Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China
-
摘要: 塔里木盆地顺北地区超深层垂深为7 200~7 863.6 m的奥陶系一间房-鹰山组储层中发现了挥发油藏和轻质油藏,油藏赋存深度下限不断突破传统认识.使用地球化学方法研究了顺北地区不同断裂带油气藏的地球化学特征及蚀变作用.顺北地区不同断裂带原油均具有轻碳同位素特征,C23三环萜烷/C21三环萜烷>1,C28甾烷含量低的特点,三芴系列组成中具有较高含量的二苯并噻吩含量,表明与塔河原油具有相似的母源.(C21+C22)甾烷/(C27~C29)甾烷、C27重排/C27规则甾烷、甲基菲指数和二苯并噻吩系列成熟度表明顺北地区原油成熟度呈现1号断裂带(含分支断裂)≈3号断裂带>次级断裂带>5号断裂带>7号断裂的特征,原油成熟度受控于油藏初始静温.顺北地区奥陶系天然气均为湿气,天然气甲烷碳同位素分布范围为-50.7‰~-44.7‰,不同断裂带天然气成熟度的差异与不同断裂带原油成熟度的分布规律相似.顺北地区原油(4+3)甲基双金刚烷含量较低,分布范围为9.25~36.44 μg/g,指示原油裂解程度较低.原油中均可检测出完整系列的低聚硫代金刚烷,含量分布范围为0.76~18.88 μg/g,表明原油硫酸盐热化学还原作用(TSR)弱,顺北地区天然气为湿气及甲烷碳同位素轻表明油气藏未遭受气侵作用.地温研究表明顺北地区地温梯度低,为2.12℃/100 m,埋深8 000 m的地层目前仅为160~170℃,地质历史时期,奥陶系地温未超过170℃,未达到原油大量裂解温度的门限.顺北地区奥陶系长期的低地温加之油气藏蚀变作用弱,是顺北地区奥陶系保持挥发油相的关键.Abstract: Volatile reservoir and light reservoir have been discovered in the ultra-deep Ordovician Yijianfang to Yingshan Formations with vertical depths ranging from 7 200 to 7 863.60 m from North Shuntuoguole area in the Tarim basin. The limit depth of oil phase occurring has been continuously challenging the traditional theory. This study focuses on geochemical characteristics and secondary alterations of reservoirs from different faults in North Shuntuoguole area. Most oils of different faults from North Shuntuoguole area are characterized by light carbon isotope, C23TT/C21TT > 1, lower C28 sterane content, relatively high abundance of dibenzothiophene, suggesting that the source rock of oil in the North Shuntuoguole area is similar to that of Tahe oilfield. Using (C21+C22) sterane/(C27~C29) sterane, C27 diasterane/C27 regular steane, MPI index, dibenthiophene series maturity, the oil maturity trend in the North Shuntuoguole area is No.1 fault (including splay fault) ≈No.3 fault > secondary fault > No.5 fault > No.7 fault. The oil maturity is controlled by the reservoir initial static temperature. The natural gas in North Shuntuoguole area is wet gas and has light methane carbon isotope, ranging from -50.7‰ to -44.7‰. The gas maturity trend in different faults is similar to that of the oil. The abundance of (4-+3-) methyldiamantane in the oils from different faults is in the range of 9.25-36.44 μg/g, indicating low degree of oil cracking. The lower thiadiamondoids can be detected in the oils, with content ranging from 0.76 to 18.88 μg/g, showing low degree of thermochemical sulfate reduction (TSR). The Ordovician reservoir has suffered little gas invasion from the natural gas characteristics. The formation temperature indicates the geothermal gradient in the North Shuntuoguole area is low, only about 2.12 ℃/100 m. The formation temperature of strata buried at 8 000 m depth at present is in the range of 160-170 ℃. The maximum paleo-geotemperature of Ordovician has never been higher than 170 ℃, without reaching the temperature threshold of great scale oil cracking. The long term of low geothermal environment combined with low degree secondary alteration is the key to the preservation of ultra-deep Ordovician volatile reservoir in the North Shuntuogule area.
-
图 13 使用ln(C1/C2)与ln(C2/C3)参数划分顺北地区奥陶系天然气成因
图版据李剑等(2017)
Fig. 13. The Ordovician natural gas classification of North Shuntuoguole area using a plot of ln(C1/C2) and ln(C2/C3) with increasing of Ro value
图 18 顺北地区不同断裂带原油芳烃成熟度4-MDBT/1-MDBT(a)、原油密度(b)与油藏初始静温之间的关系
Fig. 18. The plots of ratio of 4-MDBT/1-MDBT of aromatic maturity parameter versus reservoir initial static temperature (a), oil density versus reservoir initial static temperature of oils from different faults in the North Shuntuoguole area (b)
表 1 顺北地区原油物性数据
Table 1. The physical property data of oils from North Shuntuoguole area
断裂带 井号 垂深(m) 密度
(g/cm3(20℃))黏度
(mPa·s(50℃))凝固点
(℃)含硫量(%) 气油比
(m3/t)1号断裂带 SB1-3H 7 255.70~7 357.89 0.794 0 2.54 -17.6 0.104 469 SB1 7 259.27~7 405.70 0.831 0 7.91 -14 0.032 / SB1-10H 7 299.50~7 768.16 0.798 2 2.82 -32 0.116 390 SB1-6H 7 288.16~7 399.75 0.794 3 2.30 -12.7 0.107 456 SB1-7H 7 339.36~7 456.00 0.797 0 2.80 -10.5 0.123 362 SB1-1H 7 458.00~7 557.66 0.791 6 2.40 -18.0 0.105 459 SB1-4H 7 459.00~7 561.96 0.797 0 2.70 -22.0 0.137 450 SB1-5H 7 474.52~7 576.19 0.798 0 2.90 -21.0 0.125 447 SB1-2H 7 469.00~7 569.47 0.795 0 2.62 -24.0 0.092 448 1号分支断裂带 SB1-8H 7 414.50~7 571.64 0.798 0 2.50 -12.8 0.105 451 SB1-9H 7 372.74~7 630.00 0.804 0 1.95 -17.0 0.108 451 次级断裂带 SBP1 7 376.63~7 751.57 0.811 7 4.05 0 0.161 SB2 7 348.60~7 487.11 0.810 0 3.07 -25.0 0.123 / 3号断裂带 SB3 7 520.00~7 870.08 0.814 3 7.91 -14 0.032 / 5号断裂带 SB5 7 315.00~7 650.64 0.829 0 4.97 -29.6 0.211 50 SB5-2 7 460.33~7 527.16 0.826 0 6.18 -32 0.189 65 7号断裂带 SB7 7 568.46~7 863.66 0.854 8 15.63 -8 0.128 / 表 2 顺北地区奥陶系油气藏PVT数据
Table 2. The PVT data of Ordovician reservoirs in North Shuntuoguole area
井号 顺北1-6 顺北5 顺北7 生产井段垂深(m) 7 288.16~7 399.75 7 315.00~7 650.64 7 568.46~7 863.66 层位 O2yj+O1-2y O2yj+O1-2y O2yj+O1-2y 油藏压力(MPa) 85.31 85.87 78.61 油藏温度(℃) 158.0 150.5 148.1 生产气油比(m3/m3) 264 56 73.85 饱和压力(MPa) 36.11 13.9 12.08 地饱压差(MPa) 49.20 71.97 66.53 临界压力Pc(MPa) 22.24 5.81 5.76 临界温度Tc(℃) 300.8 480.1 530.1 临界蒸发压力Pm(MPa) 36.93 14.37 13.67 临界凝析温度Tm(℃) 345.4 484.9 536.0 表 3 顺北地区奥陶系油气藏天然气组成及碳同位素
Table 3. Molecular and carbon isotopic composition of associated gas from North Shuntuoguole Ordovician reservoirs
井号 垂深(m) C1/C1+ 天然气组分(%) δ13C (‰) CH4 C2H6 C3H8 iC4H10 C4H10 iC5H12 C5H12 N2 CO2 CH4 C2H6 C3H8 iC4H10 C4H10 SB1-3 7 255.70~7 357.89 0.87 83.73 6.99 3.25 0.71 1.04 0.27 0.24 1.16 2.59 -44.7 -33.3 -30.8 -34.2 -29.0 SB1-4 7 459.00~7 561.96 0.84 80.35 9.05 3.98 0.70 1.01 0.21 0.19 2.20 2.39 -47.0 -33.8 -31.6 -35.2 -29.4 SB1-8 7 414.50~7 571.64 0.85 74.04 7.83 3.38 0.60 0.92 0.22 0.22 1.81 10.43 -47.2 -33.8 -31.2 -31.9 -30.7 SB1-9 7 372.74~7 630.00 0.71 67.79 10.39 8.16 2.37 4.16 1.19 1.21 1.12 3.59 -46.6 -34.1 -31.9 -32.1 -31.1 SB3 7 520.00~7 870.08 0.64 61.16 15.85 11.58 2.21 3.92 0.76 0.67 0.76 3.00 -50.7 -34.3 -31.6 -33.2 -30.4 SB5 7 315.00~7 650.64 0.63 54.48 17.97 9.43 1.09 2.15 0.36 0.46 5.84 8.06 -48.9 -39.3 -35.6 -34.6 -33.4 SB7 7 568.46~7 863.66 0.52 46.89 20.92 14.78 1.41 4.92 0.59 0.97 1.85 6.90 -48.4 -39.0 -33.9 -33.6 -32.0 表 4 顺北地区天然气硫化氢含量
Table 4. The H2S content of the natural gas from North Shuntuoguole area
井号 硫化氢含量均值(mg/m3) 样本数(个) SB1-3 5 835 7 SB1-6 10 032 8 SB1-7 6 074 5 SB1-1 14 515 41 SB1-4 9 796 13 SB1-5 7 221 7 SB1-2 8 076 5 SB1-9 2 736 21 SB1-8 531 22 SB1 10 1 SB5 87.26 15 SB7 7.40 1 表 5 顺北地区不同时期油气藏静温、流温数据
Table 5. The static temperature and flow temperature of the Ordovician reservoirs of the North Shuntuoguole area during different periods
井号 完钻井深(m) 距T74垂深(m) 2017年年初 2017年年底 静温(℃) 流温(℃) 温差(℃) 静温(℃) 流温(℃) 温差(℃) SB1-2H 7 569 89 161.89 167.3 5.4 161.00 169.21 7.32 SB1-5H 7 576 98 160.70 166.9 6.2 152.82 168.33 15.51 SB1-4H 7 558 94 159.72 166.3 6.6 150.25 162.20 11.95 SB1-1H 7 456 83 158.40 163.6 5.2 158.22 171.45 12.23 SB1-7H 7 400 104 158.10 164.8 6.7 155.17 156.02 0.85 SB1-6H 7 358 99 157.06 167.2 10.2 159.90 161.29 1.39 SB1-3 7 497 101 155.37 164.4 9.1 151.19 163.87 12.68 平均值 7 497 95 158.75 165.8 7.1 157.75 165.79 8.85 -
[1] Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182:88-108. https://doi.org/10.1016/j.gca.2016.02.036 [2] Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 doi: 10.1016-S0146-6380(97)00022-3/ [3] Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1):1-23. https://doi.org/10.1016/0016-7037(80)90173-8 [4] Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731):54-57. https://doi.org/10.1038/19953 [5] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5):878-888 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201805003 [6] Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59(17):3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o. doi: 10.1016/0016-7037(95)00225-O [7] Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2007. Detection of 2-Thiaadamantanes in the Oils from Well TZ83 in Tarim Basin and Its Geological Implication. Chinese Science Bulletin, 52(24):2871-2875 (in Chinese with English abstract). doi: 10.1360/csb2007-52-24-2871 [8] Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5):831-839 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201705002 [9] Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7):1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7 [10] Li, J., Li, Z.S., Wang, X.B., et al., 2017. New Indexes and Charts for Genesis Identification of Multiple Natural Gases. Petroleum Exploration & Development, 44(4):503-512 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201704003 [11] Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1):93-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007 [12] Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78:1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004 [13] Li, Y., Xiong, Y. Q., Liang, Q. Y., et al., 2018. The Application of Diamondoid Indices in the Tarim Oils. AAPG Bulletin, 102(2):267-291. https://doi.org/10.1306/0424171518217073 [14] Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane:A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190:247-272. https://doi.org/10.1016/j.earscirev.2018.11.017 [15] Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1):35-43. https://doi.org/10.1016/j.jnggs.2016.03.001 [16] Ma, A.L., Jin, Z.J., Wang, Y., 2006. Problems of Oil-Source Correlation for Marine Reservoirs in Paleozoic Craton Area in Tarim Basin and Future Direction of Research. Oil & Gas Geology, 27(3):356-362 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200603010 [17] Ma, A. L., Jin, Z. J., Zhu, C. S., 2018a. Detection and Research Significance of Thiadiamondoids from Crude oil in Well Shunnan 1, Tarim Basin. Acta Petrolei Sinica, 38(1):42-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201801004 [18] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018b. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi 2 from Magaiti Slope, Tarim Basin:Evidences from Molecular Markers.Oil & Gas Geology, 39(4):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201804011.htm [19] Ma, A.L., Jin, Z.J., Zhu, C.S., et al., 2009. Quantitative Analysis on Absolute Concentration of Diamondoids in Oils from Tahe Oilfield. Acta Petrolei Sinica, 30(2):214-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200902009 [20] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2017. Cracking and Thermal Maturity of Ordovician Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 2(4):239-252. https://doi.org/10.1016/j.jnggs.2017.12.001 [21] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10):1440-1450. https://doi.org/10.1007/s11430-017-9244-7 [22] Pepper, A. S., Dodd, T. A., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅱ:Oil-Gas Cracking. Marine and Petroleum Geology, 12(3):321-340. https://doi.org/10.1016/0264-8172(95)98382-f doi: 10.1016/0264-8172(95)98382-F [23] Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge. [24] Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3):38-51 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201603004 [25] Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub-surface. Nature, 333(6173):549-552. https://doi.org/10.1038/333549a0 [26] Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin:Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x doi: 10.1016/0016-7037(82)90285-X [27] Schoell, M., Carlson, R. M. K., 1999. Diamondoids and Oil are not Forever. Nature, 399(6731):15-16. https://doi.org/10.1038/19847 [28] Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases:Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22):2763-2770. https://doi.org/10.1007/s11434-006-2188-8 [29] Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin. https: //doi.org/10.1007/978-3-642-87813-8 [30] Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2):577-593 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.026 http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018 [31] Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation:Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6):553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 doi: 10.1016/S0146-6380(00)00023-1 [32] Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007a. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6):3431-3436. https://doi.org/10.1021/ef7003333 http://cn.bing.com/academic/profile?id=c484aece8d234d34313c91c5ffafbf95&encoded=0&v=paper_preview&mkt=zh-cn [33] Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007b. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking:Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2):227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011 [34] Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 1. Oil Family Classification. Organic Geochemistry, 36(8):1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013 http://cn.bing.com/academic/profile?id=719c1550a1442e347bed232581bb4f41&encoded=0&v=paper_preview&mkt=zh-cn [35] Zhang, S. C., Su, J., Wang, X. M., et al., 2011. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3. Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations. Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013 [36] Zhao, X. Z., Jin, F. M., Wang, Q., et al., 2011. Niudong 1 Ultra-Deep and Ultra-High Temperature Subtle Buried Hill Field in Bohai Bay Basin:Discovery and Significance. Acta Petrolei Sinica, 32(6):915-926 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01c7e5816be8d62a22a610de64d64a1d&encoded=0&v=paper_preview&mkt=zh-cn [37] Zhu, G. Y., Milkov, A. V., Chen, F. R., et al., 2018a. Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China. Marine and Petroleum Geology, 89:252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019 [38] Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018b. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123:136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003 [39] Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69:1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007 [40] Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52:88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012 [41] 邓尚, 李慧莉, 张仲培, 等, 2018.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系.石油与天然气地质, 39(5):878-888. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201805003 [42] 姜乃煌, 朱光有, 张水昌, 等, 2007.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义.科学通报, 52(24):2871-2875. doi: 10.3321/j.issn:0023-074x.2007.24.009 [43] 焦方正, 2017.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义.石油与天然气地质, 38(5):831-839. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201705002 [44] 李剑, 李志生, 王晓波, 等, 2017.多元天然气成因判识新指标及图版.石油勘探与开发, 44(4):503-512. http://d.old.wanfangdata.com.cn/Periodical/syktykf201704003 [45] 李培军, 陈红汉, 唐大卿, 等., 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx201701007 [46] 马安来, 金之钧, 王毅, 2006.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向, 石油与天然气地质, 27(3):356-362. doi: 10.3321/j.issn:0253-9985.2006.03.010 [47] 马安来, 金之钧, 朱翠山, 等, 2009.塔河油田原油中金刚烷化合物绝对定量分析.石油学报, 30(2):214-218. doi: 10.3321/j.issn:0253-2697.2009.02.009 [48] 马安来, 金之钧, 朱翠山, 2018a.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义.石油学报, 39(1):42-53. http://d.old.wanfangdata.com.cn/Periodical/syxb201801004 [49] 马安来, 金之钧, 朱翠山, 等, 2018b.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据.石油与天然气地质, 39(4):730-737. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201804010 [50] 漆立新, 2016.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义.中国石油勘探, 21(3):38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004 [51] 田辉, 王招明, 肖中尧, 等., 2006.原油裂解成气动力学模拟及其意义.科学通报, 51(15):1821-1827. doi: 10.3321/j.issn:0023-074X.2006.15.014 [52] 王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018 [53] 赵贤正, 金凤鸣, 王权, 等, 2011.渤海湾盆地牛东超深潜山高温油气藏的发现及其意义.石油学报, 32(6):915-926.