Petrogenic and Metallogenic Geochronology, Geochemical Characteristics and Its Geological Implications of Cuizhong Fe Polymetallic Deposit, Heilongjiang Province
-
摘要: 为了厘清翠中铁钨多金属矿床浅部的粗粒碱长花岗岩和深部的细粒碱长花岗岩与成矿之间的关系,本次工作对这2种岩浆岩分别进行了岩石地球化学、锆石U-Pb年代学和Hf同位素分析,对岩石和矿石开展了Pb同位素研究.粗粒碱长花岗岩和细粒碱长花岗岩的锆石U-Pb年龄分别为503±2.9 Ma和201±6.4 Ma,表明其侵入时代分别为加里东中期和印支晚期-燕山早期.辉钼矿Re-Os同位素模式年龄为202±2.9 Ma,与细粒碱长花岗岩锆石U-Pb年龄基本一致.粗粒碱长花岗岩中锆石的εHf(t)值变化于-8.31~0.57,指示其来源于中元古代古老地壳部分熔融,细粒碱长花岗岩中锆石的εHf(t)值为2.84~4.78,表明其起源于亏损地幔中新增生的年轻地壳物质的部分熔融.综合成岩成矿时代、成矿元素趋势面分析以及岩矿石Pb同位素对比,我们认为翠中铁钨多金属矿床的成矿作用与深部的细粒碱长花岗岩有关.结合区域构造演化历史,推测成矿作用可能形成于佳木斯地块向松嫩地块俯冲挤压的构造环境.Abstract: Two main types of igneous rocks are distributed in the Cuizhong Fe polymetallic deposit, including the coarse-grained alkali-feldspar granite in the shallow part and the fine-grained alkali-feldspar granite at depth, whose relationships with ore mineralization have long been debated. Whole rock geochemistry, zircon U-Pb geochronology and Hf isotopic analyses are carried out for these two types of granitoids. Pb isotopic analyses are performed on both the granitoids and the sulfides. The coarse-grained alkali-feldspar granite and fine-grained alkali-feldspar granite yield weighted mean 206Pb/238U age of 503±2.9 Ma and 201±6.4 Ma respectively, indicating that they were formed during middle Caledonian and late Indosinian-early Yanshanian respectively.The Re-Os model age of molybdenite is 202±2.9 Ma, which is consistent with the crystallization age of the fine-grained alkali-feldspar granite.Zircons in the coarse-grained alkali-feldspar granite display εHf(t) values of -8.31 to 0.57, indicating that it was derived from partial melting of Mesoproterozoic crustal rocks. Zircon crystals in the fine-grained alkali-feldspar granite have εHf(t) values of 2.84 to 4.78, indicating that it was generated by reworking of newly-growing juvenile crustal material which was originated from depleted mantle. In combination with the metallogenic and petrologic ages, trend surface analysis of ore-forming elements, and the comparison of Pb isotopes, we suggest that the mineralization in the Cuizhong Fe polymetallic deposit is genetically associated with the fine-grained alkali-feldspar granite. The polymetallic mineralization was generated in a compressional tectonic setting in response to the subduction of the Jiamusi Block towards the Songnen Block.
-
图 6 翠中矿区岩浆岩K2O-SiO2图解(a)和A/NK-A/CNK图解(b)
a.据Peccerillo and Taylor(1976); b.据Maniac and Piccolo (1989)
Fig. 6. K2O vs. SiO2 diagram (a) and A/NK vs. A/CNK diagram (b) of the coarse-grained alkali-feldspar granite and the fine-grained alkali-feldspar granite in the Cuizhong deposit
图 7 翠中矿区花岗岩稀土元素球粒陨石标准化分布图(a)和微量元素原始地幔标准化蛛网图(b)
原始地幔标准值据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle (PM) normalized trace element diagrams (b) of the coarse-grained alkali-feldspar granite and the fine-grained alkali-feldspar granite in the Cuizhong deposit
图 8 翠中矿区花岗岩锆石U-Pb年龄与εHf(t)关系图解
Fig. 8. εHf(t) values vs. U-Pb ages of zircons from the coarse-grained alkali-feldspar granite and the fine-grained alkali-feldspar granite in the Cuizhong deposit
图 10 翠中矿区岩矿石Pb同位素构造模式
Fig. 10. Pb isotope structure pattern of ore and granites in the Cuizhong deposit
图 11 翠中矿区Pb同位素△γ-△β成因分类图解
底图据朱炳泉(1998)
Fig. 11. △γ-△β genetic classification diagram for lead isotope in the Cuizhong deposit
图 12 翠中矿区花岗岩成因判别图解
Fig. 12. (K2O+Na2O)/CaO vs. 10 000×Ga/Al (a) and FeO*/MgO vs. 10 000×Ga/Al (b) discriminant diagrams of granites in the Cuizhong deposit
图 13 翠中矿区A型花岗岩构造环境判别图
据Eby(1992);A1.非造山花岗岩;A2.后造山花岗岩
Fig. 13. Nb-Y-Ce (a) and Nb-Y-3Ga (b) tectonic discrimination of A-type granites in the Cuizhong deposit
图 14 翠中矿区花岗岩R1-R2构造环境判别图
据Batchelor and Bowden(1985).①地幔斜长花岗岩;②破坏性活动板块边缘(板块碰撞前)花岗岩;③板块碰撞后隆起期花岗岩;④晚造山期花岗岩;⑤非造山区A型花岗岩;⑥同碰撞花岗岩;⑦造山期后A型花岗岩
Fig. 14. Granite R1 vs. R2 discrimination of granites in the Cuizhong deposit
表 1 翠中矿区粗粒碱长花岗岩(CZ-1)及细粒碱长花岗岩锆石LA-ICP-MS分析结果
Table 1. LA-ICP-MS U-Pb data of zircons from the coarse-grained alkali-feldspar granite and the fine-grained alkali-feldspar granite in the Cuizhong deposit
样品号 Pb 232Th 238U Th/U 同位素比值 1σ 年龄(Ma) 谐和度(%) 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 207Pb/ 235U 1σ 206Pb/ 238U 1σ 粗粒碱长花岗岩(CZ-1) 1 115 246 613 0.40 0.056 2 0.001 5 0.625 2 0.017 0 0.079 9 0.000 8 493 10.6 495 4.6 99 2 127 262 701 0.37 0.058 0 0.001 6 0.646 1 0.017 0 0.080 2 0.000 7 506 10.5 497 4.3 98 3 137 286 742 0.39 0.058 9 0.001 5 0.661 7 0.016 5 0.080 8 0.000 8 516 10.1 501 4.7 97 4 93 180 568 0.32 0.058 4 0.001 5 0.658 4 0.016 4 0.081 1 0.000 8 514 10.0 503 4.5 97 5 116 218 776 0.28 0.057 9 0.001 3 0.649 2 0.013 8 0.080 7 0.000 7 508 8.5 500 4.3 98 6 72 146 459 0.32 0.058 0 0.001 5 0.650 1 0.016 3 0.080 7 0.000 7 509 10.1 500 4.3 98 7 57 132 205 0.64 0.058 0 0.002 0 0.649 3 0.021 7 0.080 7 0.000 8 508 13.3 500 5.1 98 8 61 121 373 0.32 0.059 7 0.001 8 0.673 4 0.019 5 0.081 1 0.000 8 523 11.8 503 4.9 96 9 103 230 760 0.30 0.055 5 0.001 6 0.623 2 0.017 1 0.080 9 0.000 9 492 10.7 501 5.2 98 10 69 123 470 0.26 0.056 7 0.002 0 0.642 8 0.022 4 0.081 7 0.001 0 504 13.9 506 6.1 99 11 93 179 563 0.32 0.055 6 0.001 5 0.633 9 0.016 8 0.081 9 0.000 8 499 10.4 507 4.7 98 12 53 110 366 0.30 0.057 7 0.001 9 0.657 9 0.021 8 0.082 1 0.000 9 513 13.3 508 5.5 99 13 81 150 524 0.29 0.055 1 0.001 9 0.623 9 0.021 6 0.081 7 0.001 1 492 13.5 506 6.8 97 14 70 126 402 0.31 0.057 4 0.002 2 0.642 9 0.024 3 0.081 7 0.001 4 504 15.0 506 8.2 99 15 86 168 504 0.33 0.054 3 0.002 0 0.607 7 0.022 9 0.081 4 0.001 3 482 14.5 504 8.0 95 16 246 472 1278 0.37 0.058 0 0.001 9 0.649 9 0.019 4 0.081 6 0.001 1 508 12.0 505 6.6 99 17 133 260 729 0.36 0.056 6 0.004 0 0.631 6 0.047 0 0.081 3 0.001 4 497 29.3 504 8.4 98 18 73 91 328 0.28 0.064 8 0.002 8 0.731 8 0.030 9 0.081 7 0.001 4 558 18.1 506 8.3 90 19 110 205 635 0.32 0.053 3 0.001 8 0.602 0 0.023 7 0.081 5 0.001 4 479 15.0 505 8.6 94 20 76 137 433 0.32 0.056 8 0.002 0 0.638 9 0.024 8 0.081 4 0.001 5 502 15.4 504 9.0 99 细粒碱长花岗岩(CZ-7) 1 81 508 634 0.80 0.050 5 0.002 5 0.220 8 0.010 0 0.031 9 0.000 4 203 8.3 203 2.7 99 2 18.4 113 208 0.54 0.051 0 0.003 2 0.214 8 0.013 0 0.031 0 0.000 6 198 10.8 197 3.5 99 3 25.2 133 320 0.42 0.052 8 0.003 3 0.229 7 0.014 0 0.031 5 0.000 5 210 11.6 200 3.1 95 4 49 284 451 0.63 0.049 2 0.003 4 0.215 2 0.013 6 0.032 0 0.000 5 198 11.4 203 3.1 97 5 29 159 319 0.50 0.050 3 0.002 4 0.220 3 0.010 1 0.031 6 0.000 4 202 8.4 201 2.7 99 6 22.7 126 311 0.40 0.050 0 0.002 2 0.217 5 0.009 2 0.031 7 0.000 4 200 7.7 201 2.8 99 7 18.9 93 210 0.44 0.052 4 0.003 3 0.222 1 0.013 0 0.031 6 0.000 5 204 10.8 201 3.3 98 8 24.6 130 309 0.42 0.051 3 0.004 1 0.214 3 0.015 7 0.030 8 0.000 7 197 13.1 195 4.3 99 9 39 218 316 0.69 0.050 8 0.002 9 0.215 9 0.011 8 0.031 2 0.000 7 198 9.8 198 4.3 99 10 35 219 305 0.72 0.056 0 0.005 0 0.251 9 0.023 3 0.032 8 0.001 0 228 18.9 208 6.4 90 表 2 翠中铁钨多金属矿床岩浆岩主量元素(%)和微量元素(10-6)分析结果
Table 2. Major oxides (%) and trace elements (10-6) of the coarse-grained alkali-feldspar granite and the fine-grained alkali- feldspar granite in the Cuizhong deposit
岩性 粗粒碱长花岗岩 细粒碱长花岗岩 样品号 CZ-2 CZ-3 CZ-4 CZ-5 CZ-6 CZ-8 CZ-9 CZ-10 CZ-11 CZ-12 SiO2 72.49 73.63 73.93 74.34 74.12 72.56 72.64 71.33 72.51 72.94 TiO2 0.17 0.13 0.14 0.14 0.14 0.21 0.19 0.22 0.22 0.21 Al2O3 13.59 13.26 13.20 13.05 13.28 14.14 13.92 14.23 14.26 13.94 Fe2O3 0.36 0.37 0.30 0.17 0.27 0.44 0.50 0.56 0.23 0.53 FeO 1.74 1.43 1.63 1.65 1.64 1.62 1.49 1.71 1.52 1.52 MnO 0.04 0.03 0.03 0.07 0.03 0.05 0.06 0.07 0.07 0.06 MgO 0.19 0.15 0.14 0.19 0.15 0.24 0.25 0.32 0.31 0.29 CaO 0.85 0.85 0.90 1.10 1.03 1.03 1.14 1.29 1.19 1.08 Na2O 3.44 3.23 3.48 2.97 3.18 4.07 4.04 4.20 4.16 4.07 K2O 5.24 5.39 5.41 5.43 5.32 4.84 4.80 4.63 4.86 4.85 P2O5 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.05 0.04 0.04 LOI 0.90 0.82 0.66 0.68 0.71 0.82 0.72 0.88 0.57 0.49 A/NK 1.20 1.19 1.14 1.21 1.21 1.19 1.18 1.19 1.18 1.17 A/CNK 1.06 1.05 1.00 1.02 1.03 1.02 1.00 1.00 1.00 1.00 DI 90.94 91.81 91.91 90.43 90.79 90.56 90.5 89.11 90.07 90.63 R1 2364 2482 2387 2596 2528 2211 2243 2140 2162 2229 R2 374 364 365 386 381 403 411 439 424 405 Rb 353 327 359 305 340 154.5 163.0 164.0 168.5 166.5 Ba 218 234 241 306 213 676 679 681 733 622 Th 70.7 53.5 43.6 43.2 43.6 20 18.7 20.7 19.1 19.2 U 14.4 27.1 13.4 15.1 12.9 5.5 5.3 5.4 5.4 5.1 Pb 30.4 36.4 32.5 40.7 36.2 25.6 26.3 30.5 21.4 22.3 Sr 83.5 89.4 97.7 127.5 102.5 113.0 105.0 129.5 124.0 95.3 Nb 22.3 17.0 14.5 13.2 14.7 10.8 10.8 11.7 11.3 11.7 Ga 25.9 23.6 22.7 21.2 23.7 17.4 17.3 17.6 17.7 16.3 P 131 87 87 87 87 175 175 218 175 175 K 43 500 44 745 44 911 45 077 44 164 40 179 39 847 38 436 40 345 40 262 Ti 1019 779 839 839 839 1259 1139 1319 1319 1259 Zr 226 208 185 186 205 258 234 254 246 213 Hf 8.2 7.5 6.8 7.0 7.5 7.3 6.5 7.0 6.8 5.6 La 64.8 51.1 51.5 44.2 48.9 44.3 42.3 48.5 46.6 46.5 Ce 138.2 110.5 114.0 100.5 105.0 90.1 82.8 94.7 94.1 91.4 Pr 14.94 12.44 12.95 11.70 11.95 9.50 8.30 9.86 9.87 10.30 Nd 55.8 46.6 48.6 42.9 43.1 32.1 27.6 32.5 32.7 33.9 Sm 11.90 9.94 10.80 9.12 9.31 5.29 4.74 5.41 5.52 6.22 Eu 0.48 0.52 0.51 0.57 0.52 0.80 0.73 0.81 0.84 0.77 Gd 11.10 9.12 10.00 8.41 8.72 4.68 3.96 4.58 4.52 5.21 Tb 1.89 1.50 1.64 1.37 1.44 0.71 0.63 0.74 0.72 0.78 Dy 10.90 8.81 9.39 7.94 8.27 4.25 3.78 4.24 4.34 4.88 Ho 2.16 1.76 1.87 1.61 1.71 0.94 0.82 0.92 0.89 1.01 Er 6.55 5.20 5.60 4.82 5.37 2.94 2.61 2.82 3.03 3.25 Tm 1.01 0.83 0.84 0.78 0.86 0.51 0.47 0.48 0.50 0.51 Yb 6.68 5.23 5.56 5.09 5.72 3.38 3.20 3.11 3.27 3.61 Lu 0.95 0.74 0.83 0.75 0.88 0.52 0.48 0.47 0.50 0.56 Y 69.0 51.4 54.5 46.0 52.4 26.8 26.4 27.0 27.7 29.9 ΣREE 330.16 265.29 272.59 235.66 251.75 198.02 180.62 209.44 204.70 206.30 LREE 288.92 232.10 236.86 204.89 218.78 180.09 164.67 192.08 186.93 186.49 HREE 41.24 33.19 35.73 30.77 32.97 17.93 15.95 17.36 17.77 19.81 LREE/HREE 7.01 6.99 6.63 6.66 6.64 10.04 10.32 11.07 10.52 9.41 (La/Yb)N 6.96 7.01 6.64 6.23 6.13 9.40 9.48 11.19 10.22 9.24 δEu 0.13 0.17 0.15 0.20 0.18 0.49 0.52 0.50 0.51 0.41 注:A/CNK=Al2O3/(CaO+Na2O+K2O) (mol);A/NK= Al2O3/(Na2O+ K2O) (mol);DI(分异指数)=Qz+Or+Ab+Ne+Lc+K;R1=4Si-11(Na+K)-2(Fe+Ti) (mol);R2= 6Ca+2Mg+Al (mol). 表 3 翠中矿区岩浆岩锆石Hf同位素分析结果
Table 3. Hf isotopic compositions of zircons from the coarse-grained alkali-feldspar granite and the fine-grained alkali-feldspar granite in the Cuizhong deposit
样品编号 年龄 176Yb/177Hf 176Lu/177Hf 2σ 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf 粗粒碱长花岗岩(CZ-1) 1 495 0.065 563 0.001 542 0.000 080 0.282 433 0.000 026 0.282 418 -11.99 -1.58 1 174 1 565 -0.95 2 497 0.035 598 0.000 801 0.000 012 0.282 388 0.000 025 0.282 380 -13.58 -2.89 1 214 1 649 -0.98 3 501 0.053 067 0.001 230 0.000 073 0.282 409 0.000 022 0.282 398 -12.84 -2.23 1 198 1 608 -0.96 4 503 0.046 163 0.001 036 0.000 038 0.282 407 0.000 019 0.282 397 -12.91 -2.19 1 195 1 608 -0.97 5 500 0.037 757 0.000 880 0.000 013 0.282 386 0.000 020 0.282 378 -13.65 -2.93 1 219 1 653 -0.97 6 500 0.038 796 0.000 898 0.000 012 0.282 442 0.000 023 0.282 434 -11.67 -0.94 1 142 1 529 -0.97 7 500 0.030 176 0.000 646 0.000 010 0.282 232 0.000 018 0.282 226 -19.10 -8.31 1 425 1 992 -0.98 8 503 0.035 019 0.000 771 0.000 010 0.282 417 0.000 023 0.282 409 -12.55 -1.73 1 173 1 580 -0.98 9 501 0.074 018 0.001 510 0.000 072 0.282 490 0.000 025 0.282 476 -9.97 0.57 1 092 1 433 -0.95 细粒碱长花岗岩(CZ-7) 1 204 0.069 211 0.001 726 0.000 062 0.282 753 0.000 024 0.282 746 -0.67 3.56 721 1 014 -0.95 2 203 0.080 732 0.001 994 0.000 049 0.282 757 0.000 027 0.282 749 -0.53 3.65 720 1 007 -0.94 3 197 0.050 860 0.001 232 0.000 032 0.282 763 0.000 024 0.282 758 -0.32 3.87 697 991 -0.96 4 200 0.039 247 0.001 004 0.000 024 0.282 732 0.000 029 0.282 728 -1.41 2.84 737 1 058 -0.97 5 203 0.074 609 0.001 709 0.000 044 0.282 787 0.000 032 0.282 781 0.53 4.78 672 938 -0.95 6 201 0.067 302 0.001 654 0.000 061 0.282 769 0.000 031 0.282 763 -0.11 4.10 697 980 -0.95 8 201 0.074 024 0.002 037 0.000 061 0.282 740 0.000 022 0.282 732 -1.13 3.00 746 1 048 -0.94 表 4 翠中矿区金属硫化物和岩石Pb同位素组成
Table 4. Lead isotope data of the rocks and sulfides in the Cuizhong deposit
样品编号 测试对象 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb U Th Pb (206Pb/ 204Pb)t (207Pb/ 204Pb)t (208Pb/ 204Pb)t μ ω △α △β △γ CZ-0143 方铅矿 18.701±0.002 15.603±0.001 38.252±0.003 9.44 34.30 77.56 17.56 20.85 CZ-0140 方铅矿 18.703±0.002 15.620±0.001 38.300±0.004 9.47 34.63 77.67 18.67 22.13 CZ-0161 方铅矿 18.713±0.002 15.613±0.002 38.272±0.004 9.46 34.41 78.25 18.22 21.39 CZ-0162 闪锌矿 18.782±0.002 15.695±0.001 38.540±0.005 9.61 35.84 83.44 23.62 29.22 CZ-017 方铅矿 18.719±0.002 15.622±0.001 38.304±0.003 9.48 34.58 78.59 18.80 22.24 CZ-0181 方铅矿 18.713±0.001 15.616±0.001 38.281±0.003 9.47 34.47 78.25 18.41 21.63 CZ-0182 闪锌矿 18.728±0.002 15.634±0.002 38.338±0.004 9.50 34.77 79.11 19.59 23.15 CZ-011 粗粒碱长花岗岩 19.857±0.002 15.684±0.002 39.258±0.005 13.4 43.6 32.5 17.484 15.551 36.830 9.49 34.22 68.35 18.44 16.08 CZ-013 粗粒碱长花岗岩 19.842±0.002 15.675±0.002 39.277±0.004 27.1 53.5 36.4 17.558 15.436 36.617 9.24 31.85 57.07 9.59 2.09 CZ-021 细粒碱长花岗岩 19.089±0.003 15.607±0.002 38.585±0.005 5.5 20 25.6 18.6607 15.583 38.024 9.41 33.43 75.23 16.26 14.77 CZ-023 细粒碱长花岗岩 19.144±0.003 15.624±0.003 38.743±0.008 5.3 18.7 26.3 18.691 15.602 38.232 9.44 34.26 76.98 17.5 20.32 CZ-031 细粒碱长花岗岩 19.153±0.002 15.610±0.002 38.684±0.005 5.4 20.7 30.5 18.755 15.591 38.197 9.41 33.72 80.67 16.78 19.38 CZ-0131 细粒碱长花岗岩 19.388±0.002 15.642±0.002 38.603±0.004 5.4 19.1 21.4 18.821 15.614 37.962 9.45 32.69 84.47 18.28 13.11 CZ-0133 细粒碱长花岗岩 19.721±0.002 15.656±0.002 38.797±0.004 5.1 19.2 22.3 19.207 15.631 38.179 9.46 31.91 106.71 19.39 18.90 表 5 翠中矿区辉钼矿Re-Os同位素组成
Table 5. Re-Os data for molybdenites from the Cuizhong deposit
Re (ng/g) 普Os (ng/g) 187Re (ng/g) 187Os (ng/g) 模式年龄(Ma) 样品号 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK2032-6 1 118 9 0.002 7 0.001 5 702.6 5.4 2.374 0.018 202 2.9 -
[1] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [2] Chen, J., Sun, F.Y., Pan, T., et al., 2012.Geological Features of Huojihe Molybdenum Deposit in Heilongjiang, and Geochronology and Geochemistry of Mineralized Granodiorite. Journal of Jilin University (Earth Science Edition), 42(S1):207-215 (in Chinese with English abstract). [3] Chen, X., Liu, J.J., Zhang, D.H., et al., 2017. Re-Os Dating of Molybdenites and S-Pb Isotopic Characteristics of the Cuihongshan Iron Polymetallic Deposit, Heilongjiang Province. Acta Petrologica Sinica, 33(2):529-544 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702014 [4] Du, A. D., He, H. L., Yin, N. W., et al., 1995. A Study of the Rhenium-Osmium Geochronometry of Molybdenites 1.Acta Geologica Sinica (English Edition), 8(2):171-181. https://doi.org/10.1111/j.1755-6724.1995.mp8002004.x [5] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001.Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation.Rock and Mineral Analysi, 20(4):217-252 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200104002 [6] Du, X.H., Zhang, Y., 2015. Metallogenic Epoch and Geochemistry of Heilongjiang's Huojihe Molybdenum Deposit.Resources & Industries, 17(1):48-55 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zycy201501008 [7] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 [8] Guan, Q.B., Li, S.C., Zhang, C., et al., 2016. Zircon U-Pb Dating, Geochemistry and Geological Significance of the I-Type Granites in Helong Area, the Eastern Section of the Southern Margin of Xing-Meng Orogenic Belt. Acta Petrologica Sinica, 32(9):2690-2706 (in Chinese with English abstract). [9] Hao, Y.J., Ren, Y.S., Zhao, H.L., et al., 2013. Re-Os Isotopic Dating of the Molybdenite from the Cuihongshan W-Mo Polymetallic Deposit in Heilongjiang Province and Its Geological Significance. Journal of Jilin University (Earth Science Edition). 43(6):1840-1850 (in Chinese with English abstract). [10] Harrison, T., Watson, E., 1984. The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7):1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4 [11] Hu, X. L., Ding, Z. J., He, M. C., et al., 2014. Two Epochs of Magmatism and Metallogeny in the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China:Constrains from U-Pb and Re-Os Geochronology and Lu-Hf Isotopes. Journal of Geochemical Exploration, 143:116-126. https://doi.org/10.1016/j.gexplo.2014.03.027 [12] Liu, Y., Gao, S., Hu, Z., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082 [13] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [14] Lu, Y.F, 2004. GeoKit:A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5):459-464 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx200405004 [15] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [16] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [17] Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252):1099-1102. https://doi.org/10.1126/science.271.5252.1099 [18] Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [19] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [20] Wilde, S.A., Wu, F.Y., Zhao, G.C., 2010.The Khanka Block, NE China, and Its Significance in the Evolution of the Central Asian Orogenic Belt.In: Kusky, T.M., Zhai, M.G., Xiao, W.J., eds., The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London Special Publication, London, 338: 117-137. http://dx.doi.org/10.1144/SP338.6 [21] Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [22] Wu, F. Y., Jahn, B.M., Wilde, S.A., et al., 2003. Highly Fractionated I-Type Granites in Ne China (I):Geochronology and Petrogenesis. Lithos, 66(3-4):241-273. https://doi.org/10.1016/S0024-4937(02)00222-0 [23] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187(1/2):143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [24] Wu, F. Y., Yang, J. H., Lo, C. H., et al., 2007. The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 16(1):156-172. https://doi.org/10.1111/j.1440-1738.2007.00564.x [25] Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002. Summarization to the Tracing Metallogenic Material Sources by Means of Pb Isotope Bearing Ores.Geology Geochemistry, 30(3):73-79 (in Chinese with English abstract). [26] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554. https://doi.org/10.1360/04wd0130 [27] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt.Earth Science, 44(5):1620-1646 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.036 [28] Yang, Y.C., Han, S.J., Sun, D.Y., et al., 2012. Geological and Geochemical Features and Geochronology of Porphyry Molybdenum Deposits in the Lesser Xing'an Range-Zhangguangcai Range Metallogenic Belt.Acta Petrologica Sinica, 28(2):379-390 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202003 [29] Zartman, R. E., Doe, B. R., 1981. Plumbotectonics:The Model.Tectonophysics, 75(1/2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [30] Zhai, Y.S., Lin, X.D., 1993.Study of Ore Field Structures.Geological Publishing House, Beijing, 18 (in Chinese). [31] Zhang, L.G, 1992. Present Status and Aspects of Lead Isotope Geology. Geology and Prospecting, 28(4):21-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0309133307079057 [32] Zhang, L.L., Liu, C., Zhou, S., et al., 2014. Characteristics of Ore-Bearing Granites and Ore-Forming Age of the Huojihe Molybdenum Deposit in Lesser Xing'an Range. Acta Petrologica Sinica, 30(11):3419-3431 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411024 [33] Zhang, Q., Pan, J.Y., Shao, S.X., 2000. An Interpretation of Ore Lead Sources from Lead Isotopic Compositions of Some Ore Deposits in China.Geochimica, 29(3):231-238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200003004 [34] Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite:What is the Essence?. Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c [35] Zhang, T.F., Guo, S., Xin, H.T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China.Earth Science, 44(1):248-267 (in Chinese withEnglish abstract). https://doi.org/10.3799/dqkx.2018.246 [36] Zhao, Z.G., Gao, L.M., 1998. Discussion about Standardization of Methods to Calculate δEu, δCe. Reporting of Standardization, (5):24-26 (in Chinese with English abstract). [37] Zhou, J. B., Wilde, S. A., Zhang, X. Z., et al., 2009. The Onset of Pacific Margin Accretion in NE China:Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478(3/4):230-246. https://doi.org/10.1016/j.tecto.2009.08.009 [38] Zhu, B.Q., 1998. Isotope System Theory and Application to the Earth Sciences. Science Press, Beijing, 216-230 (in Chinese). [39] 陈静, 孙丰月, 潘彤, 等, 2012.黑龙江霍吉河钼矿成矿地质特征及花岗闪长岩年代学、地球化学特征.吉林大学学报(地球科学版), 42(S1):207-215. http://www.cqvip.com/qk/91256b/2012s1/1003447395.html [40] 陈贤, 刘家军, 张德会, 等, 2017.黑龙江翠宏山铁多金属矿床辉钼矿Re-Os定年及S-Pb同位素特征研究.岩石学报, 33(2):529-544. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201702014 [41] 杜安道, 赵敦敏, 王淑贤, 等, 2001. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试, 20(4):247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002 [42] 杜晓慧, 张勇, 2015.黑龙江霍吉河钼矿床成矿时代及岩石地球化学研究.资源与产业, 17(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/kjcb201619099 [43] 关庆彬, 李世超, 张超, 等, 2016.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 32(9):2690-2706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609007 [44] 郝宇杰, 任云生, 赵华雷, 等, 2013.黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义.吉林大学学报(地球科学版), 43(6):1840-1850. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201306015 [45] 路远发, 2004. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 [46] 吴开兴, 胡瑞忠, 毕献武, 等, 2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学, 30(3):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013 [47] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017 [48] 杨言辰, 韩世炯, 孙德有, 等, 2012.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究.岩石学报, 28(2):379-390. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201202004.htm [49] 翟裕生, 林新多, 1993.矿田构造学.北京: 地质出版社, 18. [50] 张理刚, 1992.铅同位素地质研究现状及展望.地质与勘探, 28(4):21-29. http://www.cqvip.com/main/detail.aspx?id=722880 [51] 张琳琳, 刘翠, 周肃, 等, 2014.小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄.岩石学报, 30(11): 3419-3431. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411024 [52] 张乾, 潘家永, 邵树勋, 2000.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学, 29(3):231-238. doi: 10.3321/j.issn:0379-1726.2000.03.004 [53] 张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 [54] 张天福, 郭硕, 辛后田, 等, 2019.大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约.地球科学, 44(1):248-267. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901018 [55] 赵志根, 高良敏, 1998. δEu、δCe计算方法的标准化问题.标准化报道, (5):24-26. http://www.cnki.com.cn/Article/CJFDTotal-BZBD805.008.htm [56] 朱炳泉, 1998.地球科学中同位素体系理论与应用.北京: 科学出版社, 216-230.