• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广东惠州花岗岩体及其地热意义

    旷健 祁士华 王帅 肖志才 张敏 赵旭 甘浩男

    旷健, 祁士华, 王帅, 肖志才, 张敏, 赵旭, 甘浩男, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
    引用本文: 旷健, 祁士华, 王帅, 肖志才, 张敏, 赵旭, 甘浩男, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
    Kuang Jian, Qi Shihua, Wang Shuai, Xiao Zhicai, Zhang Min, Zhao Xu, Gan Haonan, 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
    Citation: Kuang Jian, Qi Shihua, Wang Shuai, Xiao Zhicai, Zhang Min, Zhao Xu, Gan Haonan, 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128

    广东惠州花岗岩体及其地热意义

    doi: 10.3799/dqkx.2019.128
    基金项目: 

    中国地质调查局地调项目 1212011220014

    详细信息
      作者简介:

      旷健(1995-), 男, 博士研究生, 主要从事地热学研究.E-mail:kuangjian@cug.edu.cn

      通讯作者:

      祁士华, E-mail:shihuaqi@cug.edu.cn

    • 中图分类号: P314.9;P315.2

    Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications

    • 摘要: 为洞悉东南地区地热的形成演化,以惠州黄沙洞-石坝地区高温地热田为例,综合地震学、岩石地球化学、锆石U-Pb年代学等方法来解译该地热田的形成模式.研究区岩体主要为燕山期高分异高含产热元素的I型花岗岩,形成背景为古太平板块俯冲的前进与后撤;深部花岗岩体连为一体且厚度达3.5 km.高导热率的花岗岩促进地幔热传导至地表和花岗岩中放射性元素衰变产生的热量是惠州高温地热形成的两大重要原因.研究区深部花岗岩生热量及干热岩地热资源储量巨大.研究区地热产出模式对惠州乃至东南地区的能源供给系统有重大意义.

       

    • 图  1  研究区及周边大地构造图(a),研究区地质图(b)和研究区地形图(c)

      F1.江绍断裂;F2.吴川-四会断裂;F3.阳江-河源断裂;F4.紫金-博罗断裂;F5.政和-大浦断裂;F6.长乐-南澳断裂;RF.人字石断裂;HF.河源断裂;ZBF.紫金-博罗断裂

      Fig.  1.  Geotectonic map of the study area and adjacent areas (a), geological map of the study area(b) and topography map of the study area(c)

      图  2  典型锆石的阴极发光(CL)图像和花岗岩的谐和年龄图

      红圈表示LA-ICP-MS测年打点位置,CL图像中的比例尺长度为100 μm

      Fig.  2.  Cathodoluminescence (CL) images of representative zircons and concordia plots of the granites

      图  3  研究区岩体TAS图(a), SiO2-K2O图解(b)和A/CNK-A/NK图解(c)

      Ir.Irvine分界线,上方为碱性,下方为亚碱性

      Fig.  3.  TAS(a), SiO2-K2O(b), A/CNK-A/NK(c) diagrams of magmatic rocks in study area

      图  4  研究区岩体稀土元素配分模式图及微量元素蛛网图

      球粒陨石标准化值据Sun and McDonough(1989),粉红线为Id⁃03样品

      Fig.  4.  REE distribution patterns and trace element spider diagram of magmatic rocks in the study area

      图  5  研究区岩体Rb-Y与Rb-Th相关图解

      Fig.  5.  Rb-Y and Rb-Th diagrams of magmatic rocks in the study area

      图  6  地震反演剖面

      左侧为解译剖面图,右侧为地质剖面图

      Fig.  6.  Profiles of seismic inversion

      图  7  地震反演详细剖面图

      a. DZ1测线中侵入岩岩体的地震反射特征;b. DZ1测线中早期侵入体和晚期侵入体反射特征及界线;c. DZ3剖面中玄武岩墙的地震反射特征;d. DZ3剖面中河源断裂的地震反射特征

      Fig.  7.  Detailed diagrams of seismic inversion

      图  8  SiO2-FeOT/(FeOT+MgO)(a), SiO2-Al2O3(b), (Y+Nb)-Rb(c)和(Yb+Ta)-Rb(d)构造环境图解

      Fig.  8.  SiO2-FeOT/(FeOT+MgO)(a), SiO2-Al2O3 (b), (Y+Nb)-Rb(c) and (Yb+Ta)-Rb(d) diagrams of tectonic setting

      图  9  研究区花岗岩和沉积岩产热率(A)对比

      平均上地壳热流值根据Wedepohl(1995)数据计算

      Fig.  9.  Heat production rate (A) diagram of granite and sedimentary rocks in the study area

      图  10  惠热一井测温曲线

      温度值偏差±0.1℃

      Fig.  10.  Temperature curve of the No.1 geothermal drill hole of Huizhou

      表  1  研究区花岗岩放射性生热率

      Table  1.   Radioactive heat production rate of granite in the study area

      黄沙洞工区 石坝工区
      样号 A(μW/m3 样号 A(μW/m3
      Id⁃04 5.81 Id⁃01 4.60
      Id⁃05 7.86 Id⁃02 4.94
      Id⁃06 2.78 Id⁃03 0.38
      Id⁃07 5.41 Id⁃13 7.58
      Id⁃08 3.33 Id⁃14 8.64
      Id⁃09 7.02 Id⁃17 5.86
      Id⁃10 6.17 Id⁃19 2.81
      Id⁃11 3.76 Id⁃20 7.66
      Id⁃12 2.91 Id⁃21 9.15
      Id⁃19 2.81 Id⁃22 4.89
      Id⁃20 7.66 Id⁃23 7.13
      Id⁃21 9.15 Id⁃24 6.40
      Id⁃22 4.89 Id⁃26 7.99
      Id⁃23 7.13 Id⁃27 5.85
      Id⁃24 6.40 均值 5.99
      Id⁃25 5.88
      Id⁃27 5.85
      Id⁃30 4.24
      Id⁃32 5.78
      Id⁃33 3.15
      Is⁃01 1.85
      Is⁃03 1.79
      Is⁃05 1.97
      均值 4.94
      下载: 导出CSV

      表  2  研究区花岗岩干热岩地热资源计算参数

      Table  2.   Calculating parameters of hot dry rock geothermal resources of granite in the study area

      参数 黄沙洞工区 石坝工区
      花岗岩密度(kg·m-3) 2.73×103 2.73×103
      花岗岩比热容(kcal·kg-1·℃-1) 0.79 0.79
      地下热水密度(kg·m-3) 1×103 1×103
      地下水比热容(kcal·kg-1·℃-1) 4.2 4.2
      花岗岩的孔隙度(%) 0.5 0.5
      花岗岩和水的平均温度(℃) 164 164
      当地年平均气温(℃) 20 20
      隐伏岩体面积(km2) 18×13 22×12
      计算厚度(km) 3.5 3.5
      Q(kW·h) 8.07×1014 9.10×1014
      下载: 导出CSV
    • [1] Bertani, R., 2012. Geothermal Power Generation in the World 2005-2010 Update Report. Geothermics, 41:1-29. https://doi.org/10.1016/j.geothermics.2011.10.001
      [2] Bertani, R., 2016. Geothermal Power Generation in the World 2010-2014 Update Report. Geothermics, 60:31-43. https://doi.org/10.1016/j.geothermics.2015.11.003
      [3] Brown, D.W., Duchane, D.V., Heiken, G., et al., 2012. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer Science & Business Media, Heidelberg.
      [4] Deng, Y. F., Li, J. T., Peng, T. P., et al., 2019. Lithospheric Structure in the Cathaysia Block (South China) and Its Implication for the Late Mesozoic Magmatism. Physics of the Earth and Planetary Interiors, 291:24-34. https://doi.org/10.1016/j.pepi.2019.04.003
      [5] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [6] Genter, A., Traineau, H., Dezayes, C., et al., 1995. Fracture Analysis and Reservoir Characterization of the Granitic Basement in the HDR Soultz Project (France). Geothermal Science & Technology, 4(3):189-214.
      [7] Goldstein, B.A., Hill, A.J., Long, A., 2008. Hot Rocks in Australia-National Overview. ASEG Extended Abstracts, (1):1. https://doi.org/10.1071/aseg2009ab114
      [8] Gong, J. F., John Chen, Y., 2014. Evidence of Lateral Asthenosphere Flow beneath the South China Craton Driven by Both Pacific Plate Subduction and the India-Eurasia Continental Collision. Terra Nova, 26(1):55-63. https://doi.org/10.1111/ter.12069
      [9] Hasterok, D., Chapman, D. S. 2007. Continental Thermal Isostasy:2. Application to North America. Journal of Geophysical Research:Solid Earth, 112(B6). https://doi.org/10.1029/2006JB004664
      [10] Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China:A New Data Set. Earth and Planetary Science Letters, 179(2):407-419. https://doi.org/10.1016/s0012-821x(00)00126-6
      [11] Huang, S.P., 1992. Variations of Heat Flow and Crustal Thickness in the Continental Area of China. Chinese Journal of Geophysics, 35(4):441-450 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f12368b90cd684b3c47c6987628982&encoded=0&v=paper_preview&mkt=zh-cn
      [12] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3:659. https://doi.org/10.1016/B0-08-043751-6/03035-8
      [13] Lackey, J.S., Valley, J.W., Saleeby, J.B., 2005. Supracrustal Input to Magmas in the Deep Crust of Sierra Nevada Batholith:Evidence from High-δ18O Zircon. Earth and Planetary Science Letters, 235(1-2):315-330. https://doi.org/10.1016/j.epsl.2005.04.003
      [14] Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling. Earth and Planetary Science Letters, 490:170-179. https://doi.org/10.1016/j.epsl.2018.03.008
      [15] Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      [16] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1
      [17] Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11):1858-1869(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511010
      [18] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      [19] Ludwig, K. R., 2003. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4, 70. doi: 10.1016-j.immuni.2011.10.010/
      [20] Lund, J. W., Boyd, T. L., 2016. Direct Utilization of Geothermal Energy 2015 Worldwide Review. Geothermics, 60:66-93. https://doi.org/10.1016/j.geothermics.2015.11.004
      [21] Ma, C., Tang, Y.J., Ying, J.F., et al., 2019.Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904006
      [22] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [23] Mao, X.P., Wang, X.W., Li, K.W., et al., 2018.Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11):4256-4266(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039
      [24] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [25] Richards, H. G., Savage, D., Andrews, J. N., 1992. Granite-Water Reactions in an Experimental Hot Dry Rock Geothermal Reservoir, Rosemanowes Test Site, Cornwall, U.K.. Applied Geochemistry, 7(3):193-222. https://doi.org/10.1016/0883-2927(92)90038-5
      [26] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302
      [27] Rybach, L., Buntebarth, G., 1984. The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in the Continental Lithosphere. Tectonophysics, 103(1-4):335-344. https://doi.org/10.1016/0040-1951(84)90095-7
      [28] Rybach, L., 1988. Determination of Heat Production Rate. Handbook of Terrestrial Heat Flow Density Determinations. Kluwer, Dordrecht.
      [29] Sclater, J. G., Jaupart, C., Galson, D., 1980. The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth. Reviews of Geophysics, 18(1):269-311. https://doi.org/10.1029/rg018i001p00269
      [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [31] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies. Gondwana Research, 23(4):1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [32] Wang, S.J., Hu, S.B., Wang, S.J., et al., 1999.The Geothermal Effect of Radioactive Heat Generation and Its Significance to Hydrocarbon Maturation in Tarim Basin. Petroleum Exploration and Development, 26(5):36-38, 5(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060807
      [33] Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7):1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      [34] Wollenberg, H. A., Smith, A. R., 1987. Radiogenic Heat Production of Crustal Rocks:An Assessment Based on Geochemical Data. Geophysical Research Letters, 14(3):295-298. https://doi.org/10.1029/gl014i003p00295
      [35] Wu, Y.B., Zheng, Y.F., 2004, Geogenic Mineralogy of Zircon and Its Restriction on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      [36] Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China:Evidence from Gravity Analyses. Geothermics, 72:225-231. https://doi.org/10.1016/j.geothermics.2017.11.009
      [37] Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia:Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2):51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      [38] Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006.Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4):1118-1126(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200604025
      [39] Zhang, J., Wang, B.Y., Tang, X.C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin.Chinese Journal of Geophysics, 61(10):3917-3932(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201810003
      [40] Zhao, P., Wang, J., Wang, J.A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3), 292-305 (in Chinese with English abstract).
      [41] Zhou, X.M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      [42] 黄少鹏, 1992.我国大陆地区大地热流与地壳厚度的变化.地球物理学报, 35(4):441-450. doi: 10.3321/j.issn:0001-5733.1992.04.006
      [43] 李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. doi: 10.3799/dqkx.2015.166
      [44] 马超, 汤艳杰, 英基丰, 等, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026
      [45] 毛小平, 汪新伟, 李克文, 等, 2018.地热田热量来源及形成主控因素.地球科学, 43(11):4256-4266. doi: 10.3799/dqkx.2018.210
      [46] 王社教, 胡圣标, 汪集晠, 等, 1999.塔里木盆地沉积层放射性生热的热效应及其意义.石油勘探与开发, 26(5):36-38, 5. doi: 10.3321/j.issn:1000-0747.1999.05.012
      [47] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [48] 袁玉松, 马永生, 胡圣标, 等, 2006.中国南方现今地热特征.地球物理学报, 49(4):1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025
      [49] 张健, 王蓓羽, 唐显春, 等, 2018.华南陆缘高热流区的壳幔温度结构与动力学背景.地球物理学报, 61(10):3917-3932. doi: 10.6038/cjg2018L0448
      [50] 赵平, 汪集, 汪缉安, 等, 1995.中国东南地区岩石生热率分布特征.岩石学报, 11(3), 292-305. doi: 10.3321/j.issn:1000-0569.1995.03.011
    • dqkx-45-4-1466-Table1-4.pdf
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  2358
    • HTML全文浏览量:  474
    • PDF下载量:  103
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-29
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回