Shale Gas Accumulation Conditions and Target Optimization of Lower Cambrian Shuijingtuo Formation in Yichang Area, West Hubei
-
摘要: 鄂西宜昌下寒武统水井沱组页岩具有良好的气体显示,页岩气成藏条件研究薄弱.利用最新钻探的井下资料、周边露头地质调查资料及大量样品的分析测试结果,从富有机质页岩区域展布、地球化学特征、岩石储集特征、含气性、保存条件等方面研究鄂西宜昌地区下寒武统水井沱组页岩气聚集条件.研究区水井沱组形成于陆棚-斜坡相带,厚度为50~140 m.有机碳含量高(TOC值为0.43%~10.45%,平均值达2.65%),TOC大于2%的优质页岩有效厚度为28~41 m,有机质热成熟度为2.4%~3.2%,处于高演化阶段.页岩脆性矿物含量高,石英含量平均值为29.33%,碳酸盐含量平均值为25.94%,黏土矿物含量平均值为35.06%,且以伊/蒙间层为主.水井沱组富有机质页岩孔隙度为0.96%~3.32%,平均值为2.08%,页岩渗透率为0.01×10-3~3.05×10-3 μm2.氩离子抛光电镜与吸附测试表明,页岩孔隙发育具有成因类型多、孔径尺度小的特点,有机孔孔径主要集中在10~50 nm范围内.水井沱组页岩气层顶、底板条件良好,区域构造稳定、断裂不发育,页岩气保存条件优越.钻井过程中水井沱组气显频繁,解析含气量为0.31~5.48 m3/t,连续含气量大于2 m3/t的累计厚度达44.05 m.水井沱组水平井压裂获工业气流,页岩气组分中CH4含量为87.17%~92.75%,C2H6为0.83%~0.94%,N2为5.86%~9.37%,CO2为0.05%~2.25%.总体上宜昌地区下寒武统水井沱组页岩气成藏条件较好,是四川盆地外页岩气新的勘探区.Abstract: Good gas shows in the Cambrian Shuijingtuo Formation indicate the resources potential in Middle Yangtze region. The weakness of basic research on the shale gas accumulation constrains gas exploration and development in this area. In this paper,it focuses on the geological characteristics of Shuijingtuo shale gas in Yichang area by integrating geological and geochemical data from latest exploration well and outcrop. The gas potential is discussed based on preliminary evaluation of lithofacies,geochemical characteristics,reservoir features,and shale gas content. These organic-rich intervals are concentrated along and between continental shelf and slope. Thermally mature strata of the Shuijingtuo shale attain thickness between 28 and 41 m,with a total organic carbon (TOC) exceeding 2%. Organic matter within Shuijingtuo shale is high,which contains an average of 2.65% TOC,with present-day thermal maturity between 2.4% and 3.2% equivalent vitrinite reflectance (Ro),which is in the high mature of dry thermogenic gases dominated stage. The Shuijingtuo shale is noted for having generally high silica content. Mineral composition of shale consists of 29.33% quartz,25.94% carbonatite calcite/dolomite,35.06% clay minerals. Illite smectite mixed layer is the major clay mineral. The gas shale reservoir has an extremely low porosity and permeability. Porosity ranges from 0.96% to 3.22%,with an average value of 2.08% at the bottom of Shuijingtuo Formation. The effective permeability in gas shale is (0.01-3.05)×10-3 μm2. Through scanning electron microscope observation and isothermal adsorption,pores in shale also show multiple genetic types and small size of multi-pore diameter. Fractal dimensions of the organic pores vary from 10 to 50 nm. Overlying formations and underlying strata are favorable for shale gas preserved. The tectonic stress field is regionally very stable and short of fault activity,which all indicates favorable preservation conditions for Shuijingtuo shale gas in gentle slope of Yichang area. Measurement of total hydrocarbon and methane through mud logging indicates anomaly. The measured gas content of the Shuijingtuo shale in Well Yiye-1 ranges between 0.31 to 5.48 m3/t. Thermally mature strata of the Shuijingtuo Formation attain thickness of 44.05 m,with a continuous gas content exceeding 2 m3/t. Well Yiye-1 tested an industrial gas flow after horizontal well fractured. Methane is the main constituent of gas sample and varies in concentration from 81.17% to 92.75%. Ethane ranges from 0.83% to 0.94%,nitrogen in non-hydrocarbon gas ranges from 5.86% to 9.37%,and carbon dioxide ranges from 0.05% to 2.25%. It is concluded that it could be the favorable area for shale gas accumulation in the Middle Yangtze region,and it's a new area for shale gas exploration outside Sichuan basin.
-
Key words:
- Yichang area /
- Lower Cambrian /
- Shuijingtuo Formation /
- shale gas /
- shale reservoir /
- accumulation condition /
- petroleum geology
-
图 2 宜昌地区北东向(2017HY-Z3和Z6)地震剖面A-B
测线位置见图 1
Fig. 2. Interpretation of the NE trend seismic profile in Yichang slope area
图 3 早寒武世水井沱组页岩厚度和EW向沉积剖面
a.宜昌地区水井沱组近EW向连井剖面;b.水井沱组沉积相与黑色页岩厚度分布;c.近EW向沉积剖面; 据翟刚毅等(2017b)和陈孝红等(2018)修改
Fig. 3. Early Cambrian Shuijingtuo shale thickness and east-west sedimentary section
图 9 宜昌地区地震构造剖面
①宜都-随州地震地质解释大剖面;②2015ZG-L0地震地质解释图,据文献(邓铭哲等,2018);③当阳复向斜DY2014-1西段北东向地震解释图,据文献(邓铭哲和何登发,2018);剖面位置见图 1
Fig. 9. Interpretation of the seismic profile around Yichang slope area indicating the stability of regional tectonic
表 1 宜昌地区典型井页岩参数对比
Table 1. Parameters of comparison between typical wells in study area
表 2 宜页1井水井沱组CO2和N2等温吸附孔隙体积与比表面积数据
Table 2. Main pore structure parameters measured by low pressure gas (CO2 and N2) adsorption
样品深度(m) 1 809.00 1 827.00 1 843.50 1 854.50 1 859.00 1 870.58 CO2吸附 DFT孔隙体积(cm3/g ×10-2) 0.20 0.40 0.40 0.20 0.40 0.30 DFT比表面积(m2/g) 7.59 11.97 11.37 5.93 12.78 10.40 DFT微孔孔体积(cm3/g ×10-2) 0.25 0.39 0.38 0.24 0.49 0.43 N2吸附 BJH介孔孔体积(cm3/g ×10-2) 0.74 1.17 1.09 0.52 1.24 0.93 BJH介孔比表面积(m2/g) 2.48 4.57 4.04 1.69 4.67 4.08 BJH大孔孔体积(cm3/g ×10-2) 0.98 1.13 1.47 0.78 2.46 0.78 BJH大孔比表面积(m2/g) 0.36 0.44 0.51 0.29 0.81 0.28 表 3 宜页1井水井沱组页岩气组分数据
Table 3. Analysis results of gas component of shale gas in Shuijingtuo Formation of Well Yiye-1
气样编号 气体组分(%) CH4 C2H6 C3H8 He N2 Ar CO2 G1 91.17 0.94 0.03 0.19 6.90 0.08 0.70 G3 90.60 0.94 0.03 0.11 7.13 0.07 1.12 G4 87.17 0.87 0.03 0.20 9.36 0.13 2.25 G6 90.52 0.86 0.02 0.20 7.43 0.08 0.90 G7 90.78 0.86 0.02 0.01 7.31 0.06 0.96 G10 89.61 0.86 0.02 0.02 8.13 0.09 1.27 QJ-024 88.02 0.83 0.02 0.20 9.37 0.04 0.85 QJ-036 89.23 0.88 0.03 0.20 8.11 0.05 0.80 QJ-051 92.75 0.89 0.04 0.31 5.86 0.11 0.05 注:气体组分采用气相色谱仪测定,测试精度2%.其中G系列由中国科学院兰州地质研究所气体地球化学重点实验室完成,QJ系列由江汉油田分公司勘探开发研究院石油地质测试中心完成. -
[1] Chen, X.H., Wei, K., Zhang, B.M., et al., 2018. Main Geological Factors Controlling Shale Gas Reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its and Enrichment Patterns. Geology in China, 45(2):207-226 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001 [2] Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42 (7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096 [3] Deng, M.Z., He, D.F., 2018. The Geological Structure in the Dangyang Area and Its Significance to the Shale Gas Exploration in Yichang Area, China. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4):487-500 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201804009 [4] Deng, M.Z., He, D.F., Zhang, Y.Y., 2018. Tectonic Evolution of Xiannüshan Fault and Its Influence on Hydrocarbon Traps in Changyang Anticline, Western Hubei Fold Belt. Petroleum Geology & Experiment, 40(2):177-184 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201802007 [5] Dong, D.Z., Gao, S.K., Huang, J.L., et al., 2014. A Discussion on the Shale Gas Exploration & Development Prospect in the Sichuan Basin. Natural Gas Industry, 34(12):1-15 (in Chinese with English abstract). [6] Feng, G.X., Chen, S.J., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3):20-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e619919b0598273b06a12c821d9bd0b1 [7] Guo, X.S., 2014. Enrichment Mechanism and Exploration Technology of Jiaoshiba Area in Fuling Shale Gas Field. Science Press, Beijing (in Chinese). [8] Guo, Z.F., Yang, Z.W., Liu, X.M., et al., 2006. Characteristics of Palaeozoic Tectonic Structures and Oil and Gas Prospecting in Jianghan Plain. Marine Origin Petroleun Geology, 11(2):9-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz200602002 [9] He, Z.L., Xu, X.H., Dai, S.W., et al., 2013. Evolution and Petroleum Prospect of East Qinling and Dabie Orogenic Belt and Both Sides of Basins. China University of Geosciences Press, Wuhan, 46-53 (in Chinese). [10] Hou, Y.G., He, S., Yi, J.Z., et al., 2014. Effect of Pore Structure on Methane Sorption Capacity of Shales. Petroleum Exploration & Development, 41(2):248-256 (in Chinese with English abstract). [11] Hu, D.F., Zhang, H.R., Ni, K., et al., 2014. Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201406003 [12] Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1):69-75 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201201008 [13] Huang, J.Z., 2000. Study on Hydrocarbon Source of Marine Sediments in Middle-Upper Yangtze Platform (Part 2). Natural Gas Exploration and Development, 23(1):9-27, 135 (in Chinese). [14] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional Shale-Gas Systems:The Mississippian Barnet Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068 [15] Jiao, F.Z., Feng, J.H., Yi, J.Z., et al., 2015. Direction, Key Factors and Solution of Marine Natural Gas Exploration in Yangtze Area. China Petroleum Exploration, 20(2):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201502001 [16] Li, Z.X., Lu, Y.C., Wang, J., et al., 2004. Sedimentary Characteristics and Lithofacies Palaeogeography of the Late Sinian and Early Cambrian in Middle Yangtze Region. Journal of Palaeogeography, 6(2):151-162 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200402003 [17] Liang, D.G., Guo, T.L., Chen, J.P., et al., 2008. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1):Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleun Geology, 13(2):1-16 (in Chinese with English abstract). [18] Lin, T., Zhang, J.C., Li, B., et al., 2014. Shale Gas Accumulation Conditions and Gas-Bearing Properties of the Lower Cambrian Niutitang Formation in Well Changye 1, Northwestern Hunan. Acta Petrolei Sinica, 35(5):839-846 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201405003 [19] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6):1071-1098. http://doi.org/10.1306/08171111061 [20] Ma, Y., Zhong, N.N., Han, H., et al., 2014. Definition and Sturcture Characteristics of Pores in Mylonitized Organic-Rich Shales. Science in China (Series D:Earth Sciences), 44 (10):2202-2209 (in Chinese with English abstract). [21] Nie, H.K., Zhang, J.C., Li, Y.X., 2011. Accumulation Conditions of the Lower Cambrian Shale Gas in the Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 32(6):959-967 (in Chinese with English abstract). [22] Peng, N.J., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7):1134-1146 (in Chinese with English abstract). http://doi.org/10.3799/dqkx.2017.092 [23] Ross, D.J.K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine & Petroleum Geology, 26(6):916-927. http://doi.org/10.1016/j.marpetgeo.2008.06.004 [24] Thommes, M., Kaneko, K., Neimark, A.V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10):1051-1069. http://doi.org/10.1515/pac-2014-1117 [25] Tian, H., Zhang, S.C., Liu, S.B., et al., 2016. The Dual Influence of Shale Composition and Pore Size on Adsorption Gas Storage Mechanism of Organic-Rich Shale. Natural Gas Geoscience, 27(3):494-502 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201603011 [26] Tian, S.C., Wang, T.Y., Li, G.S., et al., 2017. Molecular Simulation of Methane Adsorption Behavior in Different Shale Kerogen Types. Natural Gas Industry, 37(12):18-25 (in Chinese with English abstract). https://doi.org/10.3787/j.issn.1000-0976.2017.12.003 [27] Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation:A Review-Part 2:Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5):758-778. https://doi.org/10.1007/s12583-017-0733-9 [28] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Science, 42(7):1045-1056 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.084 [29] Xu, S.H., He, S., Zhu, G.T., et al., 2018. Characteristics of Saturated Hydrocarbons from Lower Paleozoic Marine Shales in Western Hubei-Eastern Chongqing Area and Their Indications. Oil & Gas Geology, 39(2):217-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201802002 [30] Yan, J.P., Zhang, T.W., Li, Y.F., et al., 2013. Effect of the Organic Matter Characteristics on Methane Adsorption in Shale. Journal of China Coal Society, 38 (5):805-811 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201305015 [31] Zhai, G.Y., Bao, S.J., Wang, Y.F., et al., 2017a. Reservoir Accumulation Model at the Edge of Palaeohigh and Significant Discovery of Shale Gas in Yichang Area, Hubei Province. Acta Geoscientica Sinica, 38(4):441-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201704001 [32] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017b. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42 (7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085 [33] Zhang, J.K., He, S., Yan, X.L., et al., 2017. Structural Characteristics and Thermal Evolution of Nanoporosity in Shales. Journal of China University of Petroleum (Edition of Natural Science), 41(1):11-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201701002 [34] Zhang, X.M., Shi, W.Z., Xu, Q.H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8):926-939, 953 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201508004 [35] Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4):499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001 [36] Zhou, Q.H., Song, N., Wang, C.Z., et al., 2015. Characteristics of Shale and Gas Content of Niutitang Formation in Changde Region of Hunan Province. Natural Gas Geoscience, 26(2):301-311 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502011 [37] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6):641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 [38] Zuo, J.X., Peng, S.C., Qi, Y.P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China:Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3):479-491. https://doi.org/10.1007/s12583-017-0963-x [39] 陈孝红, 危凯, 张保民, 等, 2018.湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式.中国地质, 45(2):207-226. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001 [40] 戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42 (7):1185-1194. doi: 10.3799/dqkx.2017.096 [41] 邓铭哲, 何登发, 2018.当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义.成都理工大学学报(自然科学版), 45(4):487-500. doi: 10.3969/j.issn.1671-9727.2018.04.09 [42] 邓铭哲, 何登发, 张煜颖, 2018.鄂西仙女山断裂构造演化及其对长阳背斜圈闭性的影响.石油实验地质, 40(2):177-184. http://d.old.wanfangdata.com.cn/Periodical/sysydz201802007 [43] 董大忠, 高世葵, 黄金亮, 等, 2014.论四川盆地页岩气资源勘探开发前景.天然气工业, 34(12):1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001 [44] 丰国秀, 陈盛吉, 1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(3):20-25. http://d.old.wanfangdata.com.cn/Conference/55271 [45] 郭旭升, 2014.涪陵页岩气田焦石坝区块富集机理与勘探技术.北京:科学出版社. [46] 郭战峰, 杨振武, 刘新民, 等, 2006.江汉平原古生界构造结构特征及油气勘探方向.海相油气地质, 11(2):9-16. doi: 10.3969/j.issn.1672-9854.2006.02.002 [47] 何治亮, 许旭辉, 戴少武, 等, 2013.东秦岭-大别造山带及两侧盆地演化与油气勘探.武汉: 中国地质大学出版社, 46-53. [48] 侯宇光, 何生, 易积正, 等, 2014.页岩孔隙结构对甲烷吸附能力的影响.石油勘探与开发, 41(2):248-256. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402017 [49] 胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003 [50] 黄金亮, 邹才能, 李建忠, 等, 2012.川南下寒武统筇竹寺组页岩气形成条件及资源潜力.石油勘探与开发, 39(1):69-75. http://d.old.wanfangdata.com.cn/Periodical/syktykf201201008 [51] 黄籍中, 2000.中上扬子区海相沉积烃源研究(二).天然气勘探与开发, 23(1):9-27, 135. [52] 焦方正, 冯建辉, 易积正, 等, 2015.中扬子地区海相天然气勘探方向、关键问题与勘探对策.中国石油勘探, 20(2):1-8. doi: 10.3969/j.issn.1672-7703.2015.02.001 [53] 李忠雄, 陆永潮, 王剑, 等, 2004.中扬子地区晚震旦世-早寒武世沉积特征及岩相古地理.古地理学报, 6(2):151-162. doi: 10.3969/j.issn.1671-1505.2004.02.003 [54] 梁狄刚, 郭彤楼, 陈建平, 等, 2008.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布.海相油气地质, 13(2):1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001 [55] 林拓, 张金川, 李博, 等, 2014.湘西北常页1井下寒武统牛蹄塘组页岩气聚集条件及含气特征.石油学报, 35(5):839-846. http://d.old.wanfangdata.com.cn/Periodical/syxb201405003 [56] 马勇, 钟宁宁, 韩辉, 等, 2014.糜棱化富有机质页岩孔隙结构特征及其含义.中国科学(D辑:地球科学), 44 (10):2202-2209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201410009 [57] 聂海宽, 张金川, 李玉喜, 2011.四川盆地及其周缘下寒武统页岩气聚集条件.石油学报, 32(6):959-967. doi: 10.3969/j.issn.1001-8719.2011.06.020 [58] 彭女佳, 何生, 郝芳, 等, 2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7):1134-1146. doi: 10.3799/dqkx.2017.092 [59] 田华, 张水昌, 柳少波, 等, 2016.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用.天然气地球科学, 27(3):494-502. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603011 [60] 田守嶒, 王天宇, 李根生, 等, 2017.页岩不同类型干酪根内甲烷吸附行为的分子模拟.天然气工业, 37(12):18-25. doi: 10.3787/j.issn.1000-0976.2017.12.003 [61] 解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 42(7):1045-1056. doi: 10.3799/dqkx.2017.084 [62] 徐姝慧, 何生, 朱钢添, 等, 2018.鄂西渝东下古生界海相页岩饱和烃组成特征及其指示意义.石油与天然气地质, 39(2):217-228. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201802002 [63] 闫建萍, 张同伟, 李艳芳, 等, 2013.页岩有机质特征对甲烷吸附的影响.煤炭学报, 38 (5):805-811. http://d.old.wanfangdata.com.cn/Periodical/mtxb201305015 [64] 翟刚毅, 包书景, 王玉芳, 等, 2017a.古隆起边缘成藏模式与湖北宜昌页岩气重大发现.地球学报, 38(4):441-447. http://d.old.wanfangdata.com.cn/Periodical/dqxb201704001 [65] 翟刚毅, 王玉芳, 包书景, 等, 2017b.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42 (7):1057-1068. doi: 10.3799/dqkx.2017.085 [66] 张建坤, 何生, 颜新林, 等, 2017.页岩纳米级孔隙结构特征及热成熟演化.中国石油大学学报(自然科学版), 41 (1):11-24. doi: 10.3969/j.issn.1673-5005.2017.01.002 [67] 张晓明, 石万忠, 徐清海, 等, 2015.四川盆地焦石坝地区页岩气储层特征及控制因素.石油学报, 36(8):926-939, 953. http://d.old.wanfangdata.com.cn/Periodical/syxb201508004 [68] 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01 [69] 周庆华, 宋宁, 王成章, 等, 2015.湖南常德地区牛蹄塘组页岩特征及含气性.天然气地球科学, 26(2):301-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201502011 [70] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6):641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001