Distribution Characteristics and Causes of Nitrate in Waters of Typical Small Karst Catchment: A Case of the Houzhai River Catchment
-
摘要: 岩溶流域水环境极易受到人为活动的影响,而硝酸盐污染是岩溶流域面临的最突出最普遍的问题之一,把握岩溶流域中硝酸盐的来源及其在不同水体中的分布特征与成因,可为岩溶流域硝酸盐污染的防治提供依据.以贵州普定后寨河流域为研究对象,于2017年5月采集地下水和地表水样品共53件,测定主要水化学参数,分析NO3-来源,并结合区域土地利用类型,沿流动路径阐明其影响.结果表明,研究区主要阴、阳离子浓度从大到小依次为HCO3- > SO42- > NO3- > Cl-、Ca2+ > Mg2+ > Na+ > K+,水化学类型以HCO3-Ca型为主.水体NO3-的主要来源为化肥,有6个采样点水体明显受到硝酸盐污染,NO3-浓度变化主要受混合过程控制,硝化作用和反硝化作用影响不明显.流域水体NO3-浓度受土地利用方式影响明显,流经以农田或村寨为主的区域时NO3-浓度升高,流经以林地灌木等自然植被繁茂的区域时NO3-浓度降低.Abstract: The water environment of karst catchment is very susceptible to human activities. Nitrate pollution is a prominent and common problem in karst catchment. It is important to clarify the source, distribution characteristics and formation mechanism of nitrate in waters of karst catchment, which can facilitate the nitrate pollution prevention in karst catchment. The Houzhai River catchment of Puding of Guizhou was selected as the study area. 53 samples of groundwater and surface water were collected for measuring water chemical parameters in May 2017. Water chemical parameters were determined for analyzing the NO3- source. Combined with the land use type, the influence of the nitrate spatial distribution was discussed along the flow path. The results show that the order of ion concentration in waters was Ca2+ > Mg2+ > Na+ > K+, HCO3- > SO42- > NO3- > Cl- in the study area, respectively. The type of water chemistry was HCO3-Ca. The main source of NO3- was the chemical fertilizer. Variations of NO3- concentration along the flow path were mainly controlled by the mixing process, and the impact of nitrification and denitrification was not obvious. Waters of 6 sampling sites were obviously polluted by nitrate. The concentration of NO3- in waters of the catchment was obviously affected by the land use pattern. NO3- concentration increased when waters flowed through farmland or villages, and decreased when they flowed through forest land.
-
Key words:
- karst /
- nitrate /
- distribution characteristics /
- formation mechnism /
- land use /
- mixing process /
- hydrogeology
-
图 5 地表水和地下水中Cl–-NO3–(a)及Cl–-NO3–/Cl–(b)关系
据Liu et al.(2006)和Yue et al.(2014)
Fig. 5. Relationships of Cl–-NO3– (a) and Cl–-NO3–/Cl– (b) in surface water and groundwater
图 7 研究区土地利用类型及水体硝酸盐浓度分布
Fig. 7. Land use type in the study area and distribution of nitrate concentration in water
表 1 研究区水化学参数
Table 1. Statistics of water chemical parameters in the study area
项目 地表水(mg/L) 地下水(mg/L) 最大值 最小值 平均值 标准差 变异系数 最大值 最小值 平均值 标准差 变异系数 pH 8.50 7.27 7.88 0.37 0.05 8.10 7.11 7.48 0.24 0.03 EC(S/m) 774 340 640 118 0.18 1 276 189 633 171 0.27 K+ 8.55 1.77 4.19 2.25 0.54 41.68 - 5.00 7.22 1.44 Na+ 15.16 1.97 6.39 3.67 0.57 28.59 0.19 5.92 5.28 0.89 Ca2+ 125.70 49.50 88.51 19.19 0.22 131.62 63.14 91.95 15.58 0.17 Mg2+ 36.93 19.17 27.44 4.44 0.16 59.21 9.24 26.84 10.80 0.40 Cl- 20.46 4.74 11.88 4.81 0.40 34.71 0.60 10.49 7.20 0.69 SO42- 174.58 54.32 115.28 31.71 0.28 309.66 33.94 99.63 57.28 0.57 NO3- 49.14 0.76 27.50 12.20 0.44 70.69 0.23 31.18 14.18 0.45 HCO3- 284.02 176.44 239.60 28.71 0.12 357.18 193.65 255.77 37.82 0.15 TDS 620.25 313.70 520.79 86.99 0.17 921.09 339.42 526.79 103.80 0.20 NH4+ 2.12 - 0.61 0.79 1.30 2.86 - 1.10 0.83 0.75 注:“-”表示低于检出线. 表 2 各样品点土地利用类型
Table 2. Statistics of land use types at each sampling point
样品编号 土地利用类型 样品编号 土地利用类型 样品编号 土地利用类型 样品编号 土地利用类型 Q6 林地 Q24 村寨 Q40 农田 R5 农田 Q7 农田 Q25 农田 Q41 林地 R6 农田 Q8 村寨 Q26 农田 Q42 林地 R9 农田 Q9 村寨 Q27 村寨 Q43 农田 R10 农田 Q11 农田 Q28 农田 Q44 农田 R11 农田 Q12 农田 Q30 农田 Q45 农田 R12 农田 Q13 农田 Q31 农田 Q46 农田 R14 农田 Q14 农田 Q32 农田 Q47 农田 R15 农田 Q15 农田 Q35 农田 Q48 林地 R17 林地 Q18 农田 Q36 林地 Q49 农田 R18 农田 Q19 农田 Q37 农田 Q50 农田 R19 林地 Q20 农田 Q38 村寨 Q51 林地 R21 林地 Q21 林地 Q39 农田 R3 农田 R22 林地 Q23 农田 注:其中农田37个,林地11个,村寨5个. -
[1] Altman, S. J., Parizek, R. R., 1995. Dilution of Nonpoint-Source Nitrate in Groundwater. Journal of Environment Quality, 24(4): 707-718. https://doi.org/10.2134/jeq1995.00472425002400040023x [2] Babiker, I.S., Mohamed, M.A., Terao, H., et al., 2004. Assessment of Groundwater Contamination by Nitrate Leaching from Intensive Vegetable Cultivation Using Geographical Information System. Environment International, 29(8): 1009-1017. https://doi.org/10.1016/s0160-4120(03)00095-3 [3] Chen, F. J., Li, X. H., Jia, G. D., 2007. The Application of Nitrogen and Oxygen Isotopes in the Study of Nitrate in Rivers. Advances in Earth Science, 22(12): 1251-1257 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d9d45d24d1ceaccec7b6f8ca085df8b0&encoded=0&v=paper_preview&mkt=zh-cn [4] Duan, S. H., Jang, Y. J., Zhang, Y. Z., et al., 2019. Sources of Nitrate in Groundwater and Its Environmental Effects in Karst Trough Valleys: A Case Study of an Underground River System in the Longfeng Trough Valley, Chongqing. Environmental Science, 40(4):1715-1725 (in Chinese with English abstract). [5] Galloway, J. N., Townsend, A. R., Erisman, J. W., et al., 2008. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320(5878): 889-892. https://doi.org/10.1126/science.1136674 [6] Gillham, R. W., Cherry, J. A., 1978. Field Evidence of Denitrification in Shallow Groundwater Flow Systems. Water Quality Research Journal, 13(1): 53-72. https://doi.org/10.2166/wqrj.1978.006 [7] Gulis, G., Czompolyova, M., Cerhan, J. R., 2002. An Ecologic Study of Nitrate in Municipal Drinking Water and Cancer Incidence in Trnava District, Slovakia. Environmental Research, 88(3): 182-187. https://doi.org/10.1006/enrs.2002.4331 [8] Guo, Y. M., Ni, J., Liu, L. B., et al., 2018. Estimating Aboveground Biomass Using Pléiades Satellite Image in a Karst Watershed of Guizhou Province, Southwestern China. Journal of Mountain Science, 15(5): 1020-1034. https://doi.org/10.1007/s11629-017-4760-x [9] Han, Z. W., Tang, C. Y., Wu, P., et al., 2014. Using Stable Isotopes and Major Ions to Identify Hydrological Processes and Geochemical Characteristics in a Typical Karstic Basin, Guizhou, Southwest China. Isotopes in Environmental and Health Studies, 50(1): 62-73. https://doi.org/10.1080/10256016.2013.837904 [10] Hu, X. J., Chen, B., Hu, X. H., et al., 2001. Study on the Model of Rational Land Use in the Karst Areas of the Houzhai River Basin. Carsologica Sinica, 20(4): 305-309 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR200104014.htm [11] Itoh, M., Takemon, Y., Makabe, A., et al., 2011. Evaluation of Wastewater Nitrogen Transformation in a Natural Wetland (Ulaanbaatar, Mongolia) Using Dual-Isotope Analysis of Nitrate. Science of the Total Environment, 409(8): 1530-1538. https://doi.org/10.1016/j.scitotenv.2011.01.019 [12] Ju, X. T., Xing, G. X., Chen, X. P., et al., 2009. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proceedings of the National Academy of Sciences, 106(9): 3041-3046. https://doi.org/10.1073/pnas.0813417106 [13] Li, H., Wen, Z., Xie, X. J., et al., 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5): 804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016 [14] Li, L., Ren, F. P., Wang, Z. G., et al., 2014. A Review on Identifying Agricultural NPS Pollution Sources by Using Stable N Isotope. Journal of Yangtze River Scientific Research Institute, 31(7): 21-28 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201407004 [15] Li, S. L., Liu, C. Q., 2006. The Character and Application of δ18O-NO3- in the Groundwater of Guiyang. Carsologica Sinica, 25(2): 108-111 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200602004 [16] Liu, C.Q., Li, S.L., Lang, Y.C., et al., 2006.Using δ15N and δ18O Values to Identify Nitrate Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 40(22):6928-6933. https://doi.org/10.1021/es0610129 [17] Lu, L., Cheng, H., Pu, X., et al., 2015.Nitrate Behaviors and Source Apportionment in an Aquatic System from a Watershed with Intensive Agricultural Activities. Environmental Science: Processes & Impacts, 17(1): 131-144. https://doi.org/10.1039/c4em00502c [18] Shen, S., Ma, T., Du, X., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705003 [19] Su, W. C., 1997. Appraisal Study on the Sensitivity of Eco Environment in Karst Region. Carsologica Sinina, 16(1): 57-65 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-zgyr701.009.htm [20] Trudell, M. R., Gillham, R. W., Cherry, J. A., 1986. An In-Situ Study of the Occurrence and Rate of Denitrification in a Shallow Unconfined Sand Aquifer. Journal of Hydrology, 83(3-4): 251-268. https://doi.org/10.1016/0022-1694(86)90155-1 [21] Vitousek, P. M., Naylor, R., Crews, T., et al., 2009. Nutrient Imbalances in Agricultural Development. Science, 324(5934): 1519-1520. https://doi.org/10.1126/science.1170261 [22] Wan, H. T., Xie, C. J., Yang, Y., et al., 1999. The Hydrochemical Characteristics of Houzhai Small Karst Basin, Guizhou. Carsologica Sinica, 18(4): 329-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr199904005 [23] Wang, J. Y., Wang, J. L., Jin, M. G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705018 [24] Wang, K. R., Guo, F., Jiang, G. H., et al., 2014. Application of 15N and 18O to Nitrogen Pollution Source in Karst Water in Eastern Guilin. China Environmental Science, 34(9): 2223-2230 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201409009 [25] Wang, L. C, Xu, Y. P., Zhang, L. F., et al., 2000. The Characteristic Study of Karst Water at Houzhai Underground Basin in Puding County, Guizhou Province. Scientia Geographica Sinica, 20(6): 557-562 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx200006012 [26] Xu, Z. F., Liu, C. Q., 2010. Water Geochemistry of the Xijiang Basin Rivers, South China: Chemical Weathering and CO2 Consumption. Applied Geochemistry, 25(10): 1603-1614. https://doi.org/10.1016/j.apgeochem.2010.08.012 [27] Yan, Y. N., Ma, T., Zhang, J. W., et al., 2017. Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water. Earth Science, 42(5): 783-792 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705014 [28] Yu, H. T., Ma, T., Deng, Y. M., et al., 2017. Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5): 685-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004 [29] Yu, J. B., Zhang, H. S., 1988. Karst Geomorphology in Puding, Guizhou Province. Carsologica Sinica, 7(2):163-172 (in Chinese with English abstract). [30] Yuan, D. X., 1996. On the Environmental and Geologic Problems of Karst Mountains and Rocks in the South-West China. World Sci-Tech R & D, 15(4):21-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz199705009 [31] Yue, F. J., Li, S. L., Liu, C. Q., et al., 2015. Sources and Transport of Nitrate Constrained by the Isotopic Technique in a Karst Catchment: An Example from Southwest China. Hydrological Processes, 29(8): 1883-1893. https://doi.org/10.1002/hyp.10302 [32] Yue, F. J., Liu, C. Q., Li, S. L., et al., 2014. Analysis of δ15N and δ18O to Identify Nitrate Sources and Transformations in Songhua River, Northeast China. Journal of Hydrology, 519: 329-339. https://doi.org/10.1016/j.jhydrol.2014.07.026 [33] Zhang, C., Yuan, D. X., 2004. Hydrochemical Variation of Typical Karst Subterranean Stream Basin and Its Relationship with Landuse Change——A Case Study of Houzhai Subterranean Stream Basin, Puding County, Guizhou Province. Journal of Soil Water Conservation, 18(5):134-137, 183 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQS200405032.htm [34] Zhang, H. S., Shi, Y. L., Yu, J. B., 1987. A Simulation of Karst Runoff Process round Plateau Divide——A Case History of Southern Area of Puding, Guizhou. Carsologica Sinica, 6(4):263-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR198704000.htm [35] Zhang, W. L., Wu, S. X., Ji, H. J., et al., 2004. Estimation of Agricultural Non-Point Source Pollution in China and the Alleviating Strategies Ⅰ. Estimation of Agricultural Non-Point Source Pollution in China in Early 21 Century. Scientia Agricultura Sinica, 37(7): 1008-1017 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200407012 [36] 陈法锦, 李学辉, 贾国东, 2007.氮氧同位素在河流硝酸盐研究中的应用.地球科学进展, 22(12):1251-1257. doi: 10.3321/j.issn:1001-8166.2007.12.005 [37] 段世辉, 蒋勇军, 张远瞩, 等, 2019.岩溶槽谷区地下河硝酸盐来源及其环境效应:以重庆龙凤槽谷地下河系统为例.环境科学, 40(4):1715-1725. doi: 10.3969/j.issn.1000-6923.2019.04.045 [38] 胡绪江, 陈波, 胡兴华, 等, 2001.后寨河喀斯特流域土地资源合理利用模式研究.中国岩溶, 20(4):305-309. doi: 10.3969/j.issn.1001-4810.2001.04.011 [39] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016 [40] 李力, 任斐鹏, 王志刚, 等, 2014.利用氮稳定同位素识别农业面源污染源的研究进展.长江科学院院报, 31(7):21-28. doi: 10.3969/j.issn.1001-5485.2014.07.004 [41] 李思亮, 刘丛强, 2006.贵阳地下水硝酸盐氧同位素特征及应用.中国岩溶, 25(2):108-111. doi: 10.3969/j.issn.1001-4810.2006.02.004 [42] 沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705003 [43] 苏维词, 1997.岩溶地区生态环境敏感度评价研究——以乌江流域为例.中国岩溶, 16(1):57-65. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR701.009.htm [44] 万洪涛, 谢传节, 杨勇, 等, 1999.贵州后寨河喀斯特小流域水化学特征.中国岩溶, 18(4):329-336. doi: 10.3969/j.issn.1001-4810.1999.04.005 [45] 王珺瑜, 王家乐, 靳孟贵, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705018 [46] 王开然, 郭芳, 姜光辉, 等, 2014.15N和18O在桂林岩溶水氮污染源示踪中的应用.中国环境科学, 34(9):2223-2230. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409009 [47] 王腊春, 许有鹏, 张立峰, 等, 2000.贵州普定后寨地下河流域岩溶水特征研究.地理科学, 20(6):557-562. doi: 10.3969/j.issn.1000-0690.2000.06.012 [48] 闫雅妮, 马腾, 张俊文, 等, 2017.地下水与地表水相互作用下硝态氮的迁移转化实验.地球科学, 42(5):783-792. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705014 [49] 於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705004 [50] 俞锦标, 章海生, 1988.贵州普定岩溶地貌.中国岩溶, 7(2):163-172. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR198802015.htm [51] 袁道先, 1996.我国西南岩溶石山的环境地质问题.世界科技研究与发展, 15(4):21-23. doi: 10.1111-j.1748-3743.2009.00179.x/ [52] 章程, 袁道先, 2004.典型岩溶地下河流域水质变化与土地利用的关系——以贵州普定后寨地下河流域为例.水土保持学报, 18(5):134-137, 183. doi: 10.3321/j.issn:1009-2242.2004.05.033 [53] 章海生, 史运良, 俞锦标, 1987.高原分水岭型喀斯特径流过程模拟——以贵州普定县南部地区为例.中国岩溶, 6(4):263-274. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR198704000.htm [54] 张维理, 武淑霞, 冀宏杰, 等, 2004.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学, 37(7):1008-1017. doi: 10.3321/j.issn:0578-1752.2004.07.012