Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet
-
摘要: 西藏努日铜钼钨矿是冈底斯成矿带规模最大的首例含白钨矿多金属矿床,对于矿床的成矿物质来源还存在较大的争议.为厘定努日铜钼钨矿的成矿物质来源,对矿区的侵入岩和各类硫化物进行了Pb同位素研究,研究结果表明,矿区各类辉钼矿、黄铁矿具有较为一致的Pb同位素组成:206Pb/204Pb比值为17.525~18.581;207Pb/204Pb比值为15.621~15.661;208Pb/204Pb比值为37.524~38.929.黄铜矿的206Pb/204Pb比值为18.414~18.578;207Pb/204Pb比值为15.619~15.642;208Pb/204Pb比值为38.617~38.863,且黄铜矿存在明显的分组特征.S-Pb同位素特征表明:努日铜钼钨矿的成矿物质主要来源于地幔,矿床的辉钼矿Re-Os同位素特征也暗示其成矿物质主要来源于地幔.该矿床可能是在印度板块向欧亚板块俯冲-碰撞-伸展构造环境下,印度陆块下地壳部分熔融形成的熔体在其向上运移过程中与俯冲洋壳释放出的富含Fe3+的流体发生混合后,与雅鲁藏布江MORB亏损地幔橄榄岩发生交代作用,Fe3+氧化地幔中赋存的各类硫化物后,使得成矿物质Cu、Mo等被释放进入岩浆系统;并在上升过程中萃取了部分加厚下地壳部分熔融形成黑云母花岗岩中的Cu等,最终在浅部与围岩发生接触交代形成努日铜钼钨多金属矿床.Abstract: The Nuri Polymetallic Deposit,Tibet,is the largest and first scheelite deposit in Gangdese,and there have been some controversies on the ore-forming source of this deposit. The Pb isotope analyses of molybdenite,chalcopyrite,and pyrites from the mine have been carried out to determine the source. The results show that the molybdenite and pyrites have the consistent Pb isotopes,with 206Pb/204Pb ratios ranging from 17.525-18.581,207Pb/204Pb ratios ranging from 15.621-15.661,208Pb/204Pb ratios ranging from 37.524-38.929,and the chalcopyrite with 206Pb/204Pb ratios ranging from 18.414-18.578,207Pb/204Pb ratios ranging from 15.619-15.642,and 208Pb/204Pb ratios ranging from 38.617-38.863,respectively,which have obvious grouping characteristics. The S and Pb isotope features indicate that the ore-forming sources are mainly derived from the mantle,and the Re-Os isotope characteristics of molybdenite indicate that the minerals are mainly derived from mantle. The melt from the lower crust of India continent partial melting migrated upward and mixed with the Fe3+ enriched fluid derived from the subducted oceanic crust,which metasomatized with Yarlung Zangbo MORB peridotite,and the Cu,Mo were released into the magma system after oxidezed by Fe3+,thus,Cu and other elements in biotite granite which partially melted in the thickened lower crust were extracted in the rising process,finally formed the deposit by contact metasomatism with the wall rock.
-
Key words:
- Nuri Polymetallic /
- Pb isotope /
- ore-forming source /
- Gangdese /
- adakite porphyry /
- geochemistry
-
图 4 西藏努日铜钼钨多金属矿床中矿石的Pb同位素来源判别图解
数据来自表 1
Fig. 4. Discrimination diagram for lead isotopic sources of ores from the Nuri polymetallic deposit
图 5 西藏山南努日矿床中辉钼矿、黄铜矿、黄铁矿的Pb同位素构造环境判别图解
数据来源于表 1;底图据Zartman et al. (1981);1.地幔源铅;2.上地壳铅;3.上地壳与地幔混合的俯冲带铅,3a.岩浆作用,3b.沉积作用;4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用铅;7.深变质下地壳铅;8.造山带铅;9.古老页岩上地壳铅;10.退变质铅;A.地幔(Mantle);B.造山带(Orogene);C.上地壳(Upper Crust);D.下地壳(Lower Crust)
Fig. 5. Plumbotectonic framework diagrams of molybdenite, chalcopyrite and pyrites from the Nuri polymetallic deposit
图 6 西藏山南努日矿床辉钼187Re同位素物源判别图解
底图据Zhou et al. (2013);数据来源于张松等(2012b)、闫学义等(2010)
Fig. 6. The discriminant diagram of molybdenum 187Re isotope from the Nuri polymetallic deposit
表 1 西藏努日铜钼钨多金属矿床侵入岩、矿石硫化物的Pb同位素数据
Table 1. Pb isotope analysis data for instrusive rock and sulfide minerals in the Nuri polymetallic deposit
样品编号 测试对象 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 数据来源 NR-1 花岗闪长斑岩 18.597 15.697 38.973 王勤等,2018 NR-2 18.572 15.696 38.871 NR-3 18.597 15.744 39.029 NR-5 18.625 15.667 38.952 NR-6 18.579 15.687 38.848 ZK1005-384.12 m 花岗闪长斑岩 18.589 15.655 38.984 来自本文 ZK1005-379.57 m 18.571 15.641 38.912 ZK1005-394 m 18.591 15.654 38.981 005-R-1 黑云母花岗岩 18.541 15.587 38.625 005-R-2 18.565 15.601 38.678 005-R-3 18.55 15.597 38.653 ZK4501-124.8 黄铜矿 18.441 15.619 38.617 王立强等,2014 ZK4103-258.6 辉钼矿 18.513 15.629 38.839 ZK4103-310.4 黄铁矿 17.525 15.549 37.524 ZK4103-310.6 黄铜矿 18.578 15.633 38.836 ZK4103-311.4 辉钼矿 18.533 15.635 38.871 ZK4103-317.4 辉钼矿 18.555 15.621 38.827 ZK4103-473.8 黄铜矿 18.568 15.642 38.863 ZK4103-474.9 黄铁矿 18.555 15.642 38.909 ZK4901-130.9 黄铁矿 18.539 15.63 38.871 ZK4901-153.35 黄铜矿 18.518 15.624 38.811 ZK3701-213.5 黄铜矿 18.414 15.619 38.695 ZK3701-355.2 黄铁矿 18.548 15.643 38.916 ZK3701-358.31 辉钼矿 18.539 15.631 38.879 ZK3701-399.2 辉钼矿 18.555 15.643 38.918 ZK3701-447.7 辉钼矿 18.581 15.661 38.929 ZK3701-513 黄铜矿 18.499 15.63 38.802 ZK3701-513.4 黄铁矿 18.545 15.64 38.895 表 2 西藏努日铜钼钨矿床硫化物矿石硫同位素组成
Table 2. S isotope compositons of the sulfide minerals from the Nuri polymetallic deposit
样品编号 测试对象 δ34S (‰) 数据来源 ZK4501-124.8 黄铜矿 -1.2 王立强等,2014 ZK4103-258.6 辉钼矿 -0.3 ZK4103-310.4 黄铁矿 -0.5 ZK4103-310.6 黄铜矿 -1.2 ZK4103-311.4 辉钼矿 0.6 ZK4103-317.4 辉钼矿 0.3 ZK4103-473.8 黄铜矿 -0.6 ZK4103-474.9 黄铁矿 0.1 ZK4901-130.9 黄铁矿 -0.1 ZK4901-153.35 黄铜矿 -0.8 ZK3701-213.5 黄铜矿 -2.9 ZK3701-355.2 黄铁矿 -1.0 ZK3701-358.31 辉钼矿 -0.1 ZK3701-399.2 辉钼矿 0.0 ZK3701-447.7 辉钼矿 -0.1 ZK3701-513 黄铜矿 -1.4 ZK3701-513.4 黄铁矿 -0.3 ZK4103-506 黄铁矿 0.8 Chen et al., 2012 ZK4103-461 黄铁矿 0.9 ZK4103-254 黄铁矿 0.7 ZK4103-304 黄铁矿 -0.3 ZK4103-471 黄铁矿 0.8 ZK1203-198 黄铁矿 1.1 ZK4501-194 黄铁矿 0.7 ZK1203-258 黄铜矿 -0.3 ZK4501-215 黄铜矿 0.6 ZK4103-306 黄铜矿 -0.2 ZK4501-126 黄铜矿 -0.3 ZK4502-306 辉钼矿 0.4 ZK4501-194 辉钼矿 -0.4 ZK1203-362 辉钼矿 0.3 LB4101-194 黄铜矿 1.0 Li et al., 2006 LB4101-194-1 黄铁矿 1.8 LB4101-67.6 黄铁矿 1.3 LB4101-159 黄铁矿 1.7 -
[1] Chen, L., Qin, K. Z., Li, J. X., et al., 2012. Fluid Inclusions and Hydrogen, Oxygen, Sulfur Isotopes of Nuri Cu-W-Mo Deposit in the Southern Gangdese, Tibet. Resource Geology, 62(1): 42-62. https://doi.org/10.1111/j.1751-3928.2011.00179.x [2] Chen, L., Qin, K. Z., Li, G. M., et al., 2011. Geochemical Characteristics and Origin of Skarn Rocks in the Nuri Cu-Mo-W Deposit, Southern Tibet. Geology and Prospecting, 47(1):78-88 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201101009 [3] Chen, L., Qin, K. Z., Li, G. M., et al., 2012. Geological and Skarn Mineral Characteristics of Nuri Cu-W-Mo Deposit in Southeast Gangdese, Tibet. Mineral Deposits, 31(3):417-437 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201203002 [4] Dong, S. L., Huang, Y., Li, G. M., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Late Cretaceous Quartz Diorite in the Nuri Cu-Mo-W Deposit, South Tibet. Rock and Mineral Analysis, 34(6):712-718 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201506016 [5] Gao, C., Li, D. W., Liu, D.M., et al., 2014. Petrogenesis of the Miocene Ore-Bearing Granite Porphyries in the Southern Gangdese, Tibet. Geotectonica et Metallogenia, 38(4):962-983 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404020 [6] Gao, Y. M., Chen, Y. C., Tang, J. X., et al., 2011. Re-Os Dating of Molybdenite from the Yaguila Porphyry Molybdenum Deposit in Gongbo'Gyamda Area, Tibet, and Its Geological Significance. Geological Bulletin of China, 30(7):1027-1036 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201107004 [7] Gariépy, C., Allègre, C. J., 1985. The Lead Isotope Geochemistry and Geochronology of Late-Kinematic Intrusives from the Abitibi Greenstone Belt, and the Implications for Late Archaean Crustal Evolution. Geochimica et Cosmochimica Acta, 49(11): 2371-2383. https://doi.org/10.1016/0016-7037(85)90237-6 [8] Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2): 205-224. https://doi.org/10.1016/j.lithos.2006.09.011 [9] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x [10] Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 [11] Huang, S. F., Jiang, S. Y., Jiang, H. Z., et al., 2011. Copper Polymetallic Ore-Forming System in Shannan Area and Analysis of Tectonic Stress Field in the Strike-Slip Transfer Zone in Tibet. Geology and Exploration, 47(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201101001 [12] Huang, Y., Tang, J. X., Ding, J., et al., 2013. The Re-Os Isotope System of the Xiongcun Porphyry Copper-Gold Deposit, Tibet. Geology in China, 40(1): 302-311 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201301020 [13] Ji, W. Q., Wu, F. Y., Zhong, S. L., et al., 2009. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China (Series D), 39(7): 849-871 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200909002 [14] Jiang, H. Z., Zeng, H. L., Wu, Z. S., et al., 2011. Geological Characteristics and Prospecting Prediction in Deep Area of Layer Skarn Cu-W-Mo Deposit in Shannan Nuri Ore District, Tibet. Geology and Prospecting, 47(1):71-77 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201101008 [15] Jiang, Z. Q., Wang, Q., Wyman, D. A., et al., 2011. Origin of ~30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet: Partial Melting of the Northward Subducted Indian Continent Crust?. Geochimica, 40(2):126-146 (in Chinese with English abstract). [16] Li, G. M., Qin, K. Z., Ding, K. S., et al., 2006. Geology, Ar-Ar Age and Mineral Assemblage of Eocene Skarn Cu-Au±Mo Deposits in the Southeastern Gangdese Arc, Southern Tibet: Implications for Deep Exploration. Resource Geology, 56(3): 315-336. https://doi.org/10.1111/j.1751-3928.2006.tb00286.x [17] Li, G. M., Rui, Z. Y., Wang, G. M., et al., 2005. Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance. Mineral Deposits, 24(5):481-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200505002 [18] Li, H. Y., Mao, J. W., Sun, Y. L., et al., 1996. Re-Os Istopic Chronology of Molybdenites in the Shizhuyuan Polymentallic Tungsten Deposit, Southern Hunan. Geological Review. 42(3): 261-267 (in Chinese with English abstract). [19] Liang, H. Y., Wei, Q. R., Xu, J. F., et al., 2010. Study on Zircon LA-ICP-MS U-Pb Age of Skarn Cu Mineralization Related Intrusion in the Southern Margin of the Gangdese Ore Belt, Tibet and Its Geological Implication. Acta Petrologica Sinica, 26(6):1692-1698 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006006 [20] Mao, J. W., Hua, R. M., Li, X. B., 1999. Preliminary Study of Large-Scale Metallogenesis and Large Clusters of Mineral Deposits. Mineral Deposits, 18(4):291-299 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199904001 [21] Mo, J. H., Liang, H. Y., Yu, H. X., et al., 2008. Zircon U-Pb Age of Biotite Hornblende Monzonitic Granite for Chongmuda Cu-Au(Mo) Deposit in Gangdese Belt, Xizang, China and Its Implications. Geochimica, 37(3):206-212 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200803002 [22] Peng, J. T., Zhou, M. F., Hu, R. Z., et al., 2006. Precise Molybdenite Re-Os and Mica Ar-Ar Dating of the Mesozoic Yaogangxian Tungsten Deposit, Central Nanling District, South China. Mineralium Deposita, 41(7): 661-669. https://doi.org/10.1007/s00126-006-0084-4 [23] Sun, X., Zheng, Y. Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304023 [24] Tong, Y., Wang, T., Hong, D. W., et al., 2006. Pb Isotopic Composition of Granitoids from the Altay Orogen (China): Evidence for Mantle-Derived Origin and Continental Growth. Acta Geologica Sinica, 80(4):517-528 (in Chinese with English abstract). [25] Wang, L. Q., Tang, J. X., Chen, W., et al., 2014. Sulfur and Lead Isotopic Geochemistry of the Nuri and Chengba Cu-Mo-W Deposits in Tibet. Acta Geoscientica Sinica, 35(1):39-48 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201401006 [26] Wang, Q., Huang, Y., Dong, S. L., et al., 2018. Zircon LA-ICP-MS U-Pb Geochronology, Geochemistry and Implications of Ore-Forming Porphyry in Nuri Skarn Cu-Mo-W Deposit, Eastern Gangdise. Mineral Deposits, 37(3):571-586 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kcdz201803008 [27] Wang, X. X., Ding, J., Yan, G. Q., et al., 2015. Zircon U-Pb Age of the Biotite Granite of Nuri Skarn Type Cu- Mo-W Deposit in Shannan, Tibet and Its Metallogenic Significance. Acta Geologica Sinica, 89(3):549-559 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503008 [28] Wang, X. X., Zheng, R. C., Yan, G. Q., et al., 2014. Re-Os Dating of Chalcopyrite of Nuri Cu-Mo-W Deposit and Its Significance. Metal Mine, 32(10): 126-129 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201410028 [29] Yan, G. Q., Ding, J., Huang, Y., et al., 2014. Geochronology and Significances of Bima Formation Andesite of Shannan, Tibet. Metal Mine, 32(8):91-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201408022 [30] Yan, G. Q., Ding, J., Huang, Y., et al., 2015a. Geochemical Characteristics of Rare Earth Elements and Trace Elements in the Nuri Scheelite Deposit, Tibet, China—Indications for Ore-Forming Fluid and Deposit Genesis. Acta Mineralogica Sinica, 35(1):87-94 (in Chinese with English abstract). [31] Yan, G. Q., Ding, J., Huang, Y., et al., 2015b. Geochemical Characteristics of Trace Elements and REE of Molybdenites from the Nuri Cu-Mo-W Deposit, Tibet: Constraint on Nature of the Ore-Forming Fluid. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3):564-570 (in Chinese with English abstract). [32] Yan, G. Q., Wang, X. X., Huang, Y., et al., 2018. Evolution Characteristics of Magma in the Nuri Superlarge Polymetallic Deposit, Tibet: Implications for Regional Mineralization in the Shannan Ore Cluster Area. Acta Geologica Sinica, 92(10):2138-2154 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201810013 [33] Yan, X. Y., Huang, S. F., Du, A. D., et al., 2010. Re-Os Ages of Large Tungsten, Copper and Molybdenum Deposit in the Zetang Orefield, Gangdisê and Marginal Strike-Slip Transforming Metallogenesis. Acta Geologica Sinica, 84(3):398-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201003008 [34] Yao, J. M., Hua, R. M., Qu, W. J., et al., 2007. Re-Os Isotope Dating of Molybdenites in the Huangshaping Pb-Zn-W-Mo Polymetallic Deposit, Hunan Province, South China and Its Geological Significance. Science China Earth Sciences, 50(4): 519-526. https://doi.org/10.1007/s11430-007-2052-y [35] Ying, L. J., Wang, D. H., Tang, J. X., et al., 2010. Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance. Acta Geologica Sinica, 84(8):1165-1174 (in Chinese with English abstract). [36] Zartman, R. E., Doe, B. R., 1981. Plumbotectonics—The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [37] Zhang, L. G., 1992. Present Status and Aspects of Lead Isotope Geology. Geology and Prospecting, 28(4):21-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0309133307079057 [38] Zhang, S., Wang, Y. B., Chu, S. X., 2012a. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Composition of the Haigou Granitoids at the Northeastern Margin of North China Craton: Implications for Geodynamic Setting. Acta Petrologica Sinica, 28(2): 544-556 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202016 [39] Zhang, S., Zheng, Y. C., Huang, K. X., et al., 2012b. Re-Os Dating of Molybdenite from Nuri Cu-W-Mo Deposit and Its Geological Significance. Mineral Deposits, 31(2):337-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201202013 [40] Zhao, Z., Hu, D. G., Lu, L., et al., 2013. Discovery and Metallogenic Significance of the Late Cretacous Adakites from Zetang, Tibet. Journal of Geomechanics, 19(1):45-52, 112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201301005 [41] Zhao, Z., Hu, D. G., Wu, Z. H., et al., 2012. Molybdenite Re-Os Isotope Dating of Sangbujiala Copper Deposit in the South Margin of the Eastern Gangdese Section, Tibet, and Its Geological Implications. Journal of Geomechanics, 18(2): 178-186 (in Chinese with English abstract). [42] Zhou, Q., Jiang, Y. H., Zhang, H. H., et al., 2013. Mantle Origin of the Dexing Porphyry Copper Deposit, SE China. International Geology Review, 55(3): 337-349. https://doi.org/10.1080/00206814.2012.708987 [43] Zhou, Q., Jiang, Y. H., Liao, S. Y., et al., 2013. New Research Progress of the Dexing Porphyry Copper Deposit. Geological Review. 59(5): 933-940 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201305015 [44] 陈雷, 秦克章, 李光明, 等, 2011.西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因.地质与勘探, 47(1):78-88. doi: 10.3969/j.issn.1001-1986.2011.01.019 [45] 陈雷, 秦克章, 李光明, 等, 2012.西藏冈底斯南缘努日铜钨钼矿床地质特征与矽卡岩矿物学研究.矿床地质, 31(3):417-437. doi: 10.3969/j.issn.0258-7106.2012.03.002 [46] 董随亮, 黄勇, 李光明, 等, 2015.藏南努日铜-钨-钼矿床晚白垩世石英闪长岩U-Pb定年及其地球化学特征.岩矿测试, 34(6):712-718. http://d.old.wanfangdata.com.cn/Periodical/ykcs201506016 [47] 高成, 李德威, 刘德民, 等, 2014.西藏冈底斯南缘中新世含矿斑岩源区组成与成因.大地构造与成矿学, 38(4):962-983. doi: 10.3969/j.issn.1001-1552.2014.04.020 [48] 高一鸣, 陈毓川, 唐菊兴, 等, 2011.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义.地质通报, 30(7):1027-1036. doi: 10.3969/j.issn.1671-2552.2011.07.004 [49] 黄树峰, 江善元, 江化寨, 等, 2011.西藏山南铜多金属成矿系统及走滑转换构造应力场分析.地质与勘探, 47(1):1-10. doi: 10.3969/j.issn.1001-1986.2011.01.001 [50] 黄勇, 唐菊兴, 丁俊, 等, 2013.西藏雄村斑岩铜矿床辉钼矿Re-Os同位素体系.中国地质, 40(1):302-311. doi: 10.3969/j.issn.1000-3657.2013.01.020 [51] 纪伟强, 吴福元, 锺孙霖, 等, 2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑), 39(7):849-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200907002 [52] 江化寨, 曾海良, 吴志山.2011.西藏山南努日矿区层矽卡岩型铜钨钼矿床地质特征及深部找矿预测.地质与勘探, 47(1):71-77. doi: 10.3969/j.issn.1001-1986.2011.01.017 [53] 姜子琦, 王强, Wyman, D. A., 等, 2011.西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?.地球化学, 40(2):126-146. [54] 李光明, 芮宗瑶, 王高明, 等, 2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质, 24(5):481-489. doi: 10.3969/j.issn.0258-7106.2005.05.002 [55] 李红艳, 毛景文, 孙亚利, 等, 1996.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究.地质论评, 42(3):261-267. doi: 10.3321/j.issn:0371-5736.1996.03.011 [56] 梁华英, 魏启荣, 许继峰, 等, 2010.西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义.岩石学报, 26(6):1692-1698. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006006 [57] 毛景文, 华仁民, 李晓波, 1999.浅议大规模成矿作用与大型矿集区.矿床地质, 18(4):291-299. doi: 10.3969/j.issn.0258-7106.1999.04.001 [58] 莫济海, 梁华英, 喻亨祥, 等, 2008.西藏冲木达铜-金(钼)矿床黑云角闪二长花岗岩锆石U-Pb年龄及其意义.地球化学, 37(3):206-212. doi: 10.3321/j.issn:0379-1726.2008.03.002 [59] 孙祥, 郑有业, 吴松, 等, 2013.冈底斯明则-程巴斑岩-矽卡岩型Mo-Cu矿床成矿时代与含矿岩石成因.岩石学报, 29(4):1392-1406. [60] 童英, 王涛, 洪大卫, 等, 2006.中国阿尔泰造山带花岗岩Pb同位素组成特征:幔源成因佐证及陆壳生长意义.地质学报, 80(4):517-528. doi: 10.3321/j.issn:0001-5717.2006.04.006 [61] 王立强, 唐菊兴, 陈伟, 等, 2014.西藏努日、程巴铜-钼-钨矿床硫铅同位素地球化学.地球学报, 35(1):39-48. http://d.old.wanfangdata.com.cn/Periodical/dqxb201401006 [62] 王勤, 黄勇, 董随亮, 等, 2018.冈底斯成矿带东段努日矿床成矿斑岩年代学, 地球化学及其意义.矿床地质, 37(3):571-586. http://d.old.wanfangdata.com.cn/Periodical/kcdz201803008 [63] 王欣欣, 丁俊, 闫国强, 等, 2015.西藏山南努日矽卡岩型铜钼钨矿床黑云母花岗岩锆石U-Pb定年及其成矿意义.地质学报, 89(3):549-559. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503008 [64] 王欣欣, 郑荣才, 闫国强, 等, 2014.努日铜钼钨矿床黄铜矿Re-Os定年及意义.金属矿山, 32(10):126-129. http://d.old.wanfangdata.com.cn/Periodical/jsks201410028 [65] 闫国强, 丁俊, 黄勇, 等, 2014.西藏山南比马组安山岩形成时代及意义.金属矿山, 32(8):91-94. http://d.old.wanfangdata.com.cn/Periodical/jsks201408022 [66] 闫国强, 丁俊, 黄勇, 等, 2015a.西藏努日白钨矿床微量和稀土元素地球化学特征——对成矿流体与矿床成因的指示.矿物学报, 35(1):87-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201501014 [67] 闫国强, 丁俊, 黄勇, 等, 2015b.西藏努日铜钼钨矿床辉钼矿微量元素、稀土元素地球化学特征——对矿床成矿流体性质的约束.矿物岩石地球化学通报, 34(3):564-570. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201503016 [68] 闫国强, 王欣欣, 黄勇, 等, 2018.西藏山南努日超大型钨多金属矿床岩浆演化对区域成矿作用指示.地质学报, 92(10):2138-2154. doi: 10.3969/j.issn.0001-5717.2018.10.013 [69] 闫学义, 黄树峰, 杜安道, 2010.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用.地质学报. 84(3):398-406. doi: 10.3969/j.issn.1004-9665.2010.03.017 [70] 应立娟, 王登红, 唐菊兴, 等, 2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义.地质学报, 84(8): 1165-1174. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201008009 [71] 张理刚, 1992.铅同位素地质研究现状及展望.地质与勘探, 28(4):21-29. [72] 张松, 王永彬, 褚少雄, 2012a.华北克拉通北缘东段海沟岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素组成及其动力学背景.岩石学报, 28(2):544-556. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202016 [73] 张松, 郑远川, 黄克贤, 等, 2012b.西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义.矿床地质, 31(2):337-346. http://d.old.wanfangdata.com.cn/Periodical/kcdz201202013 [74] 赵珍, 胡道功, 陆露, 等, 2013.西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义.地质力学学报, 19(1):45-52, 112. doi: 10.3969/j.issn.1006-6616.2013.01.005 [75] 赵珍, 胡道功, 吴珍汉, 等, 2012.西藏冈底斯东段南缘桑布加拉辉钼矿Re-Os定年及地质意义.地质力学学报, 18(2):178-186. doi: 10.3969/j.issn.1006-6616.2012.02.008 [76] 周清, 姜耀辉, 廖世勇, 等, 2013.德兴斑岩铜矿床研究新进展.地质论评, 59(5):933-940. http://d.old.wanfangdata.com.cn/Periodical/dzlp201305015