Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin
-
摘要: 为揭示珠江口盆地西部陆缘伸展-减薄过程,进行盆地断裂构造样式识别、断层活动速率和一维空盆构造沉降定量计算和综合分析.珠江口盆地西部以铲式断层和拆离断层为主并继承性发育.张裂一幕断层活动和构造沉降集中于开平凹陷,最大速率分别达到239 m/myr和108.6 m/myr.张裂二幕断层活动和构造沉降向洋盆迁移,最大速率分别达到192 m/myr和210.7 m/myr.张裂一幕岩石圈减薄集中在开平凹陷,以地壳脆性薄化为主.张裂二幕减薄中心向洋盆迁移,岩石圈地幔可能发生了局部薄化和软流圈上涌,导致陆架和上陆坡区凹陷内部构造沉降减弱;洋陆过渡带处上地壳快速减薄,且薄化速度比下地壳快.对比西北次海盆南侧上地壳较厚及下地壳较薄或缺失的情况,推测西北次海盆在破裂前发生了不对称的单剪薄化.Abstract: To understand the thinning process of the western margin of the Pearl River Mouth basin, structure analysis, quantitative calculation and comparison between fault growth rate and one-dimensional unloaded tectonic subsidence were carried out to study the structural deformation and migration characteristics. It is found that extensional structures controlled by listric and detachment faults are dominant and inherited. The fault activity and tectonic subsidence were concentrated in Kaiping sag in the first rifting stage, and the maximum rates reached 239 m/myr and 108.6 m/myr, respectively. The fault activity and tectonic subsidence migrated to the ocean basin in the second rifting stage, and the maximum rates reached 192 m/myr and 210.7 m/myr, respectively. In the first rifting stage, lithospheric thinning was dominated by brittle crust thinning. In the second rifting stage, lithospheric thinning center migrated oceanward, regional thinning and asthenosphere upwelling mitigated the subsidence in sagson shelf and slope, at the same time the lithosphere in the ocean basin area thinned rapidly till break-up happened. The upper crust thins faster than lower crust in the northern COT of the Southwest Sub sea basin, compared with the situation in its southern conjugate margin, where the upper crust is thick and the lower crust is thin or even absent, we suggest that the northwest sub-basin may have undergone asymmetric simple shear thinning before break-up happened.
-
Key words:
- Pearl River Mouth basin /
- tectonic style /
- fault activity /
- tectonic subsidence /
- lithospheric break-up /
- tectonics
-
图 2 珠江口盆地地层划分及构造演化阶段
地层界面年龄据中国海洋石油公司和Sun et al.(2014);构造运动据李平鲁(1993)和Pang et al. (2018)
Fig. 2. Stratigraphic sequences and tectonic evolution of the PRMB
表 1 岩性参数
Table 1. Lithologic parameters
岩性 砂岩 粉砂岩 泥岩 初始孔隙度 0.45 0.55 0.60 压实系数(1/km) 0.27 0.41 0.51 基质密度(g/cm3) 2.64 2.64 2.60 表 2 沉积相反映的古水深
Table 2. The paleowater depth estimated from the sedimentary facies
沉积相 沉积亚相 水深(m) 剥蚀区 隆起 -5 陆相 河流-平原相 0~5 滨湖-浅湖相 0~30 中深湖相 30~100 深湖相 > 100 河流三角洲相 0~20 海陆过渡相 三角洲平原 0 三角洲前缘 0~10 前三角洲 10~20 海相 潮坪相 0~10 滨海相 20~50 浅海相 50~200 半深海相 200~2 000 深海相 > 2 000 陆架边缘三角洲 200~500 -
[1] Chen, M., Shi, X. B., Liu, K., et al., 2017. Cenozoic Tectonic Subsidence of the Zhu Ⅲ Depression in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology & Quaternary Geology, 37(6):256-1492 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706005 [2] Clerc, C., Ringenbach, J. C., Jolivet, L., et al., 2017. Rifted Margins:Ductile Deformation, Boudinage, Continentward-Dipping Normal Faults and the Role of the Weak Lower Crust. Gondwana Research, 53:20-40. http://cn.bing.com/academic/profile?id=9a6d6b7512eef38c6c985ec3f7dadacf&encoded=0&v=paper_preview&mkt=zh-cn [3] Clift, P., Lin, J., Barckhausen, U., 2002. Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970. doi: 10.1016/S0264-8172(02)00108-3 [4] Ding, W. W., Michael, S., Dieter, F., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea:Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica, 86:854-866. doi: 10.1111/j.1755-6724.2012.00711.x [5] Du, W. B., Sun, G. H., Shu, Y., 2015. Seismic Sedimentology of Paleogene Enping Formation in Enping Sag, Pearl River Mouth Basin. Geological Science & Technology Information, 34(3):220-229 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201503032 [6] Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine Petroleum Geology, 58:704-720. doi: 10.1016/j.marpetgeo.2013.11.020 [7] He, M., Zhong, G., Liu, X., et al., 2017. Rapid Post-Rift Tectonic Subsidence Events in the Pearl River Mouth Basin, Northern South China Sea Margin. Journal of Asian Earth Sciences, 147:271-283. doi: 10.1016/j.jseaes.2017.07.024 [8] Huismans, R. S., Beaumont, C., 2014. Rifted Continental Margins:The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407:148-162. doi: 10.1016/j.epsl.2014.09.032 [9] Lei, C., Alves, T. M., Ren, J.Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). Geological Society of America Bulletin, 131(7-8):1059-1074. doi: 10.1130/B35001.1 [10] Lei, C., Ren, J.Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region:Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93:166-181. doi: 10.1016/j.marpetgeo.2018.02.020 [11] Li, H., Zhang, Y. C., Gan, J., et al., 2014. The Style Distribution and Hydrocarbon Accumulation of Inverted Structures in Zhu-3 Depression. Journal of Oil and Gas Technology, 36(4):1-6 (in Chinese). [12] Li, P. L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6):11-17 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hyxb-e201909009 [13] Li, Q.Y., Luo, F.Z., 2000. Research on Fault Activity Ratio andIts Application. Fault Block Oil & Gas Field, 7(2):15-17 (in Chinese). [14] Li, W. Z., Wang, P. J., Zhang, G. C., 2011. Researches on Time-Depth Conversion of Deep-Seated Basal Strata of Pearl River Mouth Basin. Chinese Journal of Geophysics, 54(2):449-456 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201102024 [15] Lin, C.S., Shi, H.S., Li, H., et al., 2018. Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea. Earth Science, 43(10):77-92 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810007 [16] Liu, J., 2013. Depositional Filling Characteristics of Paleogene in Heshan Sag of Ultra Deepwater Area in the Northern South China Sea. Journal of Oil and Gas Technology, 35:15-18 (in Chinese). [17] Liu, Z. F., Liu, Z. P., Xiao, L. L., et al., 2013. Facies Evolution and Reservoir-Seal Assemblages in the Zhuhai and Hanjiang Formations, North of Zhu-3 Depression, Pearl River Mouth Basin. Marine Geology Frontiers, 29:25-31 (in Chinese). [18] Nie, G. Q., 2011. Tectonic Numerical Modeling and Genetic Mechanism for the Continent-Ocean Transition Zone of the Passive Continental Margin: A Case Study of Kaiping Sag(Dissertation). China University of Geosciences, Beijing (in Chinese). [19] Pang, X., He, M., Zhu, J. Z., et al., 2009. A Study on Development Conditions of Lacustrine Source Rocks in Zhu II Depression, Pearl River Mouth Basin. China Offshore Oil and Gas(Geology), 21:86-90 (in Chinese). [20] Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust:A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1):33-46. [21] Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching:An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research Solid Earth, 85:3711-3739. doi: 10.1029/JB085iB07p03711 [22] Sun, Z., Jian, Z., Stock, J.M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX. [23] Sun, Z., Xu, Z., Sun, L., et al., 2014. The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin. Journal of Asian Earth Sciences, 89:76-87. doi: 10.1016/j.jseaes.2014.02.018 [24] Sun, Z., Zhong, Z., Zhou, D., et al., 2008. Dynamics Analysis of the Baiyun Sag in the Pearl River Mouth Basin, North of the South China Sea. Acta Geologica Sinica, 82:73-83. http://cn.bing.com/academic/profile?id=e0efb51e8e6c40b079817d8af92689bc&encoded=0&v=paper_preview&mkt=zh-cn [25] Tang, X. Y., Huang, S., Yang, S., et al., 2018. Tectono-Thermal Evolution of the Liwan Sag, Deepwater Area in the Zhujiang River Mouth Basin, Northern South China Sea. Acta Oceanologica Sinica, 37:66-75. doi: 10.1007/s13131-017-1125-9 [26] Taylor, B., Hayes, D. E., 2013. Origin and History of the South China Sea Basin. American Geophysical Union, Washington, D.C.. [27] Wang, S. L., Liu, H., Amp, O., et al., 2014. Seismic Reflection and Depositional System of the Enping Formation in the Kaiping Depression of the Zhujiangkou Basin. Science & Technology Review, 32(Z2):64-69 (in Chinese). [28] Xu, Y., Chen, G. J., Ma, M., et al., 2016. Sedimentary Characteristic and Evolution of Late Oligocene to Early Miocene in Baiyun Depression, Pearl River Mouth Basin. Coal Geology & Exploration, 44:1-9 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201603001 [29] Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338:1-21. doi: 10.1016/S0040-1951(01)00062-2 [30] Yang, L. L., 2018. The Large-Scale Detachment Fault System and Its Control on the Development of the Deepwater Basins in the Northern South China Sea(Dissertation). China University of Geosciences, Wuhan (in Chinese). [31] Yao, B. C., 1998. The Tectonic Evolution and Sedimentary Basins of South China Sea in Cenozoic. Geological Reaserch of South China Sea, 10:1-17 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201804013 [32] Zhang, Y. Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Fault System and Its Geodynamics of Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2):603-625 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201902020 [33] Zhang, Z. Y., He, D. F., Li, Z., et al., 2018. 3D Geometry and Kinematics of the Boundary Fault in the Kaiping Depression, Pearl River Mouth Basin. Chinese Journal of Geophysics, 61(10):4296-4307 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201810031 [34] Zhao, Z.X., Sun, Z., Wang, Z., et al., 2013. The Dynamic Mechanism of Post-Rift Accelerated Subsidence in Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34:295-308 (in Chinese). doi: 10.1007/s11001-013-9188-2 [35] Zhao, Z. X., Sun, Z., Xie, H., et al., 2011. Baiyun Deepwater Cenozoic Subsidence and Lithosperic Stretching Deformation.Chinese Journal of Geophysics, 54(12):3336-3343 (in Chinese). [36] Zhong, Z.H., Shi, H.S., Zhu, M., et al., 2014. A Discussion on the Tectonic-Stratigraphic Framework and Its Origin Mechanism in Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 26(5):20-29 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201405004 [37] Zhou, D., Hu, D. K., He, M., 2008. The Selection of Fitting Curve in Time-Depth Transformation of Deep-Seated Strata and Crust. Earth Science, 33(4):531-537 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200804010 [38] Zhu, J.J., Qiu, X.L., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data.Tectonophysics, 554-557:18-29. doi: 10.1016/j.tecto.2012.05.027 [39] Zhu, J.J., Xu, H.L., Qiu, X.L., et al., 2018. Crustal Structure and Rifting of the Northern South China Sea Margin:Evidence from Shoreline-Crossing Seismic Investigations. Geological Journal, 53:2065-2083. doi: 10.1002/gj.3034 [40] Zhu, X. M., Ge, J. W., Zhao, H. C., et al., 2017. Development of Shelf-Edge Delta Researches and Typical Case Analyses. Acta Sedimentologica Sinica, 35:945-957 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201705007 [41] 陈梅, 施小斌, 刘凯, 等, 2017.南海北缘珠三坳陷新生代构造沉降特征.海洋地质与第四纪地质, 37(6): 1256-1492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706005 [42] 杜文波, 孙桂华, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组地震沉积学研究.地质科技情报, 34(3):220-229. http://d.old.wanfangdata.com.cn/Thesis/Y2435826 [43] 李辉, 张迎朝, 甘军, 等, 2014.珠三坳陷反转构造样式与分布及其油气成藏.石油天然气学报, 36:1-5. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201404001 [44] 李平鲁, 1993.珠江口盆地新生代构造运动.中国海上油气, 6:11-17. http://www.cnki.com.cn/Article/CJFDTotal-ZHSD199306003.htm [45] 李勤英, 罗凤芝, 2000.断层活动速率研究方法及应用探讨.断块油气田, 7(2):15-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt200002004 [46] 李伍志, 王璞珺, 张功成, 等, 2011.珠江口盆地深部基底地层的地震时深转换研究.地球物理学报, 54(2):449-456. doi: 10.3969/j.issn.0001-5733.2011.02.023 [47] 林畅松, 施和生, 李浩, 等, 2018.南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用.地球科学, 43(10):77-92. http://d.old.wanfangdata.com.cn/Periodical/dqkx201810007 [48] 刘军, 2013.南海北部超深水区鹤山凹陷古近系沉积充填特征分析.石油天然气学报, 35:15-18. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201307004 [49] 刘志峰, 刘志鹏, 肖伶俐, 等, 2013.珠三坳陷北部珠海组-韩江组沉积演化及储盖组合.海洋地质前沿, 29:25-31. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201309006.htm [50] 聂国权, 2017.被动大陆边缘洋陆过渡带构造数值模拟及成因机制: 开平凹陷例析(硕士学位论文).北京: 中国地质大学. [51] 庞雄, 何敏, 朱俊章, 等, 2009.珠二坳陷湖相烃源岩形成条件分析.中国海上油气, 21:86-90. doi: 10.3969/j.issn.1673-1506.2009.02.003 [52] 王升兰, 刘晖, 2014.珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布.科技导报, 32(Z2):64-69. http://www.cqvip.com/QK/90455X/201428/662614485.html [53] 徐勇, 陈国俊, 马明, 等, 2016.珠江口盆地白云凹陷晚渐新统-早中新统沉积特征及演化规律.煤田地质与勘探, 44:1-9. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201603001 [54] 杨林龙, 2018.南海北部陆缘大型拆离断层系的发育演化机制及其对深水盆地群的控制作用(博士学位论文).武汉: 中国地质大学. [55] 姚伯初, 1998.南海新生代的构造演化与沉积盆地.南海地质研究, 10:1-17. http://d.old.wanfangdata.com.cn/Periodical/dqkx200405007 [56] 张远泽, 漆家福, 吴景富, 2019.南海北部新生代盆地断裂系统及构造动力学影响因素.地球科学, 44(2):253-275. http://d.old.wanfangdata.com.cn/Periodical/dqkx201902020 [57] 张志业, 何登发, 李智, 等, 2018.珠江口盆地开平凹陷边界断层三维几何学与运动学.地球物理学报, 61(10):4296-4307. doi: 10.6038/cjg2018L0560 [58] 赵中贤, 孙珍, 谢辉, 等, 2011.白云深水区新生代沉降及岩石圈伸展变形.地球物理学报, 54(12):3336-3343. doi: 10.3969/j.issn.0001-5733.2011.12.031 [59] 钟志洪, 施和生, 朱明, 等, 2011.珠江口盆地构造-地层格架及成因机制探讨.中国海上油气, 26(5):20-29. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201405004 [60] 周蒂, 胡登科, 何敏, 等, 2008.深部地层时深转换中的拟合式选择问题.地球科学, 33(4):531-537. doi: 10.3321/j.issn:1000-2383.2008.04.010 [61] 朱筱敏, 葛家旺, 赵宏超, 等, 2017.陆架边缘三角洲研究进展及实例分析.沉积学报, 35:945-957. http://d.old.wanfangdata.com.cn/Periodical/cjxb201705007