Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications
-
摘要: 为洞悉东南地区地热的形成演化,以惠州黄沙洞-石坝地区高温地热田为例,综合地震学、岩石地球化学、锆石U-Pb年代学等方法来解译该地热田的形成模式.研究区岩体主要为燕山期高分异高含产热元素的I型花岗岩,形成背景为古太平板块俯冲的前进与后撤;深部花岗岩体连为一体且厚度达3.5 km.高导热率的花岗岩促进地幔热传导至地表和花岗岩中放射性元素衰变产生的热量是惠州高温地热形成的两大重要原因.研究区深部花岗岩生热量及干热岩地热资源储量巨大.研究区地热产出模式对惠州乃至东南地区的能源供给系统有重大意义.Abstract: In this paper, it presents a case study of the high-temperature geothermal field in Huizhou, China to interpret the formation model of this geothermal field and that of Southeast China by integrating seismics, geochemistry and the zircon U-Pb age. It is found that the magmatic intrusion in the study area is mainly Yanshanian I-type granite with high differentiation and high heat-producing elements, which has been formed by the subduction and the retreat of Paleo-Pacific Plate. The subterranean magmatic intrusion is an integrated whole with thickness up to 3.5 km. The heat transfer from the mantle to the surface promoted by the high thermal conductivity of granite, and the heat generated by radioactive element decay in granite are two important causes for high temperature geothermal formation in Huizhou. The subterranean granite in the study area has high heat production and inestimable geothermal resources of hot dry rock. The geothermal output model of this study area is of great significance to the energy supply system in Huizhou and even the Southeast China.
-
Key words:
- geothermic /
- seismic inversion /
- Yanshanian granite /
- Paleo-Pacific Plate /
- heat production /
- Southeast China /
- geothermal fields
-
图 9 研究区花岗岩和沉积岩产热率(A)对比
平均上地壳热流值根据Wedepohl(1995)数据计算
Fig. 9. Heat production rate (A) diagram of granite and sedimentary rocks in the study area
表 1 研究区花岗岩放射性生热率
Table 1. Radioactive heat production rate of granite in the study area
黄沙洞工区 石坝工区 样号 A(μW/m3) 样号 A(μW/m3) Id⁃04 5.81 Id⁃01 4.60 Id⁃05 7.86 Id⁃02 4.94 Id⁃06 2.78 Id⁃03 0.38 Id⁃07 5.41 Id⁃13 7.58 Id⁃08 3.33 Id⁃14 8.64 Id⁃09 7.02 Id⁃17 5.86 Id⁃10 6.17 Id⁃19 2.81 Id⁃11 3.76 Id⁃20 7.66 Id⁃12 2.91 Id⁃21 9.15 Id⁃19 2.81 Id⁃22 4.89 Id⁃20 7.66 Id⁃23 7.13 Id⁃21 9.15 Id⁃24 6.40 Id⁃22 4.89 Id⁃26 7.99 Id⁃23 7.13 Id⁃27 5.85 Id⁃24 6.40 均值 5.99 Id⁃25 5.88 Id⁃27 5.85 Id⁃30 4.24 Id⁃32 5.78 Id⁃33 3.15 Is⁃01 1.85 Is⁃03 1.79 Is⁃05 1.97 均值 4.94 表 2 研究区花岗岩干热岩地热资源计算参数
Table 2. Calculating parameters of hot dry rock geothermal resources of granite in the study area
参数 黄沙洞工区 石坝工区 花岗岩密度(kg·m-3) 2.73×103 2.73×103 花岗岩比热容(kcal·kg-1·℃-1) 0.79 0.79 地下热水密度(kg·m-3) 1×103 1×103 地下水比热容(kcal·kg-1·℃-1) 4.2 4.2 花岗岩的孔隙度(%) 0.5 0.5 花岗岩和水的平均温度(℃) 164 164 当地年平均气温(℃) 20 20 隐伏岩体面积(km2) 18×13 22×12 计算厚度(km) 3.5 3.5 Q(kW·h) 8.07×1014 9.10×1014 -
[1] Bertani, R., 2012. Geothermal Power Generation in the World 2005-2010 Update Report. Geothermics, 41:1-29. https://doi.org/10.1016/j.geothermics.2011.10.001 [2] Bertani, R., 2016. Geothermal Power Generation in the World 2010-2014 Update Report. Geothermics, 60:31-43. https://doi.org/10.1016/j.geothermics.2015.11.003 [3] Brown, D.W., Duchane, D.V., Heiken, G., et al., 2012. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer Science & Business Media, Heidelberg. [4] Deng, Y. F., Li, J. T., Peng, T. P., et al., 2019. Lithospheric Structure in the Cathaysia Block (South China) and Its Implication for the Late Mesozoic Magmatism. Physics of the Earth and Planetary Interiors, 291:24-34. https://doi.org/10.1016/j.pepi.2019.04.003 [5] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [6] Genter, A., Traineau, H., Dezayes, C., et al., 1995. Fracture Analysis and Reservoir Characterization of the Granitic Basement in the HDR Soultz Project (France). Geothermal Science & Technology, 4(3):189-214. [7] Goldstein, B.A., Hill, A.J., Long, A., 2008. Hot Rocks in Australia-National Overview. ASEG Extended Abstracts, (1):1. https://doi.org/10.1071/aseg2009ab114 [8] Gong, J. F., John Chen, Y., 2014. Evidence of Lateral Asthenosphere Flow beneath the South China Craton Driven by Both Pacific Plate Subduction and the India-Eurasia Continental Collision. Terra Nova, 26(1):55-63. https://doi.org/10.1111/ter.12069 [9] Hasterok, D., Chapman, D. S. 2007. Continental Thermal Isostasy:2. Application to North America. Journal of Geophysical Research:Solid Earth, 112(B6). https://doi.org/10.1029/2006JB004664 [10] Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China:A New Data Set. Earth and Planetary Science Letters, 179(2):407-419. https://doi.org/10.1016/s0012-821x(00)00126-6 [11] Huang, S.P., 1992. Variations of Heat Flow and Crustal Thickness in the Continental Area of China. Chinese Journal of Geophysics, 35(4):441-450 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f12368b90cd684b3c47c6987628982&encoded=0&v=paper_preview&mkt=zh-cn [12] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3:659. https://doi.org/10.1016/B0-08-043751-6/03035-8 [13] Lackey, J.S., Valley, J.W., Saleeby, J.B., 2005. Supracrustal Input to Magmas in the Deep Crust of Sierra Nevada Batholith:Evidence from High-δ18O Zircon. Earth and Planetary Science Letters, 235(1-2):315-330. https://doi.org/10.1016/j.epsl.2005.04.003 [14] Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling. Earth and Planetary Science Letters, 490:170-179. https://doi.org/10.1016/j.epsl.2018.03.008 [15] Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [16] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1 [17] Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11):1858-1869(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511010 [18] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [19] Ludwig, K. R., 2003. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4, 70. doi: 10.1016-j.immuni.2011.10.010/ [20] Lund, J. W., Boyd, T. L., 2016. Direct Utilization of Geothermal Energy 2015 Worldwide Review. Geothermics, 60:66-93. https://doi.org/10.1016/j.geothermics.2015.11.004 [21] Ma, C., Tang, Y.J., Ying, J.F., et al., 2019.Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904006 [22] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [23] Mao, X.P., Wang, X.W., Li, K.W., et al., 2018.Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11):4256-4266(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039 [24] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [25] Richards, H. G., Savage, D., Andrews, J. N., 1992. Granite-Water Reactions in an Experimental Hot Dry Rock Geothermal Reservoir, Rosemanowes Test Site, Cornwall, U.K.. Applied Geochemistry, 7(3):193-222. https://doi.org/10.1016/0883-2927(92)90038-5 [26] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302 [27] Rybach, L., Buntebarth, G., 1984. The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in the Continental Lithosphere. Tectonophysics, 103(1-4):335-344. https://doi.org/10.1016/0040-1951(84)90095-7 [28] Rybach, L., 1988. Determination of Heat Production Rate. Handbook of Terrestrial Heat Flow Density Determinations. Kluwer, Dordrecht. [29] Sclater, J. G., Jaupart, C., Galson, D., 1980. The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth. Reviews of Geophysics, 18(1):269-311. https://doi.org/10.1029/rg018i001p00269 [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies. Gondwana Research, 23(4):1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 [32] Wang, S.J., Hu, S.B., Wang, S.J., et al., 1999.The Geothermal Effect of Radioactive Heat Generation and Its Significance to Hydrocarbon Maturation in Tarim Basin. Petroleum Exploration and Development, 26(5):36-38, 5(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060807 [33] Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7):1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2 [34] Wollenberg, H. A., Smith, A. R., 1987. Radiogenic Heat Production of Crustal Rocks:An Assessment Based on Geochemical Data. Geophysical Research Letters, 14(3):295-298. https://doi.org/10.1029/gl014i003p00295 [35] Wu, Y.B., Zheng, Y.F., 2004, Geogenic Mineralogy of Zircon and Its Restriction on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [36] Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China:Evidence from Gravity Analyses. Geothermics, 72:225-231. https://doi.org/10.1016/j.geothermics.2017.11.009 [37] Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia:Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2):51-78. https://doi.org/10.1016/j.precamres.2007.04.010 [38] Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006.Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4):1118-1126(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200604025 [39] Zhang, J., Wang, B.Y., Tang, X.C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin.Chinese Journal of Geophysics, 61(10):3917-3932(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201810003 [40] Zhao, P., Wang, J., Wang, J.A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3), 292-305 (in Chinese with English abstract). [41] Zhou, X.M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [42] 黄少鹏, 1992.我国大陆地区大地热流与地壳厚度的变化.地球物理学报, 35(4):441-450. doi: 10.3321/j.issn:0001-5733.1992.04.006 [43] 李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. doi: 10.3799/dqkx.2015.166 [44] 马超, 汤艳杰, 英基丰, 等, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026 [45] 毛小平, 汪新伟, 李克文, 等, 2018.地热田热量来源及形成主控因素.地球科学, 43(11):4256-4266. doi: 10.3799/dqkx.2018.210 [46] 王社教, 胡圣标, 汪集晠, 等, 1999.塔里木盆地沉积层放射性生热的热效应及其意义.石油勘探与开发, 26(5):36-38, 5. doi: 10.3321/j.issn:1000-0747.1999.05.012 [47] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [48] 袁玉松, 马永生, 胡圣标, 等, 2006.中国南方现今地热特征.地球物理学报, 49(4):1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025 [49] 张健, 王蓓羽, 唐显春, 等, 2018.华南陆缘高热流区的壳幔温度结构与动力学背景.地球物理学报, 61(10):3917-3932. doi: 10.6038/cjg2018L0448 [50] 赵平, 汪集, 汪缉安, 等, 1995.中国东南地区岩石生热率分布特征.岩石学报, 11(3), 292-305. doi: 10.3321/j.issn:1000-0569.1995.03.011 -
dqkx-45-4-1466-Table1-4.pdf