• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆喀什三角洲地下水流系统的水化学和同位素标记

    魏兴 周金龙 梁杏 乃尉华 曾妍妍 范薇 李斌

    魏兴, 周金龙, 梁杏, 乃尉华, 曾妍妍, 范薇, 李斌, 2020. 新疆喀什三角洲地下水流系统的水化学和同位素标记. 地球科学, 45(5): 1807-1817. doi: 10.3799/dqkx.2019.177
    引用本文: 魏兴, 周金龙, 梁杏, 乃尉华, 曾妍妍, 范薇, 李斌, 2020. 新疆喀什三角洲地下水流系统的水化学和同位素标记. 地球科学, 45(5): 1807-1817. doi: 10.3799/dqkx.2019.177
    Wei Xing, Zhou Jinlong, Liang Xing, Nai Weihua, Zeng Yanyan, Fan Wei, Li Bin, 2020. Hydrochemical and Isotopic Markers of Groundwater Flow Systems in the Kashgar Delta Area in Xinjiang. Earth Science, 45(5): 1807-1817. doi: 10.3799/dqkx.2019.177
    Citation: Wei Xing, Zhou Jinlong, Liang Xing, Nai Weihua, Zeng Yanyan, Fan Wei, Li Bin, 2020. Hydrochemical and Isotopic Markers of Groundwater Flow Systems in the Kashgar Delta Area in Xinjiang. Earth Science, 45(5): 1807-1817. doi: 10.3799/dqkx.2019.177

    新疆喀什三角洲地下水流系统的水化学和同位素标记

    doi: 10.3799/dqkx.2019.177
    基金项目: 

    新疆自治区自然科学基金项目 2019D01B18

    国家自然科学基金项目 41662016

    详细信息
      作者简介:

      魏兴(1993-), 男, 博士研究生, 主要从事同位素水文地质学与地下水或地表水转化研究

      通讯作者:

      周金龙

    • 中图分类号: P641

    Hydrochemical and Isotopic Markers of Groundwater Flow Systems in the Kashgar Delta Area in Xinjiang

    • 摘要: 新疆喀什三角洲地下水“水质型”缺水问题较为突出,开展地下水流系统研究具有实际意义.采用水化学和环境同位素年龄测试法,在对喀什三角洲地下水含水系统划分基础上,对地下水化学和循环更新特征进行了分析研究.结果表明:三角洲含水系统由山前倾斜冲洪积平原潜水、河流冲积平原潜水和河流冲积平原承压水构成.沿地下水流向,水化学类型演化为HCO3·SO4-Ca→SO4-Ca→SO4·Cl-Mg·Na→SO4·Cl-Na,TDS增高,水质趋向盐化.山前倾斜冲洪积平原为溶滤-径流区,河流冲积平原为径流-累盐区.研究区地下水更新速率为0.03%~16.35%·a-1,具有山前倾斜冲洪积平原潜水>河流冲积平原潜水>河流冲积平原承压水的特征.利用3H估算得出,山前倾斜冲洪积平原潜水年龄为8~49 a,平均值为29 a;河流冲积平原潜水年龄为14~>50 a,其中上部潜水平均年龄为24 a,下部潜水平均年龄大于50 a.利用14C估算得出,河流冲积平原潜水为476~33 623 a,平均值为8 106 a;河流冲积平原承压水为5 186~34 578 a,平均值为30 043 a,与潜水比为“更古老”的水.综合以上特征得出,喀什三角洲地下水含水系统可以划分为2个更新速率较快的局部水流系统(Ⅰ1和Ⅰ2)和一个循环滞缓的区域水流系统(Ⅱ).

       

    • 图  1  研究区地下水采样点分布

      Fig.  1.  Distribution of groundwater sampling locations in the study area

      图  2  含水介质中矿物饱和指数关系

      Fig.  2.  Saturation index relation of minerals in aquifer medium

      图  3  潜水3H年龄及更新速率

      Fig.  3.  3H age and the renewal rates in unconfined groundwater

      图  4  典型剖面地下水流系统

      Fig.  4.  Groundwater flow systems of typical section

      表  1  地下水化学参数与频数分布

      Table  1.   Hydrochemical parameters and frequency distribution in groundwater

      水文地质单元 指标 统计值 按地下水质量标准限值分组(个)
      最大值 最小值 平均值 2Ⅴ 4Ⅴ 8Ⅴ 16Ⅴ 32Ⅴ
      山前倾斜冲洪积平原潜水(n=49) pH 8.42 7.26 7.88 49 0 0 0
      TDS(mg·L-1 3 163.8 291.5 1 136.0 1 9 17 13 9 0 0 0 0 0
      总硬度(mg·L-1 1 306.2 170.9 524.3 0 14 10 10 14 1 0 0 0 0
      Na+(mg·L-1 759.3 14.5 189.3 20 12 4 5 8 0 0 0 0 0
      Ca2+(mg·L-1 265 28.4 112.7
      Mg2+(mg·L-1 176.9 4.4 59.2
      Cl-(mg·L-1 822.6 14.2 229.8 7 21 8 5 1 7 0 0 0 0
      HCO3-(mg·L-1 1 294.9 24.4 185.0
      SO42-(mg·L-1 1 239.3 101.9 440.5 0 6 13 4 14 12 0 0 0 0
      河流冲积平原潜水(n=78) pH 8.28 7.11 7.78 78 0 0 0
      TDS(mg·L-1 44 130.4 280.4 6 404.8 2 6 23 16 13 5 0 7 6 0
      总硬度(mg·L-1 10 619.8 158.4 1 871.8 0 10 13 13 17 10 5 9 1 0
      Na+(mg·L-1 13 916.7 31.2 1 645.9 21 14 5 13 9 3 0 5 7 1
      Ca2+(mg·L-1 1 707.2 34.1 262.0
      Mg2+(mg·L-1 2 272.5 15.3 296.4
      Cl-(mg·L-1 20 210.5 22.7 2 027.0 9 25 8 11 3 9 0 0 8 5
      HCO3-(mg·L-1 756.8 59.8 265.2
      SO42-(mg·L-1 9 611.8 92.2 1 779.8 0 5 9 8 19 14 8 3 11 1
      河流冲积平原承压水(n=275) pH 8.52 7.23 7.86 274 1 0 0
      TDS(mg·L-1 21 966.2 246.5 2 900.8 3 23 76 55 58 38 16 6 0 0
      总硬度(mg·L-1 10 239.1 48.2 1 187.6 13 47 42 29 62 49 28 5 0 0
      Na+(mg·L-1 5 115.4 14.1 571.7 46 38 30 50 59 32 13 7 0 0
      Ca2+(mg·L-1 1 769.7 9.3 197.7
      Mg2+(mg·L-1 1 187.7 3.2 163.9
      Cl-(mg·L-1 6 044.6 19.8 617.7 23 75 32 21 55 41 16 10 2 0
      HCO3-(mg·L-1 1 320.9 48.8 223.7
      SO42-(mg·L-1 9 173.6 39.7 1 231.4 1 17 34 25 69 54 40 29 6 0
      下载: 导出CSV

      表  2  地下水3H年龄估算结果

      Table  2.   Estimation of 3H age in groundwater

      水文地质单元 分布范围(a) 样本数n(个) 占比(%) 平均值(a)
      山前倾斜冲洪积平原潜水(n=28) 0~10 1 3.6 8
      10~30 19 67.9 24
      30~50 8 28.5 44
      > 50
      河流冲积平原潜水(n=37) 0~10
      10~30 18 48.6 22
      30~50 2 5.4 40
      > 50 17 46.0
      河流冲积平原承压水(n=27) 0~10
      10~30
      30~50
      > 50 27 100.0
      下载: 导出CSV

      表  3  地下水更新速率估算结果

      Table  3.   Estimation of groundwater renewal rate

      水文地质单元 分布范围(%·a-1 样本数n(个) 占比(%) 平均值(%·a-1
      山前倾斜冲洪积平原潜水(n=28) 10~16.35 2 7.2 13.80
      5~10 13 46.4 6.20
      0~5 13 46.4 3.83
      河流冲积平原潜水(n=37) 10~16.35
      5~10 17 45.9 6.70
      0~5 20 54.1 1.10
      河流冲积平原承压水(n=27) 10~16.35
      5~10
      0~5 27 100.0 0.02
      下载: 导出CSV

      表  4  地下水14C年龄估算结果

      Table  4.   Estimation of 14C age in groundwater

      水文地质单元 分布范围(a) 样本数n(个) 占比(%) 平均值(a)
      河流冲积平原潜水(n=14) 50~1 000 2 14.3 602
      1 000~10 000 10 71.4 4 506
      10 000~33 623 2 14.3 33 609
      河流冲积平原承压水(n=14) 50~1 000
      1 000~10 000 1 7.1 5 186
      10 000~34 578 13 92.9 31 955
      下载: 导出CSV

      表  5  不同地区地下水14C年龄对比

      Table  5.   Comparison of 14C age in groundwater in different areas

      地区 参考文献 取样深度(m) 14C年龄(a) 最大年龄比值
      宁夏银川平原 苏小四等(2006) 70~250 0~8 750 0.25
      北京市潮白河冲积扇 翟远征等(2013) 100~200 2 000~12 000 0.35
      甘肃黑河流域 阮云峰等(2015) 70~150 0~14 000 0.40
      宁夏固原 黄小琴等(2014) 100~180 2 000~23 800 0.69
      山东鲁北平原 杨丽芝等(2009) 300~350 2 620~25 470 0.74
      青海柴达木盆地 刘峰等(2014) < 180 0~28 000 0.81
      新疆喀什三角洲 本文 < 350 476~34 578 1.00
      河北平原 卫文等(2011) 250~550 673~35 200 1.02
      下载: 导出CSV
    • [1] Abdou Babaye, M. S., Orban, P., Ousmane, B., et al., 2019. Characterization of Recharge Mechanisms in a Precambrian Basement Aquifer in Semi-Arid South-West Niger. Hydrogeology Journal, 27(2):475-491. https://doi.org/10.1007/s10040-018-1799-x
      [2] Atkinson, A.P., Cartwright, I., Gilfedder, B.S., et al., 2014. Using 14C and 3H to Understand Groundwater Flow and Recharge in an Aquifer Window. Hydrology and Earth System Sciences, 18(12):4951-4964. https://doi.org/10.5194/hess-18-4951-2014
      [3] Ba, W.L., Zhou, H.R., Liang, X.Q., et al., 2013. Ecological Footprint and Its Application in Ecological Planning in Kashgar Prefecture.Arid Zone Research, 30(5):905-912 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqyj201305024
      [4] Chen, Y. X., Yang, F. T., Su, X. S., et al., 2016. Estimation of Groundwater Renewal Rate Using Environmental Isotopes in the Arid Upper Peacock River, NW China.Journal of Radioanalytical and Nuclear Chemistry, 310(2):911-917. https://doi.org/10.1007/s10967-016-4979-y
      [5] Chen, Z.Y., Liu, J., Yang, X.K., et al., 2010. The Environmental Isotope Markers of Groundwater Flow Patterns of the Song-Nen Plain.Earth Science Frontiers, 17(6):94-101 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201006013
      [6] Cui, Y.L., Liu, F., Hao, Q.C., et al., 2015. Characteristics of Hydrogen and Oxygen Isotopes and Renewability of Groundwater in the Nuomuhong Alluvial Fan. Hydrogeology & Engineering Geology, 42(6):1-7 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201506001
      [7] Edmunds, W. M., 2009. Geochemistry's Vital Contribution to Solving Water Resource Problems.Applied Geochemistry, 24(6):1058-1073. https://doi.org/10.1016/j.apgeochem.2009.02.021
      [8] Gabrielli, C. P., Morgenstern, U., Stewart, M. K., et al., 2018. Contrasting Groundwater and Streamflow Ages at the Maimai Watershed. Water Resources Research, 54(6):3937-3957. https://doi.org/10.1029/2017wr021825
      [9] Gonfiantini, R., Roche, M. A., Olivry, J. C., et al., 2001. The Altitude Effect on the Isotopic Composition of Tropical Rains.Chemical Geology, 181(1-4):147-167. https://doi.org/10.1016/s0009-2541(01)00279-0
      [10] Huang, X.Q., Liu, Q., Xue, Z.Q., et al., 2014. The Characteristics of Groundwater Isotopes in Upper Reach Plain of Qingshui River, Ningxia. Journal of Arid Land Resources and Environment, 28(2):143-148 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201402025
      [11] Le Gal la Salle, C., Marlin, C., Leduc, C., et al., 2001. Renewal Rate Estimation of Groundwater Based on Radioactive Tracers (3H, 14C) in an Unconfined Aquifer in a Semi-Arid Area, Iullemeden Basin, Niger. Journal of Hydrology, 254(1/2/3/4):145-156. https://doi.org/10.1016/s0022-1694(01)00491-7
      [12] Li, H., Wen, Z., Xie, X.J., et al., 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City.Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016
      [13] Li, L.Q., Wang, Z.Z., He, H.X., et al., 2019. Research of Water Resources Multi-Dimensional Equilibrium Allocation Based on Eco-Hydrological Threshold Regulation in Inland Arid Region. Journal of Hydraulic Engineering, 50(3):377-387 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/slxb201903011
      [14] Liu, F., Cui, Y.L., Zhang, G., et al., 2014. Using the 3H and 14C Dating Methods to Calculate the Groundwater Age in Nuomuhong, Qaidam Basin.Geoscience, 28(6):1322-1328 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201406026
      [15] Ma, B., Jin, M. G., Liang, X., et al., 2018. Groundwater Mixing and Mineralization Processes in a Mountain-Oasis-Desert Basin, Northwest China:Hydrogeochemistry and Environmental Tracer Indicators. Hydrogeology Journal, 26(1):233-250. https://doi.org/10.1007/s10040-017-1659-0
      [16] Mao, X.M., Liang, X., Wang, F.L., et al., 2010. Calibrating Deep Groundwater 14C Ages of North China Plain with TDIC and a Comparative Study.Earth Science Frontiers, 17(6):102-110 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201006014
      [17] Mao, X. M., Wang, H., Feng, L., 2018.14C Age Reassessment of Groundwater from the Discharge Zone due to Cross-Flow Mixing in the Deep Confined Aquifer. Journal of Hydrology, 560:572-581. https://doi.org/10.1016/j.jhydrol.2018.03.052
      [18] Nai, W.H., Shi, J., Wang, W.K., et al., 2018. Isotopic Age Characteristics and Renewal Rate of Groundwater in Kashgar Plain. Xinjiang Geology, 36(3):406-409 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xjdz201803021
      [19] Pearson Jr, F. J. White, D.E., 1967. Carbon 14 Ages and Flow Rates of Water in Carrizo Sand, Atascosa County, Texas. Water Resources Research, 3(1):251-261. https://doi.org/10.1029/wr003i001p00251
      [20] Ruan, Y.F., Zhao, L.J., Xiao, H.L., et al., 2015. The Groundwater in the Heihe River Basin:Isotope Age and Renewability. Journal of Glaciology and Geocryology, 37(3):767-782 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/bcdt201503024
      [21] Su, X.S., Lin, X.Y., Dong, W.H., et al., 2006.14C Age Correction of Deep Groundwater in Yinchuan Plain. Journal of Jilin University (Earth Science Edition), 36(5):830-836 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200605020
      [22] Tamers, M. A., 1975. Validity of Radiocarbon Dates on Ground Water.Geophysical Surveys, 2(2):217-239. https://doi.org/10.1007/bf01447909
      [23] Vogel, J.C., 1970. Carbon-14 Dating of Groundwater.In: Isotope Hydrology.IAEA, Vienna, 225-239.
      [24] Wei, W., Chen, Z.Y., Zhao, H.M., et al., 2011. Comparison of 4He and 14C Dating of Groundwater from Quaternary Confined Aquifers in Hebei Plain. Journal of Jilin University (Earth Science Edition), 41(4):1144-1150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201104026
      [25] Wei, X., Zhou, J.L., Nai, W.H., et al., 2019. Hydrochemical Characteristics and Evolution of Groundwater in the Kashgar Delta Area in Xinjiang. Environmental Science, 40(9):4042-4051 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201909023
      [26] Xiao, Y., Shao, J. L., Cui, Y. L., et al., 2017. Groundwater Circulation and Hydrogeochemical Evolution in Nomhon of Qaidam Basin, Northwest China. Journal of Earth System Science, 126(2):26. https://doi.org/10.1007/s12040-017-0800-8
      [27] Xie, Q.M., Wang, Z.L., Yin, C.M., et al., 2019. Tectonic Evolution Characteristics of Yingjisha and Pishan Areas and the Influence on Petroleum Accumulation in the Southwest Depression, Tarim Basin.Petroleum Geology & Experiment, 41(2):165-175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201902003
      [28] Yang, L.Z., Zhang, G.H., Liu, Z.Y., et al., 2009. Isotope Age of Groundwater in Lubei Plain and an Evaluation of Its Renewable Capacity. Acta Geoscientica Sinica, 30(2):235-242 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200902012
      [29] Yu, H.T., Ma, T., Deng, Y.M., et al., 2017. Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5):685-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004
      [30] Yuan, R.Q., Long, X.T., Wang, P., et al., 2015. Renewal Rate of Groundwater in the Baiyangdian Lake Basin.Progress in Geography, 34(3):381-388 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201503013
      [31] Zhai, Y.Z., Wang, J.S., Zhou, J., 2013. Hydrochemical and Isotopic Markers of Flow Patterns and Renewal Mode of Groundwater in Chaobai River Alluvial Fan in Beijing.Journal of Basic Science and Engineering, 21(1):32-44 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=391aae91bf7bc13d9a01335463104b65&encoded=0&v=paper_preview&mkt=zh-cn
      [32] 巴乌龙, 周华荣, 梁雪琼, 等, 2013.喀什地区生态足迹分析及其在生态规划中的应用.干旱区研究, 30(5):905-912. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201305024
      [33] 陈宗宇, 刘君, 杨湘奎, 等, 2010.松嫩平原地下水流动模式的环境同位素标记.地学前缘, 17(6):94-101. http://d.old.wanfangdata.com.cn/Periodical/dxqy201006013
      [34] 崔亚莉, 刘峰, 郝奇琛, 等, 2015.诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究.水文地质工程地质, 42(6):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201506001
      [35] 黄小琴, 柳青, 薛忠岐, 等, 2014.宁夏固原地区地下水同位素特征研究.干旱区资源与环境, 28(2):143-148. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201402025
      [36] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. doi: 10.3799/dqkx.2017.068
      [37] 李丽琴, 王志璋, 贺华翔, 等, 2019.基于生态水文阈值调控的内陆干旱区水资源多维均衡配置研究.水利学报, 50(3):377-387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201903011
      [38] 刘峰, 崔亚莉, 张戈, 等, 2014.应用氚和14C方法确定柴达木盆地诺木洪地区地下水年龄.现代地质, 28(6):1322-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201406026
      [39] 毛绪美, 梁杏, 王凤林, 等, 2010.华北平原深层地下水14C年龄的TDIC校正与对比.地学前缘, 17(6):102-110. http://d.old.wanfangdata.com.cn/Periodical/dxqy201006014
      [40] 乃尉华, 史杰, 王文科, 等, 2018.喀什平原区地下水同位素年龄特征及更新速率分析.新疆地质, 36(3):406-409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201803021
      [41] 阮云峰, 赵良菊, 肖洪浪, 等, 2015.黑河流域地下水同位素年龄及可更新能力研究.冰川冻土, 37(3):767-782. http://d.old.wanfangdata.com.cn/Periodical/bcdt201503024
      [42] 苏小四, 林学钰, 董维红, 等, 2006.银川平原深层地下水14C年龄校正.吉林大学学报(地球科学版), 36(5):830-836. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200605020
      [43] 卫文, 陈宗宇, 赵红梅, 等, 2011.河北平原第四系承压水4He与14C测年对比.吉林大学学报(地球科学版), 41(4):1144-1150. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201104026
      [44] 魏兴, 周金龙, 乃尉华, 等, 2019.新疆喀什三角洲地下水化学特征及演化规律.环境科学, 40(9):4042-4051. http://d.old.wanfangdata.com.cn/Periodical/hjkx201909023
      [45] 解巧明, 王震亮, 尹成明, 等, 2019.塔里木盆地西南坳陷英吉沙与皮山地区构造演化特征及对油气成藏的影响.石油实验地质, 41(2):165-175. http://d.old.wanfangdata.com.cn/Periodical/sysydz201902003
      [46] 杨丽芝, 张光辉, 刘中业, 等, 2009.鲁北平原地下水同位素年龄及可更新能力评价.地球学报, 30(2):235-242. http://d.old.wanfangdata.com.cn/Periodical/dqxb200902012
      [47] 於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. doi: 10.3799/dqkx.2017.056
      [48] 袁瑞强, 龙西亭, 王鹏, 等, 2015.白洋淀流域地下水更新速率.地理科学进展, 34(3):381-388. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201503013
      [49] 翟远征, 王金生, 周俊, 2013.北京市潮白河冲洪积扇地下水流动和更新模式的水化学和同位素标记.应用基础与工程科学学报, 21(1):32-44. http://d.old.wanfangdata.com.cn/Periodical/yyjcygckxxb201301004
    • 加载中
    图(4) / 表(5)
    计量
    • 文章访问数:  979
    • HTML全文浏览量:  176
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-17
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回