Discovery and Significance of Cretaceous Lamprophyre Dike Group in Quanji Block of Northern Tibetan Plateau
-
摘要: 除陆相沉积盆地外,青藏高原北部白垩纪建造记录稀少,岩浆活动的研究极少,幔源岩浆活动十分罕见,在青藏高原北部全吉地块首次发现了白垩纪煌斑岩脉群,深入研究可深化认识高原北部中生代晚期地质过程.对分布在全吉地块东部沙柳泉地区的煌斑岩进行了大比例尺填图,主微量元素、Sr-Nd-Pb同位测定、锆石SHRIMP和LA-ICP-MS U-Pb年代学研究.煌斑岩中获得锆石U-Pb年龄分别为135.2±1.8 Ma和132.9±1.3 Ma.岩石具高钾(K2O=4.53%~5.25%)、镁(MgO=7.23%~12.27%)和低钛(0.85%~1.29%)的特点,为钾质钙碱性煌斑岩,Rb、Ba、Th、U和Pb等大离子亲石元素(LILE)富集,Nb、Ta和Ti等高场元素(HFSE)亏损,(87Sr/86Sr)i介于0.718 0~0.718 6.εNd(t)=-14.2~-14.4,208Pb/204Pb变化于38.414~39.334,207Pb/204Pb在15.632~15.681,206Pb/204Pb介于18.568~19.203,显示岩浆源于与洋陆俯冲作用影响有关的EMⅡ型地幔源,形成于南北拉张背景下沿深大断裂引起的岩石圈地幔局部部分熔融.岩石具有较高Au(平均值为6.8×10-9)和F(平均值2 450×10-6)浓度,对全吉地块东部金矿成矿作用十分有利.Abstract: Cretaceous formation records are rare in the northern part of the Tibetan plateau, except for terrestrial sedimentary basins, with only few magmatic activities reported, let alone mantle-derived magmatic activities. The lamprophyres exposed in the Shaliuquan area, the eastern part of the Quanji block, were firstly discovered by field work, which were subjected to a large scale mapping, major and trace element analyses, precise zircon SHRIMP and LA-ICP-MS U-Pb dating and Sr-Nd-Pb isotopic measurements, aiming to deepen the understanding of the Late Mesozoic geological process in the northern plateau. The results yield the average zircon U-Pb ages of 135.2±1.8 Ma and 132.9±1.3 Ma. The rocks are rich in potassium (K2O=4.53%-5.25%), magnesium (MgO=7.23%-12.27%) and poor in titanium (0.85%-1.29%), showing potassium calc-alkaline. They are also enriched in large ion LILE elements (Rb, Ba, Th, U and Pb) and deficient in high field elements (Nb, Ta and Ti). (87Sr/86Sr)i value is 0.718 0-0.718 6. εNd(t) value is -14.2 to -14.4, 208Pb/204Pb is 38.414 to 39.334, 207Pb/204Pb is 15.632-15.681, and 206Pb/204Pb is 18.568-19.203. These data indicate the magma originated from the oceanic subduction-related EMⅡ mantle source and formed from local partial melting of the lithospheric mantle along the deep fracture. The high contents of Au (the mean of 6.8×10-9) and F (the mean of 2 450×10-6) of the lamprophyres are very favorable for gold mineralization in the eastern part of the Quanji block.
-
Key words:
- Tibetan plateau /
- Quanji block /
- Cretaceous /
- lamprophyre /
- EM Ⅱ mantle source /
- petrology
-
图 1 全吉地块及邻区区域构造分区略图
据潘桂棠等(2009)修改
Fig. 1. Outline of regional tectonic zoning of the Quanji block and adjacent areas
图 6 沙柳泉煌斑岩的TAS图解(a)和n(K)-n(K+Na)图解(b)
图a据Rock(1987),Middlemost(1994);图b据路凤香等(1991)
Fig. 6. TAS(a) and n(K) vs. n(K+Na) diagrams(b) of the Shaliuquan lamprophyre
图 7 沙柳泉煌斑岩球粒陨石标准化REE模式图(a)和原始地幔标准化微量元素蛛网图(b)
Fig. 7. Chondrite-normalized REE patterns(a) and primitive mantle-normalized spidergrams of the Shaliuquan lamprophyre (b)
图 8 沙柳泉煌斑岩La/Yb-Nb/Ta图解(a)和Nb/U-Nb图解(b)
图b据姜耀辉等(2006)
Fig. 8. La /Yb vs. Nb/Ta (a) and Nb/U vs. Nb diagrams of the Shaliuquan lamprophyre (b)
图 9 沙柳泉煌斑岩εNd(t)-(87Sr/86Sr)i相关图解(a)和207Pb/204Pb-206Pb/204Pb相关图解(b)
图a地幔分区据Zindler and Hart(1986);图b据Rollison(2000)
Fig. 9. εNd(t) vs. (87Sr /86Sr)i (a) and 207Pb/ 204Pb vs. 206Pb /204Pb for the lamprophyres (b)
表 1 沙柳泉煌斑岩LA-ICP-MS锆石U-Pb同位素测定结果
Table 1. LA-ICP-MS U-Pb isotopic compositions of zircons for the lamprophyre from Shaliuquan area
Spot
No.Th U Th/U 同位素比值 年龄(Ma) (10-6) 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 441 333 1.32 0.049 6 0.002 3 0.138 7 0.005 9 0.020 3 0.000 3 177.6 106.0 131.8 5.3 129.8 1.9 2 497 388 1.28 0.048 1 0.002 4 0.133 6 0.006 1 0.020 5 0.000 3 103.8 116.5 127.3 5.4 130.6 2.1 3 60 318 0.19 0.049 8 0.003 0 0.140 3 0.008 2 0.020 5 0.000 4 183.4 138.2 133.3 7.3 131.0 2.6 4 56 278 0.20 0.049 0 0.002 0 0.138 8 0.005 7 0.020 8 0.000 3 147.7 97.3 132.0 5.1 132.6 2.2 5 46 291 0.16 0.049 1 0.002 4 0.140 1 0.006 5 0.020 9 0.000 3 153.6 114.6 133.2 5.8 133.1 2.1 6 287 381 0.75 0.049 6 0.001 9 0.142 0 0.005 4 0.020 9 0.000 3 174.6 91.4 134.8 4.8 133.3 1.6 7 65 573 0.11 0.048 1 0.002 9 0.139 8 0.008 8 0.021 0 0.000 4 104.7 143.7 132.8 7.8 134.0 2.7 8 46 255 0.18 0.051 2 0.003 3 0.147 5 0.009 7 0.021 0 0.000 5 252.0 149.9 139.7 8.6 134.2 3.0 9 85 2 289 0.04 0.049 5 0.001 7 0.144 0 0.005 2 0.021 1 0.000 3 171.6 79.9 136.6 4.6 134.6 1.8 10 300 381 0.79 0.048 8 0.001 9 0.141 4 0.005 5 0.021 1 0.000 3 140.3 89.5 134.3 4.9 134.6 1.7 11 495 1 123 0.44 0.049 7 0.000 8 0.155 7 0.002 6 0.022 9 0.000 2 178.9 37.9 147.0 2.3 146.0 1.5 12 545 1 238 0.44 0.049 3 0.001 1 0.157 3 0.002 9 0.023 1 0.000 3 162.2 50.1 148.3 2.5 147.1 1.8 13 180 657 0.27 0.050 1 0.001 2 0.159 2 0.003 9 0.023 1 0.000 2 198.6 57.5 150.0 3.4 147.3 1.5 14 643 1 063 0.60 0.049 9 0.001 3 0.160 5 0.004 9 0.023 3 0.000 4 191.0 61.2 151.2 4.3 148.5 2.8 15 308 989 0.31 0.048 3 0.001 0 0.156 3 0.003 4 0.023 4 0.000 3 113.0 50.7 147.4 3.0 148.9 1.9 16 172 932 0.18 0.050 3 0.001 5 0.239 9 0.007 0 0.034 7 0.000 5 210.8 70.8 218.4 5.7 219.8 3.0 17 116 829 0.14 0.053 6 0.001 6 0.272 0 0.010 2 0.036 7 0.000 8 356.1 69.3 244.3 8.1 232.4 5.2 18 1 256 899 1.40 0.051 1 0.001 4 0.259 6 0.007 7 0.036 8 0.000 4 243.2 63.0 234.4 6.2 233.2 2.5 19 449 388 1.16 0.051 5 0.001 4 0.265 4 0.006 8 0.037 5 0.000 4 261.1 61.5 239.0 5.4 237.3 2.3 20 0 5 655 0.00 0.050 9 0.000 5 0.264 0 0.003 1 0.037 7 0.000 4 237.5 21.2 237.9 2.5 238.3 2.4 21 2 150 1 586 1.36 0.055 4 0.000 8 0.290 6 0.004 9 0.038 2 0.000 4 426.6 30.6 259.0 3.8 241.7 2.5 22 568 528 1.08 0.053 3 0.001 3 0.305 9 0.007 6 0.041 7 0.000 5 341.4 56.0 271.0 5.9 263.3 3.0 23 63 158 0.40 0.052 0 0.002 4 0.312 9 0.013 3 0.044 1 0.000 6 287.2 104.3 276.4 10.3 278.2 4.0 24 137 149 0.92 0.055 0 0.001 3 0.514 8 0.012 4 0.068 2 0.000 7 410.4 54.5 421.7 8.3 425.1 4.1 25 394 331 1.19 0.055 4 0.001 2 0.521 0 0.010 8 0.068 3 0.000 7 426.9 48.9 425.8 7.2 425.8 4.5 26 2 597 1872 1.39 0.056 2 0.000 4 0.532 8 0.007 0 0.068 5 0.000 6 460.4 17.5 433.7 4.7 427.2 3.8 27 360 465 0.77 0.056 4 0.001 1 0.541 2 0.010 5 0.069 7 0.000 6 466.8 44.8 439.2 6.9 434.1 3.7 28 602 913 0.66 0.056 3 0.000 8 0.543 6 0.008 4 0.069 9 0.000 8 464.8 30.2 440.8 5.5 435.7 4.8 29 258 339 0.76 0.055 4 0.001 1 0.536 7 0.009 8 0.070 2 0.000 7 430.3 43.1 436.2 6.5 437.1 4.0 30 526 577 0.91 0.056 6 0.001 4 0.548 4 0.013 7 0.070 2 0.000 8 476.0 54.0 444.0 9.0 437.3 5.0 31 448 399 1.12 0.054 8 0.001 7 0.532 1 0.017 5 0.070 2 0.001 1 405.7 67.7 433.2 11.6 437.3 6.4 32 320 386 0.83 0.055 8 0.001 3 0.539 0 0.015 4 0.070 2 0.001 1 442.4 53.5 437.8 10.2 437.5 6.4 33 258 282 0.91 0.055 8 0.001 3 0.540 2 0.012 0 0.070 3 0.000 7 445.9 50.1 438.5 7.9 438.0 4.3 34 337 406 0.83 0.055 2 0.001 0 0.537 3 0.010 6 0.070 4 0.000 8 419.6 40.4 436.6 7.0 438.7 4.5 35 1 204 963 1.25 0.055 9 0.001 4 0.542 5 0.014 1 0.070 4 0.001 0 450.0 56.4 440.1 9.3 438.8 6.2 36 178 157 1.14 0.056 6 0.002 5 0.548 3 0.025 4 0.070 5 0.001 4 475.4 96.7 443.9 16.7 439.4 8.5 37 498 630 0.79 0.055 9 0.001 4 0.550 0 0.020 0 0.070 9 0.001 3 448.5 55.8 445.0 13.1 441.5 7.6 38 486 650 0.75 0.055 9 0.000 9 0.547 5 0.009 2 0.070 9 0.000 6 446.5 36.2 443.3 6.0 441.7 3.8 39 21 955 0.02 0.058 0 0.001 6 0.568 8 0.022 9 0.070 9 0.001 6 530.7 58.9 457.3 14.8 441.8 9.5 40 305 470 0.65 0.055 3 0.000 9 0.542 7 0.010 4 0.071 0 0.000 7 424.5 36.9 440.2 6.9 442.2 4.0 41 137 93 1.48 0.056 6 0.001 7 0.548 9 0.015 5 0.071 1 0.000 9 477.6 66.7 444.3 10.2 443.0 5.6 42 292 351 0.83 0.055 1 0.001 5 0.543 1 0.017 9 0.071 2 0.001 1 416.9 60.9 440.5 11.7 443.6 6.8 43 94 207 0.46 0.058 5 0.002 3 0.698 3 0.030 1 0.086 4 0.001 6 550.2 86.7 537.8 18.0 534.4 9.8 44 251 348 0.72 0.069 5 0.000 8 1.442 3 0.017 9 0.150 3 0.001 2 913.6 24.4 906.7 7.4 902.5 6.9 45 41 296 0.14 0.070 4 0.001 1 1.527 5 0.021 6 0.157 0 0.001 6 939.9 30.7 941.5 8.7 940.2 8.8 46 85 519 0.16 0.070 2 0.001 6 1.530 3 0.039 2 0.157 5 0.001 9 933.2 47.4 942.6 15.7 942.6 10.8 47 93 555 0.17 0.080 8 0.001 3 2.329 4 0.036 1 0.208 7 0.001 9 1 216.9 31.6 1 221.3 11.0 1 221.9 9.9 48 90 444 0.20 0.080 7 0.001 4 2.368 6 0.049 9 0.212 5 0.003 0 1 213.7 34.4 1 233.2 15.0 1 242.1 15.9 49 203 494 0.41 0.082 2 0.001 1 2.421 2 0.058 3 0.212 6 0.003 1 1 251.1 26.1 1 248.9 17.3 1 242.7 16.3 50 366 393 0.93 0.087 7 0.000 8 2.847 2 0.026 6 0.235 3 0.002 3 1 375.6 17.4 1 368.1 7.0 1 362.0 11.8 51 39 545 0.07 0.113 2 0.001 1 5.327 2 0.056 6 0.340 5 0.003 0 1 851.8 17.7 1 873.2 9.1 1 888.9 14.6 52 132 266 0.50 0.113 9 0.001 8 5.370 4 0.098 8 0.340 8 0.003 5 1 861.9 29.3 1 880.1 15.8 1 890.3 16.9 53 65 138 0.47 0.157 3 0.001 6 9.668 7 0.137 7 0.445 8 0.005 0 2 426.5 17.3 2 403.7 13.1 2 376.4 22.2 54 337 730 0.46 0.157 0 0.002 0 9.743 9 0.166 6 0.447 4 0.006 1 2 423.2 21.1 2 410.9 15.7 2 383.5 27.3 55 297 144 2.06 0.158 6 0.001 4 10.203 9 0.138 1 0.466 8 0.005 1 2 441.2 15.3 2 453.4 12.5 2 469.5 22.4 56 96 171 0.56 0.161 5 0.001 3 10.469 6 0.096 7 0.469 4 0.003 1 2 471.8 13.4 2 477.2 8.6 2 480.8 13.8 表 2 沙柳泉煌斑岩主量元素(%)、微量和稀土元素(10-6)化学成分分析结果
Table 2. Major (%) and trace and REE element (10-6) abundances of the Shaliuquan lamprophyre
送样号 AMNG
GS2-1AMNG
GS2-2AMNG
GS2-3AMNG
GS4-1AMNG
GS4-2AMNG
GS4-3SLQ
GS1-1SLQ
GS1-2SLQ
GS1-3SLQ
GS1-4SiO2 51.22 51.65 52.10 51.54 46.73 52.18 48.53 48.83 48.71 48.77 TiO2 0.90 0.96 1.02 0.93 1.29 0.89 0.87 0.90 0.85 0.90 Al2O3 10.37 11.05 11.48 10.68 11.80 10.33 11.36 11.54 11.29 11.40 Fe2O3 1.51 1.62 1.24 1.61 2.07 1.55 1.86 2.03 1.97 2.38 FeO 5.00 5.05 5.00 5.30 6.00 5.20 5.40 5.20 5.20 5.00 MnO 0.11 0.10 0.10 0.11 0.27 0.11 0.13 0.13 0.13 0.13 MgO 11.39 11.50 10.79 12.27 7.23 11.82 9.82 9.02 9.64 9.52 CaO 7.49 6.36 6.41 6.42 8.53 6.76 7.37 7.35 7.48 7.27 Na2O 1.17 1.33 1.50 1.13 1.04 1.08 2.11 2.27 2.17 2.15 K2O 4.64 5.01 5.25 4.78 4.53 4.72 4.96 5.08 4.91 5.02 P2O5 0.55 0.57 0.65 0.57 0.78 0.53 0.57 0.58 0.55 0.57 H2O+ 2.67 2.78 2.33 2.96 3.84 2.80 1.99 2.06 1.99 1.98 CO2 2.36 1.39 0.87 1.03 3.29 1.39 2.98 2.47 2.98 4.32 LOST 4.94 3.76 3.41 3.70 8.60 4.19 5.74 5.79 5.87 5.85 H2O- 0.92 0.86 0.76 0.89 0.79 0.95 0.51 0.47 0.45 0.47 Sc 19.57 20.08 19.68 19.74 26.84 19.53 20.92 22.54 21.95 22.74 Li 48.90 45.90 41.68 50.83 52.29 49.63 13.41 11.96 12.11 12.58 Be 6.49 6.78 6.84 6.59 5.46 6.63 5.86 8.24 5.66 6.24 Co 34.74 35.27 34.55 37.22 32.84 37.04 34.46 31.70 32.95 33.76 Rb 177.0 208.7 257.4 138.5 207.2 179.5 128.2 214.5 108.7 160.8 Zr 354.0 382.5 378.1 369.3 444.9 354.3 350.1 341.7 341.1 348.2 Nb 11.14 21.66 20.99 10.29 7.01 7.64 13.45 9.80 6.69 10.62 Hf 8.0 8.4 8.5 8.2 9.6 7.9 7.5 7.3 7.3 7.5 Ta 0.80 1.87 1.62 0.74 0.55 0.65 0.82 0.65 0.36 0.66 Th 65.03 86.81 85.68 77.65 86.82 78.12 80.05 63.17 51.73 61.87 U 12.62 12.97 13.77 12.83 19.32 13.70 15.81 15.66 15.13 14.45 Ba 1 469 1 484 1 634 1 421 1 280 1 449 3 287 3 447 3 078 3 417 Cr 554.3 593.4 513.7 686.3 377.7 644.6 425.9 424.5 447.3 408.1 Ni 186.3 186.1 169.9 208.6 78.96 197.4 193.9 161.9 188.3 182.7 Sr 366.6 395.8 448.0 352.5 560.0 347.7 834.7 897.2 833.8 844.4 V 99.10 103.5 111.0 104.5 146.9 98.69 143.1 144.1 138.2 140.9 F 2542 2629 2476 2735 4134 2855 1737 1847 1761 1789 Sn 6.94 7.79 10.77 5.72 6.36 5.46 4.81 4.93 4.83 7.19 Au 12.5 17.2 13.8 9.4 2.2 5.6 2.2 2.7 1.4 1.3 La 64.40 64.16 64.43 62.17 76.06 62.44 104.9 113.2 110.9 117.1 Ce 151.0 139.9 105.1 146.9 81.15 135.8 223.9 246.2 234.7 250.5 Pr 21.29 21.33 22.92 20.76 26.23 20.56 28.08 31.24 29.75 31.68 Nd 91.05 93.22 101.4 88.94 118.3 88.86 109.8 119.7 115.1 122.4 Sm 18.03 18.69 20.32 17.63 23.19 17.66 17.20 18.88 18.14 19.04 Eu 3.07 3.27 3.72 2.91 3.81 2.90 3.29 3.60 3.47 3.67 Gd 10.99 11.46 11.93 10.68 13.34 10.48 10.96 12.01 11.46 12.22 Tb 1.37 1.37 1.50 1.32 1.66 1.30 1.39 1.52 1.45 1.54 Dy 6.15 6.35 6.68 6.12 7.72 5.95 6.51 7.13 6.78 7.21 Ho 0.98 1.02 1.08 0.98 1.29 0.97 1.10 1.21 1.14 1.21 Er 2.32 2.37 2.50 2.30 3.15 2.26 2.61 2.91 2.72 2.90 Tm 0.33 0.34 0.36 0.33 0.44 0.32 0.38 0.41 0.39 0.42 Yb 2.03 2.04 2.08 2.01 2.77 1.94 2.35 2.60 2.52 2.63 Lu 0.30 0.30 0.32 0.30 0.43 0.29 0.38 0.41 0.39 0.42 Y 27.37 27.72 29.31 26.73 34.89 26.23 29.05 32.00 30.40 32.19 ∑REE 373.3 365.8 344.4 363.3 359.6 351.7 512.9 561.0 538.9 572.95 (La/Yb)n 21.44 21.18 20.86 20.84 18.50 21.74 30.11 29.39 29.66 30.01 δEu 0.62 0.63 0.67 0.60 0.61 0.60 0.69 0.68 0.69 0.69 Mg# 76.3 76.1 76.0 76.6 62.3 76.3 71.4 69.8 71.3 70.6 注:样品AMNG GS2 1、2、3岩性为斜闪煌斑岩;AMNG GS4 1、2、3为云煌斑岩;SLQ GS1 1、2、3、4为球颗状云母角闪煌斑岩. 表 3 沙柳泉煌斑岩全岩Sr-Nd-Pb同位素组成
Table 3. Sr-Nd-Pb isotopic compositions of the Shaliuquan lamprophyre
样品号 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)i t(Ma) εNd(t) tDM1 tDM2 206 Pb/204Pb 207 Pb /204 Pb 208Pb/204 Pb SLQ GS1-1 0.444 8 0.719 31 0.000 004 0.718 5 0.094 62 0.511 81 0.000 002 0.511 73 133 -14.4 1 716 2 101 19.203 15.67 39.215 SLQ GS1-2 0.692 4 0.719 33 0.000 003 0.718 0 0.095 34 0.511 82 0.000 002 0.511 74 133 -14.2 1 709 2 079 18.568 15.632 38.414 SLQ GS1-3 0.377 6 0.719 36 0.000 003 0.718 6 0.095 23 0.511 82 0.000 002 0.511 74 133 -14.2 1 709 2 082 19.193 15.672 39.217 SLQ GS1-4 0.551 5 0.719 58 0.000 003 0.718 5 0.093 97 0.511 82 0.000 003 0.511 74 133 -14.2 1 690 2 079 19.312 15.681 39.334 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid -Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4):390-404. https://doi.org/10.1007/s004100050431 [3] Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Collision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8):2875-2892(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808024 [4] Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2):171-184. https://doi.org/10.1144/gsjgs.149.2.0171 [5] Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53:469-495. doi: 10.2113-0530469/ [6] Feng, Q., Fu, S.T., Zhang, X.L., et al., 2019.Jurassic Prototype Basin Restoration and Hydrocarbon Exploration Prospect in the Qaidam Basin and Its Adjacent Area. Earth Science Frontiers, 26(1):44-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201901006 [7] Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance:LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1):152-166. https://doi.org/10.1016/j.gr.2011.07.011 [8] Guo, A.L., Zhang, G.W., Qiang, J., et al., 2009.Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200901001 [9] Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018.Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12):4300-4318(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812003 [10] He, J., Wang, Q.Y., Yan, G.C., et al., 2018.Genesis and Geodynamic Settings of the Eocene Lamprophyres from Jinshajiang-Red River Tectonic Belt, Ludian, Western Yunnan Province. Earth Science, 43(8):2586-2599(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808004 [11] He, W.Y., Mo, X.X., Yu, X.H., et al., 2014.Genesis and Geodynamic Settings of Lamprophyres from Beiya, Western Yunnan:Constraints from Geochemistry, Geochronology and Sr-Nd-Pb-Hf Isotopes. Acta Petrologica Sinica, 30(11):3287-3300 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014 [12] Hoskin, P. W. O., Schaltegge, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 [13] Hu, X.J., Guo, A.L., Zong, C.L., et al., 2012. 40Ar/39Ar Isotopic Dating, Geochemistry and Their Tectonic Implications of Duofutun Na-Rich Mafic Volcanic Rocks, the Northeastern Margin of the Qinghai-Tibet Plateau. Journal of Northwest University (Natural Science Edition), 42(3):443-452(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201203021 [14] Jerram, D. A., Martin, V. M., 2008. Understanding Crystal Populations and their Significance through the Magma Plumbing System. Geological Society, London, Special Publications, 304(1):133-148. https://doi.org/10.1144/sp304.7 [15] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt, East Tibet. Acta Petrologica Sinica, 22(3):697-706(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c5536d305af23f981c01955d717d8c44&encoded=0&v=paper_preview&mkt=zh-cn [16] Li, H.B., Yang, J.S., 2004.Evidence for Cretaceous Uplift of the Northern Qinghai-Tibetan Plateau. Earth Science Frontiers, 11(4):345-359(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404002 [17] Li, M., Wang, C., Li, R.S., et al., 2018.Detrital Zircon Geochronology and Geological Significance of Zhoujieshan Formation, Quanji Group in North Margin of Qaidam Basin. Earth Science, 43(12):4390-4398(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812009 [18] Li, X.Y., Chen, N.S., Xia, X.P., et al., 2007.Constraints on Timing of the Early-Paleoproterozoic Magmatism and Crustal Evolution of the Oulongbuluke Microcontinent:U-Pb and Lu-Hf Isotope Systematics of Zircons from Mohe Granitic Pluton. Acta Petrologica Sinica, 23(2):513-522(in Chinese with English abstract). doi: 10.1016/j.sedgeo.2006.03.028 [19] Lu, F.X., Shu, X.X., Zhao, C.H., et al., 1991.A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(S1):55-62(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq1991s1006.htm [20] Lu, X.X., Sun, Y.G., Zhang, X.T., et al., 2007.The SHRIMP Age of Tatalin Rapakivi Granite at the North Margin of Qiaidam Basin. Acta Geologica Sinica, 81(5):626-634 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X [21] Luo, M.S., Lu, L.Q., Jia, J., et al., 2014.Evolution of Sedimentary Basins in China during Mesozoic. Earth Science, 39(8):954-976(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201204003 [22] Luo, Z.H., Lu, X.X., Wang, B.Z., et al., 2008.Post-Orogenic Dike Complexes and Implications for Metallogenesis. Earth Science Frontiers, 15(4):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200804001 [23] Luo, Z.H., Wei, Y., Xin, H.T., et al., 2006.Petrogenesis of the Post-Orogenic Dike Complex Constraints to Lithosphere Delamination. Acta Petrologica Sinica, 22(6):1672-1684(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200606024 [24] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [25] Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand:Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2):23-45. https://doi.org/10.1016/s0009-2541(97)00105-8 [26] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009.Subdivision of Tectonic Units in China. Geology in China, 36(1):1-16, 255, 17-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003 [27] Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6):721-734. https://doi.org/10.1007/s00410-004-0633-8 doi: 10.1007-s00410-004-0633-8/ [28] Rock, N.M.S., 1987.The Nature and Origin of Lamprophyres:An Overview. Geological Society, London, Special Publications, 30(1):191-226. https://doi.org/10.144/gsl.sp.1987.030.01.09 [29] Rock, N.M.S., Bowes, D.R., Wright, A.E., 1991. Lamporphyres. Blackie, Glasgow, 285. http://d.old.wanfangdata.com.cn/Periodical/dzzklc200502002 [30] Rollison, H.R., 2000.Petro-Geochemistry(Yang, X.M., Yang, X.Y., Chen, S.X., Translated). Press of University of Science and Technology of China, Hefei, 186-187(in Chinese). [31] Song, S. G., Su, L., Niu, Y. L., et al., 2009. Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction:A Review. Journal of Asian Earth Sciences, 35(3-4):285-297. https://doi.org/10.1016/j.jseaes.2008.11.009 [32] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [33] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution. Wiley-Blackwell, Oxford. [34] Wang, Q.Y., Chen, N.S., Li, X.Y., et al., 2008.LA-ICPMS U-Pb Dating for the Basement Dakendaban Group and Thermal Event in Quanji Block. Chinese Science Bulletin, 53(14):1693-1701(in Chinese). https://www.researchgate.net/publication/285030674_LA-ICPMS_U-Pb_dating_for_the_basement_Dakendaban_group_and_thermal_event_in_Quanji_Block [35] Williams, I.S., 1998.U-Th-Pb Geochronology by Ion Microprobe.In: Mickibben, M.A., Shanks Ⅲ, W.C., Ridley, W.I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes.Reviews in Economic Geology, 7: 1-35. [36] Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31(12):3531-3554(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512003.htm [37] Zhu, X.H., Wang, H.L., Yang, M., et al., 2016.Zircon U-Pb Age of the Monzogranite from the Middle Segment of the Qaidam Mountain Composite Granite on the South Margin of the Qilian Mountain. Geology in China, 43(3):751-767(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603005 [38] Zindler.A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [39] 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. doi: 10.3799/dqkx.2018.112 [40] 冯乔, 付锁堂, 张小莉, 等, 2019.柴达木盆地及邻区侏罗纪原型盆地恢复及油气勘探前景.地学前缘, 26(1):44-58. http://d.old.wanfangdata.com.cn/Periodical/dxqy201901006 [41] 郭安林, 张国伟, 强娟, 等, 2009.青藏高原东北缘印支期宗务隆造山带.岩石学报, 25(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901001 [42] 国显正, 贾群子, 李金超, 等, 2018.东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义.地球科学, 43(12):4300-4318. doi: 10.3799/dqkx.2018.142 [43] 和文言, 莫宣学, 喻学惠, 等, 2014.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束.岩石学报, 30(11):3287-3300. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014 [44] 贺娟, 王启宇, 闫国川, 等, 2018.滇西金沙江-红河构造带鲁甸始新世煌斑岩成因及动力学背景.地球科学, 43(8):2586-2599. doi: 10.3799/dqkx.2018.105 [45] 胡晓佳, 郭安林, 宗春蕾, 等, 2012.青藏高原东北缘多福屯陆内基性火山岩的40Ar/39Ar同位素定年和地球化学特征及其构造启示.西北大学学报(自然科学版), 42(3):443-452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201203021 [46] 姜耀辉, 蒋少涌, 凌洪飞, 等, 2006.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例.岩石学报, 22(3):697-706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603019 [47] 李海兵, 杨经绥, 2004.青藏高原北部白垩纪隆升的证据.地学前缘, 11(4):345-359. http://d.old.wanfangdata.com.cn/Periodical/dxqy200404002 [48] 李猛, 王超, 李荣社, 等, 2018.柴达木盆地北缘全吉群皱节山组碎屑锆石年代学特征及其地质意义.地球科学, 43(12):4390-4398. doi: 10.3799/dqkx.2018.106 [49] 李晓彦, 陈能松, 夏小平, 等, 2007.莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究:柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束.岩石学报, 23(2):513-522. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702027 [50] 卢欣祥, 孙延贵, 张雪亭, 等, 2007.柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄.地质学报, 81(5):626-634. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200705006 [51] 路凤香, 舒小辛, 赵崇贺, 等, 1991.有关煌斑岩分类的建议.地质科技情报, 10(S1):55-62. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ1991S1006.htm [52] 骆满生, 卢隆桥, 贾建, 等, 2014.中国中生代沉积盆地演化.地球科学, 39(8):954-976. doi: 10.3799/dqkx.2014.088 [53] 罗照华, 卢欣祥, 王秉璋, 等, 2008.造山后脉岩组合与内生成矿作用.地学前缘, 15(4):1-12. http://d.old.wanfangdata.com.cn/Periodical/dxqy200804001 [54] 罗照华, 魏阳, 辛后田, 等, 2006.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束.岩石学报, 22(6):1672-1684. doi: 10.3321/j.issn:1000-0569.2006.06.024 [55] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-16, 255, 17-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001 [56] 王勤燕, 陈能松, 李晓彦, 等, 2008.全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年.科学通报, 53(14):1693-1701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200814010 [57] 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512003 [58] 朱小辉, 王洪亮, 杨猛, 等, 2016.祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义.中国地质, 43(3):751-767. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201603005 -
dqkx-45-4-1136-Table1.pdf