• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏松多地区榴辉岩的原岩属性探讨及其地质意义

    董宇超 解超明 范建军 于云鹏 郝宇杰

    董宇超, 解超明, 范建军, 于云鹏, 郝宇杰, 2019. 西藏松多地区榴辉岩的原岩属性探讨及其地质意义. 地球科学, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148
    引用本文: 董宇超, 解超明, 范建军, 于云鹏, 郝宇杰, 2019. 西藏松多地区榴辉岩的原岩属性探讨及其地质意义. 地球科学, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148
    Dong Yuchao, Xie Chaoming, Fan Jianjun, Yu Yunpeng, Hao Yujie, 2019. Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance. Earth Science, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148
    Citation: Dong Yuchao, Xie Chaoming, Fan Jianjun, Yu Yunpeng, Hao Yujie, 2019. Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance. Earth Science, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148

    西藏松多地区榴辉岩的原岩属性探讨及其地质意义

    doi: 10.3799/dqkx.2019.148
    基金项目: 

    中国地质调查局区域地质调查项目 121201010000150014

    国家自然科学基金项目 41702227

    国家自然科学基金项目 41402190

    中国地质调查局区域地质调查项目 DD20160026

    详细信息
      作者简介:

      董宇超(1993-), 男, 在读博士, 矿产普查与勘探专业

      通讯作者:

      解超明

    • 中图分类号: P534.5

    Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance

    • 摘要: 松多榴辉岩是约束拉萨板块中部古特提斯洋演化的重要材料,前人对其形成年代、变质P-T轨迹等诸多方面已进行了详细的研究,然而对其原岩的研究却较为薄弱,地球化学分析是恢复榴辉岩原岩的重要手段,也是反演区域古特提斯洋演化的重要依据.在系统收集区域地球化学数据的基础上,采集了17件松多榴辉岩样品,进行了地球化学研究,意在对区域构造演化提供新的制约.松多地区主要出露双矿物榴辉岩和退变质榴辉岩,两类榴辉岩都表现出亚碱性拉斑玄武岩的特征,在微量元素和各类构造环境判别图解中,两种榴辉岩分别都落入了N-MORB和E-MORB区域.基于上述分析结果,并结合区域地质资料,表明松多古特提斯洋在演化过程中可能长期存在地幔柱岩浆和正常洋中脊亏损地幔岩浆的相互作用.

       

    • 图  1  西藏拉萨板块松多榴辉岩地质简图及采样位置

      a.青藏高原大地构造格架图,据李才等(2006);b.研究区地质简图. BNSZ.班公湖–怒江缝合带;SNMZ.狮泉河–纳木错蛇绿混杂岩带;LMF.洛巴堆–米拉山断裂带;IYSSZ.印度–雅鲁藏布缝合带

      Fig.  1.  Geological map and sampling location of Sumdo eclogites in the Lhasa plate, Tibet

      图  2  松多榴辉岩及其围岩野外和镜下照片

      a.榴辉岩与围岩接触关系;b.金红石榴辉岩近景照片;c.退变质榴辉岩近景照片;d.石英岩近景照片;e.白云母石英片岩镜下照片(+);f.榴辉岩峰期变质矿物组合镜下照片(-);g.退变质榴辉岩镜下照片(-);h.石英岩镜下照片(+).Omp.绿辉石;Grt.石榴石;Phen.多硅白云母;Ru.金红石;Cpx.单斜辉石;Amp.角闪石;Ms.白云母;Qtz.石英

      Fig.  2.  Photograph and micrograph of the eclogite and their surrounding rocks from Sumdo area

      图  4  原始地幔标准化微量元素蛛网图及球粒陨石标准化稀土配分曲线图

      标准化数据引自Sun and McDonough(1989);区域数据来自陈松永等(2007)曾令森等(2009)

      Fig.  4.  Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE patterns

      图  5  松多榴辉岩岩石类型判别图解

      a.104×Zr/TiO2-Nb/Y图解,据Winchester and Floyd(1977);b.Ti-Cr图解,据Pearce(1975);c.Ti-Zr图解,据Pearce et al.(1995);d.V-Ti/103图解,据Shervais (1982);MORB为大洋中脊玄武岩;N-MORB为正常大洋中脊玄武岩;E-MORB为富集型大洋中脊玄武岩;OIB为洋岛玄武岩;WPB为板内玄武岩;区域数据来自陈松永等(2007)曾令森等(2009)

      Fig.  5.  Classification diagram of eclogite rocks

      图  6  松多地区榴辉岩构造判别图解

      a. Th/Yb-Nb/Yb图解,据Pearce and Peate(1995);b. Zr/Y-δNb图解,据Fitton et al.(1997);c. Hf/3-Th-Ta图解,据Wood(1980);d. Hf/3-Th-Nb/16图解,据Wood(1980);MORB为大洋中脊玄武岩;N-MORB为正常大洋中脊玄武岩;E-MORB为富集型大洋中脊玄武岩;OIB为洋岛玄武岩;A为正常洋中脊玄武岩;B为富集型洋中脊玄武岩或板内拉斑玄武岩;C为板内碱性玄武岩;D为岛弧拉斑玄武岩;区域数据来自陈松永等(2007)曾令森等(2009)

      Fig.  6.  Structural discrimination diagram of Sumdo eclogites

      图  3  松多榴辉岩石榴石及绿辉石成分图解

      Alm.铁铝榴石;Spe.锰铝榴石;Gro.钙铝榴石;Pyr.镁铝榴石;WEF.硅辉石、顽火辉石、铁辉石;Jd.硬玉;Ae.霓石;Aug.普通辉石;CaEs.钙埃斯科拉

      Fig.  3.  Composition plots of garnet and omphacite in Sumdo eclogites

      表  1  松多榴辉岩典型石榴石化学成分分析数据

      Table  1.   Chemical analyses of garnet from Sumdo eclogite

      样品 退变质榴辉岩 双矿物榴辉岩
      编号 Grt-1 Grt-2 Grt-3 Grt-4 Grt-5 Grt-6 Grt-7 Grt-1 Grt-2 Grt-3 Grt-4 Grt-5 Grt-6 Grt-7
      SiO2 39.66 39.53 39.30 40.07 39.84 39.73 39.93 39.20 39.66 39.20 39.22 39.79 38.69 38.75
      TiO2 0.08 0.07 0.13 0.13 0.07 0.08 0.06 0.27 0.22 0.02 0.11 0.07 0.03 0.08
      Al2O3 22.35 22.15 21.81 21.90 21.95 22.01 22.00 21.47 21.64 21.52 21.98 21.99 21.85 21.76
      Cr2O3 0.02 0.02 0.00 0.01 0.01 0.00 0.04 0.04 0.03 0.05 0.02 0.01 0.03 0.05
      FeO 19.80 19.58 19.48 19.91 19.95 19.63 20.28 19.90 19.55 19.76 19.64 19.83 21.62 19.77
      MnO 0.51 0.43 0.39 0.40 0.33 0.44 0.46 0.39 0.42 0.44 0.40 0.45 0.45 0.41
      MgO 7.67 7.47 7.21 7.42 7.36 7.53 7.43 7.36 7.24 7.01 7.28 7.43 6.62 7.25
      CaO 10.29 10.46 10.71 10.75 10.73 10.99 10.54 10.76 10.67 10.55 10.52 10.79 10.49 10.61
      Si 3.00 3.01 3.02 3.03 3.02 3.01 3.02 3.00 3.03 3.03 3.01 3.02 2.98 2.99
      Ti 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00
      Al 1.99 1.99 1.97 1.95 1.96 1.96 1.96 1.94 1.95 1.96 1.99 1.96 1.98 1.98
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.00 0.00 0.01 0.03 0.02 0.03 0.02 0.05 0.02 0.02 0.00 0.02 0.03 0.02
      Fe2+ 1.25 1.25 1.24 1.23 1.25 1.22 1.26 1.23 1.23 1.26 1.26 1.24 1.36 1.26
      fe 1.25 1.25 1.25 1.26 1.27 1.24 1.28 1.28 1.25 1.28 1.26 1.26 1.39 1.28
      Mn 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
      Mg 0.87 0.85 0.83 0.84 0.83 0.85 0.84 0.84 0.83 0.81 0.83 0.84 0.76 0.83
      Ca 0.83 0.85 0.88 0.87 0.87 0.89 0.85 0.88 0.87 0.87 0.87 0.88 0.87 0.88
      Spe 1.09 0.92 0.86 0.85 0.71 0.94 1.00 0.84 0.92 0.96 0.86 0.97 0.96 0.89
      Gro 27.82 28.54 29.18 28.05 28.37 28.53 27.35 27.26 28.47 28.41 28.92 28.30 27.22 28.30
      Alm 41.90 41.80 41.78 41.57 41.96 40.74 42.23 41.27 41.63 42.45 42.24 41.47 45.21 42.02
      Pyr 28.93 28.40 27.74 28.21 27.99 28.47 28.11 28.23 27.91 27.18 27.89 28.16 25.16 27.82
      注:单矿物的化学成分分析是在吉林大学测试科学实验中心进行的,所使用的电子探针型号为JXA-8230,分析条件为:放射束电流的加速电压20 kV、电流20 nA、探针束斑直径5 μm,石榴石4个端元计算如下:Alm=100×Fe2+/(Fe2++Mg+Mn+Ca);Gro=100×Ca/(Fe2++Mg+Mn+Ca);Pyr=100×Mg/(Fe2++Mg+Mn+Ca);Spe=100×Mn/(Fe2++Mg+Mn+Ca).
      下载: 导出CSV

      表  2  松多榴辉岩典型绿辉石化学成分分析数据

      Table  2.   Chemical analyses of omphacite from Sumdo eclogite

      样品 退变质榴辉岩 双矿物榴辉岩
      测点号 Omp-1 Omp-2 Omp-3 Omp-2 Omp-2 Omp-3
      SiO2 54.26 53.86 55.36 54.67 54.27 54.99
      TiO2 0.21 0.18 0.15 0.24 0.15 0.20
      Al2O3 8.07 8.07 8.94 7.97 7.85 7.88
      Cr2O3 0.06 0.00 0.04 0.03 0.05 0.00
      FeO 4.81 4.56 4.38 4.70 4.36 4.13
      MnO 0.00 0.00 0.00 0.05 0.04 0.04
      MgO 10.78 10.95 9.94 10.77 11.13 11.38
      CaO 18.16 18.20 17.15 17.70 18.27 18.02
      Na2O 3.83 3.87 3.62 4.17 3.93 4.06
      K2O 0.00 0.00 0.90 0.00 0.00 0.00
      Si 1.96 1.95 1.98 1.97 1.96 1.96
      AlIV 0.04 0.05 0.02 0.03 0.04 0.04
      AlVI 0.30 0.30 0.36 0.30 0.29 0.30
      Ti 0.01 0.00 0.00 0.01 0.00 0.01
      Cr 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.00 0.02 0.00 0.01 0.03 0.01
      Fe2+ 0.15 0.11 0.13 0.13 0.11 0.11
      Mn 0.00 0.00 0.00 0.00 0.00 0.00
      Mg 0.58 0.59 0.53 0.58 0.60 0.61
      Ca 0.70 0.71 0.66 0.68 0.71 0.69
      Na 0.27 0.27 0.25 0.29 0.27 0.28
      al 0.34 0.34 0.38 0.34 0.33 0.33
      K 0.00 0.00 0.04 0.00 0.00 0.00
      Q 72.72 72.24 72.41 70.50 71.95 71.44
      jds 27.28 26.03 27.59 28.58 26.05 27.49
      Ae 0.00 0.00 0.00 0.00 0.00 0.00
      CaEs 0.00 0.00 8.58 0.00 0.00 0.00
      Aug 60.74 60.37 61.32 60.71 61.69 61.45
      注:标准辉石各端元组分计算方法根据Morimoto(1988),硬玉(XJd)=AlVI/(Na+Ca), 霓石(XAe)=(Na-AlVI)/(Na+Ca),普通辉石(XAu)=(Ca+Mg+Fe2+)/2,CaEs=Altotal-2AlIV-Na,如果Altotal-2Aliv-Na < 0,CaEs=0详尽的分析方法步骤请参照Zhai et al.(2011).
      下载: 导出CSV

      表  3  松多退变质榴辉岩主量元素(%)和微量元素(10-6)分析结果

      Table  3.   Analytical results of major (%) and trace elements (10-6) for Sumdo eclogites

      样品号 Tb-01 Tb-02 Tb-03 Tb-04 Tb-05 Sk-01 Sk-02 Sk-03
      SiO2 42.14 42.35 44.77 41.52 42.94 47.13 46.67 48.12
      TiO2 3.34 1.61 1.71 2.47 1.24 2.74 2.76 2.53
      Al2O3 15.61 14.94 16.61 15.10 14.54 14.85 14.92 14.74
      Fe2O3T 18.11 14.09 12.78 14.14 12.34 13.48 13.85 13.15
      MnO 0.29 0.21 0.21 0.18 0.20 0.19 0.20 0.20
      MgO 8.30 10.74 9.15 10.08 11.96 7.45 7.33 7.28
      CaO 11.01 13.84 12.42 14.32 14.67 10.76 10.65 10.45
      Na2O 0.79 1.14 1.88 1.85 1.93 2.68 2.84 2.64
      K2O 0.06 0.19 0.33 0.03 0.05 0.45 0.54 0.48
      P2O5 0.40 0.17 0.21 0.21 0.12 0.27 0.27 0.29
      Lol 0.52 1.87 0.54 0.77 0.56 0.45 0.40 0.63
      合计 100.57 101.15 100.61 100.69 100.56 100.45 100.43 100.52
      Li 3.57 10.66 15.22 17.34 23.54 4.23 3.98 4.78
      P 1 450.2 601.0 778.2 725.4 376.6 936.8 877.2 1 014.4
      K 367.60 1 316.80 2 500.00 84.78 197.94 3 306.00 3 894.00 3 808.00
      Sc 55.10 55.18 51.92 46.80 50.02 44.72 43.06 43.60
      Ti 20 320 10 574 11 480 13 712 6 730 17 868 17 418 16 588
      V 428.40 557.20 430.80 476.00 408.20 448.20 432.80 408.20
      Cr 120.38 482.00 497.80 481.00 371.60 266.00 259.40 272.00
      Mn 2 352.0 1 927.6 2 016.0 1 442.0 1 546.8 1 723.8 1 697.0 1 763.4
      Co 56.52 65.14 57.24 50.40 51.00 54.74 54.22 53.36
      Ni 79.82 176.44 125.58 124.92 154.12 93.52 94.70 95.16
      Cu 7.13 9.81 46.74 10.48 16.06 103.42 134.68 145.14
      Zn 62.30 86.80 47.24 54.34 57.22 100.74 95.86 95.22
      Ga 13.72 22.40 18.34 16.26 17.18 24.64 23.24 23.08
      Rb 2.42 5.57 3.07 0.43 0.92 9.89 12.60 9.09
      Sr 48.98 201.40 44.14 86.20 70.12 238.60 225.00 245.00
      Y 68.38 39.94 42.78 46.34 29.96 31.88 31.02 30.60
      Zr 196.42 65.30 73.40 76.72 62.00 136.14 127.82 126.94
      Nb 4.30 1.54 2.97 2.63 1.21 16.96 16.11 14.78
      Cs 0.23 0.28 0.25 0.11 0.05 0.19 0.23 0.20
      Ba 15.29 59.62 126.68 4.18 7.35 85.82 97.36 126.10
      La 0.81 8.57 1.82 3.28 3.96 10.17 10.11 9.77
      Ce 2.53 26.16 6.08 10.91 13.35 25.48 25.10 24.74
      Pr 0.46 4.28 1.07 1.88 2.32 3.59 3.52 3.49
      Nd 2.67 21.86 5.86 9.97 12.37 16.47 16.13 16.12
      Sm 1.21 6.69 2.24 3.43 3.96 4.66 4.56 4.57
      Eu 0.53 2.24 0.87 1.23 1.27 1.65 1.61 1.65
      Gd 2.77 7.50 3.98 5.33 4.63 5.65 5.54 5.55
      Tb 0.91 1.19 0.91 1.10 0.77 0.94 0.92 0.92
      Dy 9.30 7.13 6.80 7.69 4.97 5.80 5.64 5.63
      Ho 2.39 1.43 1.53 1.64 1.05 1.16 1.12 1.13
      Er 7.26 4.08 4.55 4.73 3.07 3.19 3.08 3.08
      Tm 1.06 0.59 0.67 0.68 0.45 0.44 0.43 0.42
      Yb 6.84 3.87 4.28 4.32 2.89 2.72 2.66 2.63
      Lu 1.02 0.58 0.63 0.64 0.43 0.39 0.38 0.38
      Hf 5.00 1.58 1.72 1.90 1.61 3.52 3.29 3.28
      Ta 0.27 0.10 0.19 0.19 0.13 1.16 0.99 0.89
      Pb 0.76 4.42 0.36 1.38 0.93 1.35 1.09 1.88
      Th 0.07 0.28 0.07 0.12 0.17 1.00 0.96 0.87
      U 0.06 0.13 0.03 0.09 0.06 0.27 0.28 0.29
      下载: 导出CSV

      表  4  松多双矿物榴辉岩主量元素(%)和微量元素(10-6)分析结果

      Table  4.   Analytical results of major (%) and trace elements (10-6) for Sumdo eclogites

      样品号 Sk-04 Sk-05 Sk-06 Sk-07 Sk-08 Sk-09 Sk-10 Sk-11 Sk-12
      SiO2 44.70 45.31 44.82 50.29 42.79 48.97 46.37 46.69 47.72
      TiO2 2.82 1.88 1.92 1.54 3.24 3.08 3.29 3.24 2.08
      Al2O3 14.55 15.03 15.44 14.03 15.44 12.96 13.88 13.53 13.11
      Fe2O3T 16.89 15.41 15.24 12.66 13.46 12.67 18.64 18.17 14.38
      MnO 0.29 0.22 0.25 0.17 0.17 0.16 0.23 0.27 0.25
      MgO 5.99 7.38 7.73 6.34 5.15 5.05 5.61 5.92 6.22
      CaO 9.79 10.55 10.65 10.54 13.69 11.82 7.26 7.45 9.67
      Na2O 2.92 3.26 3.29 3.39 3.94 3.34 3.18 3.11 2.92
      K2O 0.72 0.69 0.38 0.27 0.27 0.32 0.86 0.77 1.41
      P2O5 0.61 0.24 0.24 0.22 0.35 0.46 0.49 0.61 0.32
      Lol 1.78 0.58 0.61 1.48 3.33 2.64 0.69 0.72 4.04
      合计 101.06 100.54 100.57 100.94 101.83 101.48 100.49 100.48 102.12
      Li 7.64 20.92 5.83 16.04 14.23 13.23 9.89 13.09 17.64
      P 1 705.8 803.2 833.0 797.8 1 260.0 1 771.2 1 557.4 2 184.0 1 186.0
      K 4 892.0 5 278.0 2 600.0 1 974.6 1 858.0 6 328.0 2 238.0 5 764.0 10 394.0
      Sc 47.60 51.36 52.56 50.52 42.14 44.44 39.20 47.26 40.58
      Ti 17 332 11 336 11 844 9 532 20 080 20 560 18 662 20 960 12 826
      V 461.8 462.6 484.2 406.6 502.8 454.0 361.8 472.8 400.2
      Cr 70.02 97.62 95.32 147.50 60.28 21.30 93.28 35.26 95.24
      Mn 2 364.0 1 787.0 2 206.0 1 465.6 1 397.8 1 983.4 1 310.2 2 396.0 2 154.0
      Co 52.76 62.20 59.42 59.58 52.26 52.90 42.74 54.40 52.22
      Ni 57.36 63.14 63.46 76.58 50.84 22.72 59.62 31.50 52.12
      Cu 198.36 211.80 153.10 100.56 97.74 24.52 142.66 27.06 66.80
      Zn 105.30 96.84 88.08 106.50 130.46 148.18 100.92 151.68 105.44
      Ga 24.50 20.60 21.56 18.49 23.88 22.08 19.71 21.66 20.54
      Rb 14.14 16.75 4.14 2.19 2.74 13.64 2.07 11.46 30.36
      Sr 298.40 169.76 224.60 287.00 296.60 58.98 180.54 56.44 94.56
      Y 42.96 32.08 34.20 33.06 34.02 77.44 35.54 66.92 44.44
      Zr 167.34 93.86 100.44 93.32 178.88 255.40 178.08 247.60 144.64
      Nb 38.70 16.11 17.70 7.40 23.74 36.00 25.60 39.64 19.37
      Cs 0.37 0.97 0.12 0.17 0.30 0.83 0.17 0.86 2.81
      Ba 110.46 119.92 51.76 19.28 34.78 96.20 20.06 74.10 191.94
      La 19.01 10.32 10.50 6.43 15.42 19.00 15.87 20.80 11.24
      Ce 43.24 23.76 23.80 15.23 37.98 45.96 38.08 50.52 26.48
      Pr 5.54 3.16 3.16 2.25 5.13 6.24 5.08 6.61 3.58
      Nd 23.54 14.21 14.19 10.89 22.90 28.34 22.42 29.44 16.15
      Sm 5.89 4.05 4.01 3.52 6.12 8.03 5.94 8.06 4.49
      Eu 2.01 1.48 1.46 1.21 2.08 2.51 1.97 2.48 1.49
      Gd 6.93 5.01 5.05 4.80 6.99 10.61 6.73 10.14 5.79
      Tb 1.16 0.85 0.87 0.87 1.11 1.90 1.09 1.71 1.08
      Dy 7.44 5.49 5.64 5.71 6.47 12.47 6.59 10.85 7.18
      Ho 1.56 1.17 1.19 1.21 1.23 2.64 1.29 2.27 1.52
      Er 4.53 3.43 3.48 3.49 3.32 7.73 3.56 6.58 4.42
      Tm 0.66 0.50 0.50 0.50 0.46 1.14 0.50 0.96 0.64
      Yb 4.28 3.24 3.26 3.13 2.77 7.35 3.07 6.24 4.09
      Lu 0.64 0.48 0.49 0.44 0.38 1.08 0.43 0.93 0.61
      Hf 4.20 2.57 2.49 2.51 4.44 6.57 4.55 6.40 3.60
      Ta 2.41 1.02 1.05 0.41 1.52 2.22 1.70 2.39 1.24
      Pb 2.74 0.87 1.18 6.23 7.31 2.07 5.37 1.99 2.13
      Th 1.82 0.99 0.97 0.82 1.56 2.06 1.88 2.48 1.12
      U 0.57 0.24 0.24 0.47 0.43 0.73 0.73 0.84 0.45
      下载: 导出CSV
    • [1] Becker, H., Jochum, K. P., Carlson, R. W., 1999. Constraints from High-Pressure Veins in Eclogites on the Composition of Hydrous Fluids in Subduction Zones. Chemical Geology, 160(4):291-308. https://doi.org/10.1016/s0009-2541(99)00104-7
      [2] Chen, S. Y., Yang, J. S., Luo, L. Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet, China:Petrochemical Evidence. Geological Bulletin of China, 26(10):1327-1339 (in Chinese with English abstract).
      [3] Chen, S. Y., Yang, J. S., Xu, X. Z., et al., 2008. Study of Lu-Hf Geochemical Tracing and LA-ICPMS U-Pb Isotopic Dating of the Sumdo Eclogite from the Lhasa Block, Tibet. Acta Petrologica Sinica, 24(7):1528-1538 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
      [4] Choe, W. H., Lee, J. I., Lee, M. J., et al., 2007. Origin of E-MORB in a Fossil Spreading Center:The Antarctic-Phoenix Ridge, Drake Passage, Antarctica. Geosciences Journal, 11(3):185-199. https://doi.org/10.1007/bf02913932
      [5] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      [6] Ding, Z. G., Tong, L. X., Liu, X. H., et al., 2018. Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication. Earth Science, 43(1):220-235 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.013
      [7] Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3-4):347-366. https://doi.org/10.1016/j.epsl.2004.07.019
      [8] Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4):197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
      [9] Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
      [10] Hofmann, A. W., HÉMond, C., 2006. The Origin of E-MORB. Geochimica et Cosmochimica Acta, 70(18):A257. https://doi.org/10.1016/j.gca.2006.06.517
      [11] Hou, Z. Q., Mo, X. X., Zhu, Q. W., et al., 1996. Mantle Plume in the Sanjiang Paleo-Tethyan Lithosphere:Evidence from Mid-Ocean Ridge Basalts. Acta Geoscientia Sinica, 17(4):362-375 (in Chinese with English abstract).
      [12] Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4):136-147 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604011
      [13] Li, C., Zhai, Q. G., Dong, Y. S., et al., 2006. Discovery of Eclogite and Its Geological Significance in Qiangtang Area, Central Tibet. Chinese Science Bulletin, 51(9):1095-1100. https://doi.org/10.1007/s11434-006-1095-3
      [14] Li, M., Han, Z. Z., Mi, C. Y., et al., 2015. Mineral Geochemistry of Eclogite in the Sulu Belt and Its Implication. Periodical of Ocean University of China, 45(1):63-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201501010
      [15] Liu, X. J., Xu, J. F., Wang, S. Q., et al., 2009. Geochemistry and Dating of E-MORB Type Mafic Rocks from Dalabute Ophiolite in West Junggar, Xinjiang and Geological Implications. Acta Petrologica Sinica, 25(6):1373-1389 (in Chinese Withenglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906009
      [16] Melson, W. G., Vallier, T. L., Wright, T. L., et al., 1976. Chemical Diversity of Abyssal Volcanic Glass Erupted along Pacific, Atlantic, and Indian Ocean Sea-Floor Spreading Centers. Geophysical Monograph Series, 19:351-367. https://doi.org/10.1029/GM019p0351
      [17] Michael, P., 1995. Regionally Distinctive Sources of Depleted MORB:Evidence from Trace Elements and H2O. Earth and Planetary Science Letters, 131(3-4):301-320. https://doi.org/10.1016/0012-821x(95)00023-6
      [18] Morimoto, N., 1988. Nomenclature of Pyroxenes. Bulletin de Minéralogie, 111(5):535-550. https://doi.org/10.3406/bulmi.1988.8099
      [19] Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3-4):471-483. https://doi.org/10.1016/s0012-821x(97)00048-4
      [20] Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. Origin of Enriched-Type Mid-Ocean Ridge Basalt at Ridges Far from Mantle Plumes:The East Pacific Rise at 11°20'N. Journal of Geophysical Research:Solid Earth, 104(B4):7067-7087. https://doi.org/10.1029/1998jb900037
      [21] Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2):41-67. https://doi.org/10.1016/0040-1951(75)90010-4
      [22] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [23] Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073
      [24] Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1):77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
      [25] Schilling, J. G., Thompson, G., Kingsley, R., et al., 1985. Hotspot-Migrating Ridge Interaction in the South Atlantic. Nature, 313(5999):187-191. https://doi.org/10.1038/313187a0
      [26] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0
      [27] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [28] Wang, B., Xie, C. M., Fan, J. J., et al., 2018. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324-325:429-438. https://doi.org/10.1016/j.lithos.2018.11.015
      [29] Wang, J. R., Chen, W. F., Zhang, Q., et al., 2017. Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source. Acta Petrologica Sinica, 33(3):993-1005 (in Chinese with English abstract).
      [30] Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London.
      [31] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [32] Wood, D. A., 1980. The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      [33] Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member:Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4):Q04008. https://doi.org/10.1029/2003gc000623
      [34] Xiao, W. J., Windley, B. F., Yan, Q. R., et al., 2006. SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area, China and Its Tectonic Implications. Acta Geologica Sinica, 80(1):32-37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601004
      [35] Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet, China. Geological Bulletin of China, 26(10):1340-1355 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710012
      [36] Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [37] Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      [38] Yang, J. S., Xu, Z. Q., Li, T. F., et al., 2007. Oceanic Subduction-Type Eclogite in the Lhasa Block, Tibet, China:Remains of the Paleo-Tethys Ocean Basin?. Geological Bulletin of China, 26(10):1277-1287 (in Chinese with English abstract).
      [39] Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2009. Tectonic Setting of Main High- and Ultrahigh-Pressure Metamorphic Belts in China and Adjacent Region and Discussion on Their Subduction and Exhumation Mechanism. Acta Petrologica Sinica, 25(7):1529-1560 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
      [40] Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
      [41] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [42] Zhai, Q. G., Jahn, B. M., Li, X. H., et al., 2017. Zircon U-Pb Dating of Eclogite from the Qiangtang Terrane, North-Central Tibet:A Case of Metamorphic Zircon with Magmatic Geochemical Features. International Journal of Earth Sciences, 106(4):1239-1255. https://doi.org/10.1007/s00531-016-1418-9
      [43] Zhai, Q. G., Li, C., Wang, J., et al., 2009. Petrology, Mineralogy, and 40Ar/39Ar Chronology for Rongma Blueschist from Central Qiangtang, Northern Tibet. Acta Petrologica Sinica, 25(9):2281-2288 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      [44] Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China:Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1-2):173-189. https://doi.org/10.1016/j.lithos.2011.02.004
      [45] Zhang, C., Bader, T., van Roermund, H., et al., 2018a. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications, 474(1):209-229. https://doi.org/10.1144/sp474.4
      [46] Zhang, C., Bader, T., Zhang, L. M., et al., 2018b. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7):1175-1189. https://doi.org/10.1017/s001675681800033x
      [47] Zhang, L., Ye, Y., Qin, S., et al., 2018c. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7
      [48] Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018d. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1005-1009. https://doi.org/10.1007/s12583-018-0852-y
      [49] Zhang, D. D., Zhang, L. F., Zhao, Z. D., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2):116-126 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
      [50] Zhang, L. F., Ai, Y. L., Li, Q., et al., 2005. The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4):1029-1038 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504001
      [51] Zhang, X. Z., Dong, Y. S., Li, C., et al., 2014. A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Subduction and Collision:Constraints on Geochemistry of Eclogite and Blueschist in Central Qiangtang, Tibetan Plateau. Acta Petrologica Sinica, 30(10):2821-2834 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
      [52] Zhang, X. Z., Dong, Y. S., Li, C., et al., 2010. Formation and Significance of Jadeite-Garnet-Mica Schist Newly Discovered in Longmu Co-Shuanghu Suture Zone, Central Qingtang. Earth Science Frontiers, 17(1):93-103 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
      [53] Zhang, X. Z., Wang, Dong, Y. S., et al., 2017. High-Pressure Granulite Facies Overprinting during the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet:Link to Flat-Slab Subduction. Tectonics, 36(12):2918-2935. https://doi.org/10.1002/2017tc004774
      [54] Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.005
      [55] Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Mesozoic High-Pressure Metamorphism within the Lhasa Block, Tibet and Its Implications for Regional Tectonics. Earth Science Frontiers, 16(2):140-151 (in Chinese with English abstract).
      [56] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [57] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. doi: 10.1146/annurev.ea.14.050186.002425
      [58] 陈松永, 杨经绥, 罗立强, 等, 2007.西藏拉萨地块MORB型榴辉岩的岩石地球化学特征.地质通报, 26(10):1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011
      [59] 陈松永, 杨经绥, 徐向珍, 等, 2008.西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMS U-Pb定年.岩石学报, 24(7):1528-1538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
      [60] 丁自耕, 仝来喜, 刘小汉, 等, 2018.西藏定结高压基性麻粒岩(退变榴辉岩)的变质P-T轨迹及构造意义.地球科学, 43(1):220-235 http://earth-science.net/WebPage/Article.aspx?id=3717
      [61] 侯增谦, 莫宣学, 朱勤文, 等, 1996. "三江"古特提斯地幔热柱——洋中脊玄武岩证据.地球学报, 17(4):362-375. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB604.002.htm
      [62] 李才, 黄小鹏, 翟庆国, 等, 2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
      [63] 李敏, 韩宗珠, 秘丛永, 等, 2015.苏鲁榴辉岩带的矿物地球化学研究及意义.中国海洋大学学报(自然科学版), 45(1):63-70. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201501010
      [64] 刘希军, 许继峰, 王树庆, 等, 2009.新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义.岩石学报, 25(6):1373-1389. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906009
      [65] 王金荣, 陈万峰, 张旗, 等, 2017.N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论.岩石学报, 33(3):993-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201703023
      [66] 肖文交, Windley, B. F., 阎全人, 等, 2006.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义.地质学报, 80(1):32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004
      [67] 徐向珍, 杨经绥, 李天福, 等, 2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMPU-Pb年龄及锆石中的包裹体.地质通报, 26(10):1340-1355. doi: 10.3969/j.issn.1671-2552.2007.10.012
      [68] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [69] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      [70] 杨经绥, 许志琴, 李天福, 等, 2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?.地质通报, 26(10):1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006
      [71] 杨经绥, 许志琴, 张建新, 等, 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨.岩石学报, 25(7):1529-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
      [72] 翟庆国, 李才, 王军, 等, 2009.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学.岩石学报, 25(9):2281-2288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      [73] 张丁丁, 张立飞, 赵志丹, 2011.西藏松多榴辉岩变质作用研究.地学前缘, 18(2):116-126. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
      [74] 张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504001
      [75] 张修政, 董永胜, 李才, 等, 2014.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据.岩石学报, 30(10):2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
      [76] 张修政, 董永胜, 李才, 等, 2010.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义.地学前缘, 17(1):93-103. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
      [77] 张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
      [78] 曾令森, 刘静, 高利娥, 等, 2009.青藏高原拉萨地块早中生代高压变质作用及大地构造意义.地学前缘, 16(2):140-151. doi: 10.3321/j.issn:1005-2321.2009.02.010
    • 加载中
    图(6) / 表(4)
    计量
    • 文章访问数:  4307
    • HTML全文浏览量:  1641
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-29
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回