlain, K. R., et al., 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA:A Reduced, Rapakivi-Type Anorogenic Granite. Journal of Petrology, 40(12):1771-1802. https://doi.org/10.1093/petroj/40.12.1771
      [15] Fu, H.B., Hu, X.M., Crouch, E.M., et al., 2018.Tibet Yarlung Zangbo Suture Zone Achala Group:Late Cretaceous Neo Tethys Ocean Trench Deposition. China in Science (Series D:Earth Sciences), 48(10):1275-1292 (in Chinese).
      [16] Gao, H.X., Li, H.P., Zhou, Q.S., 1993.New Geological Knowledge of the Yarlung Zangbo Ophiolite. Geological Bulletin of China, (3): 92(in Chinese).
      [17] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2006.Isotopic Geology of Volcanic Rocks in the Yeba Formation of the Gangdese Belt, Tibet. Sedimentary and Tethyan Geology, 26(1):1-7 (in Chinese).
      [18] Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys. Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011
      [19] Haapala, I., Rämö, O. T., Frindt, S., 2005. Comparison of Proterozoic and Phanerozoic Rift-Related Basaltic- Granitic Magmatism. Lithos, 80(1/2/3/4):1-32. https://doi.org/10.1016/j.lithos.2004.04.057
      [20] He, Z.W., Yang, D.M., Zheng, C.Q., et al., 2006, Granite Isotope Dating of the Gangdese with the Menba and Its Constraints on the Neo-Tethys Oceanic Subduction Era. Geological Review, 52(1):100-106 (in Chinese).
      [21] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [22] Hsü, K. J., Pan, G. T., Sengör, A. M. C., 1995. Tectonic Evolution of the Tibetan Plateau:A Working Hypothesis Based on the Archipelago Model of Orogenesis. International Geology Review, 37(6):473-508. https://doi.org/10.1080/00206819509465414
      [23] Hu, P.Y., Li, C., Wu, Y.W., et al., 2016. Post-Arc Extension of the Early Carboniferous Arc of the Ancient Tethys in the Qinghai-Tibet Plateau:Evidence from A-Type Granites. Acta Petrologica Sinica, 32(4):1219-1231 (in Chinese)
      [24] Huang, F., Xu, J.F., Chen, J.L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022
      [25] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009a. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet.Chemical Geology, 262(3/4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [26] Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2009b. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China (Series D:Earth Sciences), 52(9):1240-1261. https://doi.org/10.1007/s11430-009-0131-y
      [27] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008.Diagenesis and Genesis of the Mesozoic A-Type Granite Belt in the Xiangnan-Guibei Section of the Shihang Area. Journal of Geological University of China, 14(4):496-509 (in Chinese).
      [28] Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200/201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019
      [29] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      [30] Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79:608-622. https://doi.org/10.1016/j.jseaes.2013.08.009
      [31] Lang, X.H., Tang, J.X., Xie, F.W., et al., 2014.Geologic Chronology, Rock Geochemistry and Geological Significance of the Xiuyan in the Southern Xiongcun Mining Area, Tibet, China. Tectonics and Mineralogy, 38(3):609-620 (in Chinese).
      [32] Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1/2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      [33] Li, C., Wang, T.W., Li, H.M., et al., 2003.Evidence for the Discovery of the Indosinian Giant Porphyry Diorite in the Gangdese Region-The Existence of the Ancient Gangdese Orogeny. Geological Bulletin of China, 22(5):364 -366 (in Chinese).
      [34] Li, H.Q., Xu, Z.Q., Yang, J.S., et al., 2011.Collision Reentry of Loose Eclogites in Lhasa:Evidence from Tectonic Deformation and 40Ar-39Ar Chronology. Geoscience Frontiers, 18(3):66-78 (in Chinese).
      [35] Liu, Q.S., Jiang, W., Jian, P., et al., 2006.SHRIMP Zircon U-Pb Age and Geochemical Characteristics of the Nyung Muzhumu Feldspar Granite. Acta Petrologica Sinica, 22(3):643-652 (in Chinese).
      [36] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [37] Liu, Z. C., Ding, L., Zhang, L. Y., et al., 2018. Sequence and Petrogenesis of the Jurassic Volcanic Rocks (Yeba Formation) in the Gangdese Arc, Southern Tibet:Implications for the Neo-Tethyan Subduction. Lithos, 312-313:72-88. https://doi.org/10.1016/j.lithos.2018.04.026
      [38] Lu, Z.Y., Yang, W.G., Zhu, L.D., et al., 2018.Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of High-Altitude A-Type Granites in the South Lhasa Terrane. Mineral Rock, 38(1):55-64 (in Chinese).
      [39] Ludwig, K.R., 2002.Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, 192:59-79. doi: 10.1016-j.immuni.2011.10.010/
      [40] Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007
      [41] Ma, X. X., Meert, J., Xu, Z. Q., et al., 2019. The Jurassic Yeba Formation in the Gangdese Arc of S. Tibet:Implications for Upper Plate Extension in the Lhasa Terrane. International Geology Review, 61(4):481-503. https://doi.org/10.1080/00206814.2018.1434835
      [42] Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016a. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94/95:34-49. https://doi.org/10.1016/j.jog.2016.01.003
      [43] Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016b. Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      [44] Meng, Y.K., Xu, Z.Q., Gao, C.S., et al., 2018a.Determination of the Eoceneic Magmatism in the Central Gangdese Belt, Southern Tibet, and Its Tectonic Significance. Acta Petrologica Sinica, 34(3):513-546 (in Chinese).
      [45] Meng, Y.K., Xu, Z.Q., Xu, Y., et al., 2018b.Determination of the Early Jurassic Magmatism in the Central Gangdese Belt, Southern Tibet, and Its Tectonic Significance.Chinese Journal of Geology, 92(6):1196-1215 (in Chinese).
      [46] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [47] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Temporal and Spatial Distribution Characteristics and Crustal Growth and Evolution Information of Granites in Gangdese Belt, Tibet. Journal of Geological Geology, 11(3):281-290 (in Chinese).
      [48] Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1/2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      [49] Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision alone Create the Tibetan Plateau?. Geology, 25(8):719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
      [50] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Temporal and Spatial Structure and Evolution of the Gangdese Orogenic Belt. Acta Petrologica Sinica, 22(3):521-533 (in Chinese).
      [51] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53(2):3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [52] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [53] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      [54] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      [55] Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2):297-312. https://doi.org/10.1007/s00410-009-0478-2
      [56] Shui, X.F., He, Z.Y., Zhang, Z.M., et al., 2016.The Magma Origin of the Early Jurassic Yingyun Diorite in the Eastern Segment of the Gangdese Belt in Tibet and Its Significance for the Crustal Evolution of the Lhasa Terrane. Chinese Journal of Geology, 90(11):3129-3152 (in Chinese).
      [57] Song, S.Z., Liu, Z., Zhu, D.C., et al., 2014.Zircon U-Pb Geochronology and Hf Isotope of the Late Triassic Magmatism in the Jiajiao, Tibet, China. Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese).
      [58] Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [59] Tang, J., Lang, X., Xie, F., et al., 2015.Geological Characteristics and Genesis of the Jurassic No.I Porphyry Cu-Au Deposit in the Xiongcun District, Gangdese Porphyry Copper Belt, Tibet. Ore Geology Reviews, 70(4):438-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ead317802f26f0fc7565b7794a76231c
      [60] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3):461-475 (in Chinese with English abstract).
      [61] Tatsumi, Y., 2005. The Subduction Factory:How It Operates in the Evolving Earth. GSA Today, 15(7):4. https://doi.org/10.1130/1052-5173(2005)015[4:tsfhio]2.0.co; 2 doi: 10.1130/1052-5173(2005)015[4:tsfhio]2.0.co;2
      [62] Tian, S. H., Yang, Z. S., Hou, Z. Q., et al., 2017. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41:29-50. https://doi.org/10.1016/j.gr.2015.09.005
      [63] van de Zedde, D. M. A., Wortel, M. J. R., 2001. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 20(6):868-882. https://doi.org/10.1029/2001tc900018
      [64] Wang, C., Ding, L., Zhang, L. Y., et al., 2016. Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere. Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021
      [65] Wang, R., Tafti, R., Hou, Z. Q., et al., 2017. Across-Arc Geochemical Variation in the Jurassic Magmatic Zone, Southern Tibet:Implication for Continental Arc-Related Porphyry Cu Au Mineralization. Chemical Geology, 451:116-134. https://doi.org/10.1016/j.chemgeo.2017.01.010
      [66] Wang, X.H., Lang, X.H., Deng, Y.L., et al., 2018.Zircon U-Pb Geochronology, Geochemistry and Geological Significance of the Tangbai Porphyry Granite in the Southern Margin of the Gangdese, Tibet. Journal of Geological University of China, 24(1):41-55 (in Chinese).
      [67] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      [68] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [69] Wei, Y. Q., Zhao, Z. D., Niu, Y. L., et al., 2017. Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet:Initiation of Back-Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane. Lithos, 278/279/280/281:477-490. https://doi.org/10.1016/j.lithos.2017.02.013
      [70] Wen, D., Liu, D., Chung, S., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      [71] Xu, B., Hou, Z. Q., Zheng, Y. C., et al., 2017. Jurassic Hornblende Gabbros in Dongga, Eastern Gangdese, Tibet:Partial Melting of Mantle Wedge and Implications for Crustal Growth. Acta Geologica Sinica (English Edition), 91(2):545-564. https://doi.org/10.1111/1755-6724.13117
      [72] Yan, J.J., Zhao, Z.D., Liu, D., et al., 2017. Geochemistry and Petrogenesis of the Late Jurassic Xuru Tso Batholith in Central Lhasa Terrane. Acta Petrologica Sinica, 33(8):2437-2453 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708007
      [73] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2):89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      [74] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007a.Indosinian Orogenic Events in Gangdese:Uranitic Zircon U-Pb Geochronology and Evidence of Rock Genesis. Earth Science, 32(2):155-166 (in Chinese with English abstract).
      [75] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007b.Zircon U-Pb Age and Hf Isotopic Composition of the Deformed Granite in the Southern Margin of Gangdese:Evidence for the Early Jurassic Subduction of Neo-Tethys. Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese).
      [76] Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013.Hf Isotope Mapping of Zircon in Lhasa Terrane:Constraints on Crustal Properties and Metallogenic Potential. Acta Petrologica Sinica, 29(11):3681-3688 (in Chinese).
      [77] Zhang, Q., Ran, H., Li, C.D., 2012.What is the Essence of A-Type Granite?. Journal of Rock Mineralogy, 31(4):621-626 (in Chinese).
      [78] Zhang, Z.M., Ding, H.X., Dong, X., et al., 2019.Formation and Evolution of the Gangdese Magmatic Arc, Southern Tibet. Acta Petrologica Sinica, 35(2):275-294 (in Chinese). doi: 10.18654/1000-0569/2019.02.01
      [79] Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006.Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau:Spatial and Temporal Distribution and Its Implications. Acta Petrologica Sinica, 22(4):787-794 (in Chinese).
      [80] Zhu, D. C., Chung, S. L., Niu, Y. L., 2016. Recent Advances on the Tectonic and Magmatic Evolution of the Greater Tibetan Plateau:A Special Issue in Honor of Prof. Guitang Pan. Lithos, 245:1-6. https://doi.org/10.1016/j.lithos.2015.12.005
      [81] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009a. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-west Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3/4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      [82] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009b. Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet:Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1/2/3/4):48-60. https://doi.org/10.1016/j.tecto.2009.01.017
      [83] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Environment in the Central North of Gangdese:Volcanic Rock Constraints. Acta Petrologica Sinica, 22(3):534-546 (in Chinese).
      [84] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008. Spatial-temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China. Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). doi: 10.1039-c0cc02534h/
      [85] Zhu, D.C., Zhao, Z.D., Niu, Y., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth & Planetary Science Letters, 301(1-2):241-255. doi: 10.1016-j.epsl.2010.11.005/
      [86] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [87] Zhu, J., Du, Y.S., Liu, Z.X., et al., 2005.Genesis of the Mesozoic Radiolarian Siliceous Rocks in the Middle Part of the Yarlung Zangbo Suture Zone in Tibet and Its Tectonic Significance. Science in China (Series D:Earth Sciences), 35(12):1131-1139 (in Chinese).
      [88] Zou, J.Q., Yu, H.X., Wang, B.D., et al., 2018.Genesis of the Early Jurassic Renqinze Granite in the Central Lhasa Block and Its Geological Significance. Earth Sciences, 43(8):2795-2810 (in Chinese with English abstract).
      [89] 陈培荣, 1998.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义.岩石学报, 14(3):289-298. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199803003
      [90] 陈炜, 马昌前, 边秋娟, 等, 2009.西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据.地质科技情报, 28(3):31-40. doi: 10.3969/j.issn.1000-7849.2009.03.006
      [91] 董昕, 2008.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学(硕士学位论文).北京: 中国地质大学.
      [92] 董昕, 张泽明, 2013.拉萨地体南部早侏罗世岩浆岩的成因和构造意义.岩石学报, 29(6):1933-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006
      [93] 傅焓埔, 胡修棉, Crouch, E.M., 等, 2018.西藏雅鲁藏布缝合带甲查拉组:晚白垩世新特提斯洋海沟沉积?.中国科学(D辑:地球科学), 48(10):1275-1292.
      [94] 高洪学, 李海平, 周青山, 1993.雅鲁藏布江蛇绿岩地质新知.地质通报, (3):92.
      [95] 耿全如, 潘桂棠, 王立全, 等, 2006.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质, 26(1):1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001
      [96] 和钟铧, 杨德明, 郑常青, 等, 2006.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1):100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013
      [97] 胡培远, 李才, 吴彦旺, 等, 2016.青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据.岩石学报, 32(4):1219-1231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020
      [98] 黄丰, 许继峰, 陈建林, 等, 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?.岩石学报, 31(7):2089-2100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022
      [99] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报, 14(4):496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004
      [100] 郎兴海, 唐菊兴, 谢富伟, 等, 2014.西藏雄村矿区南部玢岩的地质年代学、岩石地球化学及其地质意义.大地构造与成矿学, 38(3):609-620. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201403013
      [101] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据.地质通报, 22(5):364-366. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200305011
      [102] 李化启, 许志琴, 杨经绥, 等, 2011.拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar-39Ar年代学的证据.地学前缘, 18(3):66-78. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008
      [103] 刘琦胜, 江万, 简平, 等, 2006.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征.岩石学报, 22(3):643-652. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603013
      [104] 卢志友, 杨文光, 朱利东, 等, 2018.南拉萨地体高分异A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义.矿物岩石, 38(1):55-64. http://d.old.wanfangdata.com.cn/Periodical/kwys201801008
      [105] 孟元库, 许志琴, 高存山, 等, 2018a.藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义.岩石学报, 34(3):513-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001
      [106] 孟元库, 许志琴, 徐扬, 等, 2018b.藏南冈底斯带中段早侏罗世岩浆作用的厘定及其大地构造意义.地质学报, 92(6):1196-1215. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201806007
      [107] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      [108] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [109] 水新芳, 贺振宇, 张泽明, 等, 2016.西藏冈底斯带东段早侏罗世英云闪长岩的岩浆起源及其对拉萨地体地壳演化的意义.地质学报, 90(11):3129-3152. doi: 10.3969/j.issn.0001-5717.2016.11.011
      [110] 宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世岩浆活动的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Conference/8472890
      [111] 唐菊兴, 黎风佶, 李志军, 等, 2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质, 29(3):461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008
      [112] 王旭辉, 郎兴海, 邓煜霖, 等, 2018.西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义.高校地质学报, 24(1):41-55. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201801004
      [113] 闫晶晶, 赵志丹, 刘栋, 等, 2017.西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因.岩石学报, 33(8):2437-2453. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708007
      [114] 张宏飞, 徐旺春, 郭建秋, 等, 2007a.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学, 32(2):155-166. http://d.old.wanfangdata.com.cn/Periodical/dqkx200702002
      [115] 张宏飞, 徐旺春, 郭建秋, 等, 2007b.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706011
      [116] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311003
      [117] 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么?.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      [118] 张泽明, 丁慧霞, 董昕, 等, 2019.冈底斯岩浆弧的形成与演化.岩石学报, 35(2):275-294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201902001
      [119] 赵志丹, 莫宣学, Nomade, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4):787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003
      [120] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
      [121] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4):458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003
      [122] 朱杰, 杜远生, 刘早学, 等, 2005.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义.中国科学(D辑:地球科学), 35(12):1131-1139. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200512004
      [123] 邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808019
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  865
    • HTML全文浏览量:  189
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-06
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回