• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北羌塘三叠纪辉石闪长玢岩的成因及其地球动力学背景

    杨凯 刘彬 马昌前 孙洋 张飞 牟进忠 何雨 肖露

    杨凯, 刘彬, 马昌前, 孙洋, 张飞, 牟进忠, 何雨, 肖露, 2020. 北羌塘三叠纪辉石闪长玢岩的成因及其地球动力学背景. 地球科学, 45(5): 1490-1502. doi: 10.3799/dqkx.2019.163
    引用本文: 杨凯, 刘彬, 马昌前, 孙洋, 张飞, 牟进忠, 何雨, 肖露, 2020. 北羌塘三叠纪辉石闪长玢岩的成因及其地球动力学背景. 地球科学, 45(5): 1490-1502. doi: 10.3799/dqkx.2019.163
    Yang Kai, Liu Bin, Ma Changqian, Sun Yang, Zhang Fei, Mou Jinzhong, He Yu, Xiao Lu, 2020. Petrogenesis and Geodynamic Setting of Triassic Pyroxene Diorite-Porphyrite from the North Qiangtang Terrane: Geochronology, Mineral Petrogeochemistry and Sr-Nd-Hf Isotope Constraints. Earth Science, 45(5): 1490-1502. doi: 10.3799/dqkx.2019.163
    Citation: Yang Kai, Liu Bin, Ma Changqian, Sun Yang, Zhang Fei, Mou Jinzhong, He Yu, Xiao Lu, 2020. Petrogenesis and Geodynamic Setting of Triassic Pyroxene Diorite-Porphyrite from the North Qiangtang Terrane: Geochronology, Mineral Petrogeochemistry and Sr-Nd-Hf Isotope Constraints. Earth Science, 45(5): 1490-1502. doi: 10.3799/dqkx.2019.163

    北羌塘三叠纪辉石闪长玢岩的成因及其地球动力学背景

    doi: 10.3799/dqkx.2019.163
    基金项目: 

    油气资源与探测国家重点实验室开放课题基金项目 PRP/open-1908

    国家自然科学基金项目 41502050

    中国地质调查局项目 DD20160022

    长江大学地质资源与地质工程一流学科开放基金项目和长江青年基金项目 2015cqn29

    大学生创新创业训练计划项目 2016011

    详细信息
      作者简介:

      杨凯(1995-), 男, 硕士生, 矿物学、岩石学、矿床学专业

      通讯作者:

      刘彬

    • 中图分类号: P611

    Petrogenesis and Geodynamic Setting of Triassic Pyroxene Diorite-Porphyrite from the North Qiangtang Terrane: Geochronology, Mineral Petrogeochemistry and Sr-Nd-Hf Isotope Constraints

    • 摘要: 尽管大量的研究发现青藏高原中部地区发育有三叠纪大规模岩浆活动,然而对于这些岩浆活动的成因机制以及深部动力学背景等问题的认识还存在很大的分歧.通过对青藏高原中部北羌塘地区三叠纪典型辉石闪长玢岩开展了系统的锆石U-Pb年代学、矿物化学、岩石地球化学与Sr-Nd-Hf同位素研究,深入剖析其岩石成因及动力学背景,进而为深入探究青藏高原中部三叠纪岩浆作用形成机理与有关板块构造演化过程提供重要的证据.通过LA-ICP-MS锆石U-Pb测年方法获得该岩浆岩的结晶年龄为227±2 Ma(MSWD=0.86).岩石样品在地球化学组成上相对富硅和铝,属于钙碱性系列.样品轻重稀土分异较强,轻稀土相对于重稀土显著富集,并且具有明显的Eu负异常.在微量元素组成上,样品相对于原始地幔要富集轻稀土以及Th、U,显著亏损Nb、Ta和Ti,整体表现出火山弧岩浆岩的特征.样品均具有相对较低的εNd(t)值(-4.53~-4.99)、比较集中ISr值(0.707 05~0.707 14),以及正的εHf(t)值(+0.81~+2.48),表明其岩浆源区很可能以富集的地幔组分为主.综合岩石学、地球化学与Sr-Nd-Hf同位素等研究结果,确定该岩体的形成应该与受俯冲组分(例如沉积物)改造的的富集地幔的部分熔融有关.此外,结合区域上已有的多学科研究资料还可以证实北羌塘地区有关古特提斯洋的俯冲时间至少开始于227 Ma.

       

    • 图  1  玉树南部闪长玢岩大地构造位置与岩体地质简图

      Liu et al.(2016)修改

      Fig.  1.  Simplified tectonic map and geological map for the southern Yushu diorite-porphyrite

      图  2  玉树南部闪长玢岩野外露头(a)和正交偏光镜下照片(b)

      Amp.角闪石;Opa.不透明金属矿物;Py.辉石;Pl.斜长石

      Fig.  2.  Field photographs (a) and photomicrographs (b) of the southern Yushu diorite-porphyrite

      图  3  玉树南部辉石闪长玢岩样品典型锆石的CL图像及U-Pb年龄谐和图

      CL图中大圈和小圈分别代表锆石Lu-Hf同位素和U-Pb同位素测点

      Fig.  3.  Zircon U-Pb concordia diagrams of zircon U-Pb data and representative cathodoluminescence (CL) images of the southern Yushu diorite-porphyrite

      图  4  玉树南部辉石闪长玢岩单斜辉石分类图解(a)及SiO2-Al2O3关系(b)

      Morimoto(2007)

      Fig.  4.  Compositional characteristics of the pyroxene (a) and SiO2 -Al2O3 (b) digrams of the southern Yushu diorite-porphyrite

      图  5  玉树南部闪长玢岩Zr/TiO2-Nb/Y图解(a)和SiO-K2O图解(b)

      底图据Peccerillo and Taylor(1976)Winchester and Floyd(1977)修改

      Fig.  5.  Zr/TiO2-Nb/Y (a) and SiO2-K2O (b) diagrams of the southern Yushu diorite-porphyrite

      图  6  玉树南部闪长玢岩稀土元素球粒陨石标准化分布图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough(1989),北羌塘P-T弧岩浆岩数据据Yang et al.(2011)

      Fig.  6.  Chondrite-normalized REE patterns (a) and primitive mantle normalized trace element diagrams (b) of the southern Yushu diorite-porphyrite

      图  7  玉树南部闪长玢岩样品的εNd(t)-Isr图解

      S型花岗岩和元古代片麻岩Sr-Nd同位素数据据Peng et al.(2014)Tao et al.(2014);北羌塘二叠纪岩浆岩、南缘三叠纪岩浆岩以及北缘其他三叠纪岩浆岩的Sr-Nd同位素数据分别据Zhai et al.(2013)Zhang et al.(2013)Zhao et al.(2015)

      Fig.  7.  Plot of εNd(t)-Isr of the southern Yushu diorite- porphyrite

      图  8  玉树南部闪长玢岩样品Hf同位素组成图解

      北羌塘二叠纪-早三叠世弧岩浆岩的Hf同位素数据据Yang et al.(2011);北羌塘北缘其他三叠纪岩浆岩数据分别据Zhao et al.(2015)刘彬等(2016);北羌塘南缘三叠纪岩浆岩数据据Peng et al.(2014)

      Fig.  8.  Plot of εHf(t)-zircon U-Pb ages (Ma) of the southern Yushu diorite-porphyrite

      图  9  玉树南部闪长玢岩样品Nb/La-Mg#(a)和Mg#-SiO2图解(b)

      Fig.  9.  Plots of Nb/La-Mg# (a) and Mg#-SiO2 (b) of the southern Yushu diorite-porphyrite

      图  10  玉树南部闪长玢岩Th/La-Th(a)和Th/Ce-Th/Sm关系图解(b)

      a.据Plank(2005)

      Fig.  10.  Plots of Th/La-Th (a) and Th/Ce-Th/Sm (b) showing a significant linear relationship of the southern Yushu diorite-porphyrite

      图  11  单斜辉石Al2O3-(TiO2+Cr2O3) (a)、TiO2-(SiO2/100)-Na2O (b)

      Barth and Gluhak(2009)Moghadam et al.(2010). MORB.洋中脊玄武岩;BON.玻安岩;BABB.弧后盆地玄武岩;IAT.岛弧拉斑玄武岩

      Fig.  11.  Plot of Al2O3-(TiO2+Cr2O3) (a) and TiO2-(SiO2/100)-Na2O (b) for the Clinopyroxene

    • [1] Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica Cosmochimica Acta, 64:4205-4225. https://doi.org/10.1016/S0016-7037(00)00493-2
      [2] Barth, M.G., Gluhak, T.M., 2009. Geochemistry and Tectonic Setting of Mafic Rocks from the Othris Ophiolite, Greece. Contributions to Mineralogy and Petrology, 157(1):23-40. https://doi.org/10.1007/s00410-008-0318-9
      [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
      [4] Duan, Q.F., Wang, J.X., Bai, Y.S., et al., 2009. Zircon SHRIMP U-Pb Dating and Lithogeochemistry of Gabbro from the Ophiolite in Southern Qinghai Province.Geology in China, 36(2):291-299 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200902003
      [5] Fu, X.G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China):Age and Tectonic Implications. Gondwana Research, 17(1):135-144. https://doi.org/10.1016/j.gr.2009.04.010
      [6] Fu, X.G., Wang, J., Wu, T., et al., 2009.Discovery of the Large-Scale Paleo-Weathering Crust in the Qiangtang Basin, Northern Tibet, China and Its Significance.Geological Bulletin of China, 28(6):696-700 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200906002
      [7] Gao, S., Rudnick, R.L., Yuan, H. L., et al., 2004.Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162
      [8] Gu, P.Y., He, S.P., Ji, W.H., et al., 2013. Geochemical Characteristics of Trachyandesite from Dongka Formation, Yushu (Qinghai):Petrogenesis and Its Tectonic Significance. Chinese Journal of Geology, 48(4):1069-1082 (in Chinese with English abstract).
      [9] Hawkesworth, C.J., Turner, S.P., Mcdermott, F., et al., 1997. U-Pb Isotopes in Arc Magmas:Implications for Element Transfer from the Subducted Crust. Science, 276(5312):551-555. https://doi.org/10.1126/science.276.5312.551
      [10] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27:1391-1399. https://doi.org/10.1039/c2ja30078h
      [11] Jian, P., Liu, D.Y., Kröner, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (I):Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113:748-766. https://doi.org/10.1016/j.lithos.2009.04.004
      [12] Jian, P., Liu, D, Y., Kröner, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II):Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3-4):767-784. https://doi.org/10.1016/j.lithos.2009.04.006
      [13] Kapp, P., Yin, A., Manning, C.E., et al., 2000.Blueschist-Bearing Metamorphic Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of Northern Tibet.Geology, 28(1):19-22. https://doi.org/10.1130/0091-7613(2000)28<19:bmccit>2.0.co;2 doi: 10.1130/0091-7613(2000)28<19:bmccit>2.0.co;2
      [14] Kapp, P., Yin, A., Manning, C.E., et al., 2003.Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet.Tectonics, 22(4):540-566. https://doi.org/10.1029/2002TC001383
      [15] Li, C., Zhai, Q.G., Chen, W., 2007. Geochronology Evidence of the Closure of Longmu Co-Shuanghu Suture, Qinghai-Tibet Plateau:Ar-Ar and Zircon SHRIMP Geochronology from Ophiolite and Rhyolite in Guoganjianian.Acta Petrologica Sinica, 23(5):911-918 (in Chinese with English abstract).
      [16] Liu, B., 2014. Petrogenesis and Geodynamic Setting of Permian to Triassic Mafic Rocks in the Yushu Area, Central Qinghai-Tibetan Plateau (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      [17] Liu, B., Ma, C, Q., Guo, Y.H., et al., 2016. Petrogenesis and Tectonic Implications of Triassic Mafic Complexes with MORB/OIB Affinities from the Western Garzê- Litang Ophiolitic Mélange, Central Tibetan Plateau. Lithos, 260:253-267. https://doi.org/10.1016/j.lithos.2016.06.009
      [18] Liu, B., Ma, C.Q., Huang, J., et al., 2016. Petrogenesis and Tectonic Significance of Triassic Yushu Volcanic Rocks in the North Part of the North Qiangtang Terrane. Acta Petrologica et Mineralogica, 35(1):1-15 (in Chinese with English abstract).
      [19] Liu, B., Xu, Y., Li, Q., et al., 2020. Origin of Triassic Mafic Magmatism in the North Qiangtang Terrane, Central Tibetan Plateau: Implications for the Development of a Continental back-Arc Basin. Journal of the Geological Society, https://doi.org/10.1144/jgs2019-130
      [20] Liu, Y., Li, R. S., Ji, W. H., et al., 2010.The Define and Geological Significance of PermianTriassic Magmatic Arc at Dangjiangrong, South of Duocai Ophiolite Mélange Zone in the Zhiduo Area, Qinhai, China. Geological Bulletin of China, 29(12):1840-1850 (in Chinese with English abstract).
      [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [22] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      [23] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [24] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66:1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      [25] Mo, X.X., 2010. A Review and Prospect of Geological Researches on the Qinghai-Tibet Plateau. Geology in China, 37(4):841-853 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004002
      [26] Moghadam, H. S., Stern, R. J., Rahgoshay, M., et al., 2010. The Dehshir Ophiolite (Central Iran):Geochemical Constraints on the Origin and Evolution of the Inner Zagros Ophiolite Belt. Geological Society of America Bulletin, B30061-B30066. https://doi.org/10.1130/B30066.1
      [27] Morimoto, N., 2007. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1):55-76. https://doi.org/10.1007/BF01226262
      [28] Pan, G. T., Wang, L. Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [29] Pearce, J. A., Kempton, P. D., Nowell, G. M., et al., 1999.Hf-Nd Element Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology, 40:1579-1611. https://doi.org/10.1093/petroj/40.11.1579
      [30] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Plantary Sciences, 23:251-286. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [31] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
      [32] Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2014. Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau:Geochronology, Petrogenesis and Implications for the Tectonic Evolution of the Paleo-Tethys. Gondwana Research, 27(4):1494-1508. https://doi.org/10.1016/j.gr.2014.01.009
      [33] Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46:921-944. https://doi.org/10.1093/petrology/egi005
      [34] Polat, A., Munker, C., 2004. Hf-Nd Isotope Evidence for Contemporaneous Subduction Processes in the Source of Late Archean Arc Lavas from the Superior Province, Canada. Chemical Geology, 213:403-429. https://doi.org/10.1016/j.chemgeo.2004.08.016
      [35] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
      [36] Sun, S. S., Mcdonough, W. F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      [37] Tao, Y., Bi, X.W., Li, C., et al., 2014. Geochronology, Petrogenesis and Tectonic Significance of the Jitang Granitic Pluton in Eastern Tibet, SW China. Lithos, 184:314-323. https://doi.org/10.1016/j.lithos.2013.10.031
      [38] Tatsumi, Y., 2006. High-Mg Diorite Porphyrite in the Setouchi Volcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation?. Annual Review of Earth and Planetary Sciences, 34:467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014
      [39] Vervoort, J.D., Blichert, T.J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Acta, 63:533-556. https://doi.org/10.1016/S0016-7037(98)00274-9
      [40] Wang, B., Zhou, M., Li, J., et al., 2011.Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau:Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1):24-38. https://doi.org/10.1016/j.lithos.2011.07.028
      [41] Wang, J., Fu, X.G., Chen, W.X., et al., 2007. The Late Triassic Paleo-Weathering Crust in the Qiangtang Basin, Northern Tibet:Geology, Geochemistry and Significance. Acta Sedmentologica Sinsca, 25(4):487-494 (in Chinese with English abstract).
      [42] Wang, J., Fu, X.G., Chen, W.X., et al., 2008. Geochronology and Regional Geochemistry of the Volcanic Rocks in the Woruoshan Area, Northern Qiangtang, China:Implications for Late Triassic Volcanic-Sedimentary Events. Science in China (Series D:Earth Sciences), (1):33-43 (in Chinese with English abstract).
      [43] Wang, J., Sun, F.Y., Jiang, R. F., et al., 2018. Age, Petrogenesis and Tectonic Implications of High-Mg Diorite in Chayong Region, Yushu, Qinghai. Earth Science, (3):733-752 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803006
      [44] Wang, Q., Wyman, D. A., Xu, J., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Diorite Porphyrite, and Adakites of the Qiangtang Terrane (Central Tibet):Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4):473-490. https://doi.org/10.1007/s00410-007-0253-1
      [45] Wang, X., Metcalfe, I., Jian, P., et al., 2000. The Jinshajiang-Ailaoshan Suture Zone, China:Tectonostratigraphy, Age and Evolution. Journal of Asian Earth Sciences, 18:675-690. https://doi.org/10.1016/S1367-9120(00)00039-0
      [46] Winchester, J.A., Floyd, P. A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [47] Wolf, M.B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar:the Effects of Temperature and Geological Society. London, Special Publications, 76:405-416. https://doi.org/10.1007/BF00320972
      [48] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [49] Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet:Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture. Tectonics, 31(4):1-20. https://doi.org/10.1029/2011TC003044
      [50] Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011.Permo-Triassic Arc Magmatism in Central Tibet:Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3):270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006
      [51] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Science, 28:211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [52] Zhai, Q., Zhang, R., Jahn, B., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China:Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1):173-189. https://doi.org/10.1016/j.lithos.2011.02.004
      [53] Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet:Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63:162-178. https://doi.org/10.1016/j.jseaes.2012.08.025
      [54] Zhai, Q. G., Li, C., Wang, J., et al., 2009. Petrology, Mineralogy and 40Ar/39Ar Chronology for Rongma Blueschist from Central Qiangtang, Northern Tibet. Acta Petrologica Sinica, 25(9):2281-2288(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      [55] Zhao, S. Q., Tan, J., Wei, J. H., et al., 2015. Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet:Partial Melting of Juvenile Crust and Implications for Paleo Tethys Ocean Subduction. International Journal of Earth Sciences, 104(2):369-387. https://doi.org/10.1007/s00531-014-1080-z
      [56] Zhao, Z., Lu, L., Wu, Z. H., et al., 2018. Charactreistics of the Late Triassic Jiangai Granite Mass and the Slab Break-off in Central Qiangtang, Tibet. Earth Science, 43(S1):229-246 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1021
      [57] Zhang, H.R., Yang, T. N., Hou, Z. Q., et al., 2013. Petrogenesis and Tectonics of Late Permian Felsic Volcanic Rocks, Eastern Qiangtang Block, North-Central Tibet:Sr and Nd Isotopic Evidence. International Geology Review, 55(8):1017-1028. https://doi.org/10.1080/00206814.2012.759669
      [58] Zhang, N., Li, J., Yang, Y.S., et al., 2012. Petrogeochemical Characteristics and Tectonic Setting of the Wandaohu Ophiolite Melange, Jinshajiang Suture, Tibet. Acta Petrologica Sinica, 28(4):1291-1304 (in Chinese with English abstract).
      [59] 段其发, 王建雄, 白云山, 等, 2009.青海南部蛇绿岩中辉长岩锆石SHRIMP U-Pb定年和岩石地球化学特征.中国地质, 36(2):291-299. doi: 10.3969/j.issn.1000-3657.2009.02.003
      [60] 付修根, 王剑, 吴滔, 等, 2009.藏北羌塘盆地大规模古风化壳的发现及其意义.地质通报, 28(6):696-700. doi: 10.3969/j.issn.1671-2552.2009.06.002
      [61] 辜平阳, 何世平, 计文化, 等, 2013.青海玉树县南洞卡组粗面安山岩地球化学特征:岩石成因与构造背景探讨.地质科学, 48(4):1069-1082. doi: 10.3969/j.issn.0563-5020.2013.04.008
      [62] 李才, 翟庆国, 陈文, 等, 2007.青藏高原龙木错-双湖板块缝合带闭合的年代学证据——来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约.岩石学报, 23(5):911-918. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200705005
      [63] 刘彬, 2014.青藏高原中部玉树二叠纪-三叠纪镁铁质岩石的成因及其地球动力学背景(博士学位论文).武汉: 中国地质大学.
      [64] 刘彬, 马昌前, 黄坚, 等, 2016.北羌塘北缘玉树三叠纪火山岩的成因机制及其构造意义.岩石矿物学杂志, 35(1):1-15. doi: 10.3969/j.issn.1000-6524.2016.01.001
      [65] 刘银, 李荣社, 计文化, 等, 2010.青海治多地区多彩蛇绿混杂岩带南侧当江荣二叠纪-三叠纪岩浆弧的确定.地质通报, 29(12):1840-1850. doi: 10.3969/j.issn.1671-2552.2010.12.012
      [66] 莫宣学, 2010.青藏高原地质研究的回顾与展望.中国地质, 37(4):841-853. doi: 10.3969/j.issn.1000-3657.2010.04.002
      [67] 王剑, 付修根, 陈文西, 等, 2007.藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义.沉积学报, 25(4):487-494. doi: 10.3969/j.issn.1000-0550.2007.04.001
      [68] 王剑, 付修根, 陈文西, 等, 2008.北羌塘沃若山地区火山岩年代学及区域地球化学对比——对晚三叠世火山-沉积事件的启示.中国科学(D辑:地球科学), (1):33-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801004
      [69] 王键, 孙丰月, 姜和芳, 等, 2018.青海玉树查涌地区高镁闪长岩年龄、岩石成因及构造背景.地球科学, 43(3):733-752. doi: 10.3799/dqkx.2018.904
      [70] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [71] 翟庆国, 李才, 王军, 等, 2009.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学.岩石学报, 25(9):2281-2288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      [72] 赵珍, 陆露, 吴珍汉, 等, 2018.羌塘中部晚三叠世江爱岩体特征与板片断离作用.地球科学, 43(S1):229-246. doi: 10.3799/dqkx.2018.190
      [73] 张能, 李剑波, 杨云松, 等, 2012.金沙江缝合带弯岛湖蛇绿混杂岩带的岩石地球化学特征及其构造背景.岩石学报, 28(4):1291-1304. http://d.old.wanfangdata.com.cn/Conference/7667363
    • dqkx-45-5-1490-Table1-4.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  1486
    • HTML全文浏览量:  172
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-08
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回