Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block
-
摘要: 在阿拉善地块东缘发现新生代中新世挤压构造,形成近SN或NE-SW走向的逆冲断层及卷入新生代地层的褶皱.其形成背景关系到阿拉善地块新生代的变形特征以及与青藏高原扩展的关系.为了进一步探讨阿拉善地块东缘的挤压构造是否受青藏高原扩展控制,为青藏高原北缘新生代扩展过程的研究提供资料,通过详细地质填图、区域地质调查与对比方法,确定了这些挤压构造的几何样式以及运动学特征,结合断层滑动矢量,恢复出变形时的古应力场.室内外的分析表明,形成这些挤压构造的最大主应力方位为NW-SE或近EW向,结合盆地地震反射资料、卷入构造的地层,推测变形的时代是中新世中晚期.这期变形的动力可能是阿拉善地块受到青藏高原北缘的挤压向东运动所致.同时在阿拉善地块向东运动的过程中,其内部发育的早期东西向构造带发生右行走滑,和阿拉善东缘的挤压构造一同调节地块的变形.晚中新世之后,高原东北缘最大主应力方位发生顺时针旋转,阿拉善东缘挤压构造被后期构造叠加.Abstract: A Cenozoic compressive belt, which is manifested by near SN or NE-SW trending thrust faults or folds, was observed in the eastern margin of the Alxa block. The compressive belt is vital to the understanding of the deformation pattern of the Alxa block as well as its relationship with the propagation of the northeast Tibetan plateau. To better understand how these compressive structures were controlled by the growth of Tibetan plateau, field mapping and regional comparison along the eastern margin of the Alxa block were carried out. By analyzing the geometric and kinematic characteristics of these structures in the Cenozoic strata, the paleo-stress field which shows that these structures were governed by the NW-SE or near EW compression regime was rebuilt by us. Together with seismic profile and the strata involved in the compressive zone, it tentatively interprets the formation of the compressive belt was formed in the Middle-Late Miocene. The dynamics of this event could be attributed to the eastward extrusion of the Alxa block caused by the intense push from the Tibetan plateau during Miocene, which indicates the northeastward Tibetan plateau growth. Meanwhile, dextral slip faults are accommodation faults developed on the pre-existing basement foliations, together with the eastern compressive belt, to adjust the eastward movement of the Alxa block. During the Middle to Late Miocene, the northeastern plateau was subjected to intense NE-oriented compression, after which the maximum principal stress demonstrated a clockwise rotation. The compressive structures along the eastern margin of Alxa were replaced by later structures.
-
Key words:
- Alxa block /
- Miocene /
- intraplate deformation /
- India-Eurasia collision /
- Qinghai-Tibetan plateau /
- tectonics
-
图 7 叠布斯格盆地、骆驼瀑以及带日根高勒沟口处新生代逆冲断层露头(位置见图 3)
叠布斯格盆地新生代逆冲断层,赤平投影为断层产状; b.叠布斯格盆地新生代逆冲断层及其断层面解; c.骆驼瀑南侧石炭纪花岗岩向西逆冲于渐新统乌兰布拉格组之上,断层下盘地层发生倒转; d.骆驼瀑南侧逆冲断层带内石英脉被逆冲断层剪断; e.代日根高勒沟口处花岗岩逆冲到渐新统乌兰布拉格组之上
Fig. 7. Cenozoic thrust fault in Diebusige basin, Luotuopu and the mouth of Dairigengaole gully(see locations in Fig.3)
图 9 苏木图地区NNE向背斜
a.背斜卫星影像,两翼产状和褶皱枢纽走向,指示NWW-SEE向的挤压(产状数据雷启云等,2017); b.清水营组砖红色砾岩; c.巴彦浩特北侧白垩系倾斜地层
Fig. 9. NNE trending anticline in Sumutu region
图 13 银川盆地西缘深地震反射剖面及解释
a.银川盆地内部地震反射剖面(地震剖面图引自Huang et al., 2016); b.新生代地层内部逆冲断层及断层相关褶皱,后期被高角度正断层错断.底图引自Huang et al.(2016)
Fig. 13. Deep seismic reflection profile of east Yinchuan basin and its interpretation
图 14 贺兰山及邻区深地震剖面解释图及新生代断裂分布
修改自Liu et al.(2017a). F1.巴彦浩特断裂; F2.贺兰山西缘断裂; F3.贺兰山东麓断裂; F4.芦花台断裂; F5.银川断裂; F6.黄河断裂
Fig. 14. Interpretation of the deep seismic reflection profile
图 17 莱菔山右行走滑断裂
a.莱菔山地质图; b.断层露头; c.断层面擦痕及断层机制解指示右行斜滑.区域位置见图 1
Fig. 17. Dextral slip fault in Laifushan
图 18 中新世以来青藏高原扩展对阿拉善块体和鄂尔多斯块体作用示意图
修改自郑文俊等(2016);Lei et al.(2016); Duvall et al.(2013);王伟涛等(2014);Bovet et al.(2009); Yuan et al.(2013)
Fig. 18. Schematic maps show how northern or northeastern Tibetan plateau exerts influence on the Ordos/ Alxa block from Miocene to present
表 1 狼山地区逆冲断层观测点及古应力场方位
Table 1. Faults measured in Langshan region and their paleo-stress field
编号 纬度 经度 断层两盘岩性 数目 σ1 σ2 σ3 NC1 40°34′13.4″ 106°19′50.2″ 白垩纪砾岩与石炭纪花岗岩 3 302/13 35/16 174/70 NC2 40°34′21.6″ 106°19′55.3″ 白垩纪砾岩与石炭纪花岗岩 6 292/9 7月23日 149/79 NC3 40°34′55.4″ 106°20′14.2″ 白垩纪砾岩与石炭纪花岗岩 3 121/27 216/10 325/61 NC4 40°34′44.4″ 106°19′47.3″ 白垩纪砾岩与石炭纪花岗岩 3 306/10 41/31 200/58 NC5 40°34′49.1″ 106°19′45.1″ 白垩纪砾岩与石炭纪花岗岩 5 121/0 31/19 211/71 NC6 40°35′27.9″ 106°20′09.6″ 渐新世乌兰布拉格组砾岩 4 317/6 227/2 120/83 NC7 40°33′42.7″ 106°15′52.1″ 渐新世乌兰布拉格组砾岩 3 137/16 233/19 9/64 NC8 40°30′34.7″ 106°15′47.8″ 渐新世乌兰布拉格组砾岩与花岗岩 5 304/17 211/9 96/71 NC9 40°28′57.3″ 106°14′44.7″ 渐新世乌兰布拉格组砾岩与花岗岩 4 319/11 Apr-50 159/78 NC10 40°33′01.7″ 106°13′11.1″ 叠布斯格岩群斜长角闪片麻岩和渐新世乌兰布拉格组砾岩 3 303/17 210/9 94/71 -
[1] Angelier, J., 1979. Determination of the Mean Principal Directions of Stresses for a Given Fault Population. Tectonophysics, 56(3-4):T17-T26. https://doi.org/10.1016/0040-1951(79)90081-7 [2] Bovet, P.M., Ritts, B.D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4):290-329. https://doi.org/10.2475/00.4009.02 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20a7a77d09f74e13f78e87e2cad1d1a9 [3] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 doi: 10.1029/92JB02280 [4] Chen, Z.L., Gong, H.L., Li, L., et al., 2006.Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4):91-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604008 [5] Chung, S.L., Chu, M.F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edd81f21a4b046d1678a4727beb6f78a [6] Clark, M.K., Farley, K.A., Zheng, D.W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1-2):78-88. https://doi.org/10.1016/j.epsl.2010.04.051 [7] Cunningham, D., 2005. Active Intracontinental Transpressional Mountain Building in the Mongolian Altai:Defining a New Class of Orogen. Earth and Planetary Science Letters, 240(2):436-444. https://doi.org/10.1016/j.epsl.2005.09.013 [8] Cunningham, D., 2013. Mountain Building Processes in Intracontinental Oblique Deformation Belts:Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology, 46:255-282. https://doi.org/10.1016/j.jsg.2012.08.010 [9] Cunningham, D., 2017. Folded Basinal Compartments of the Southern Mongolian Borderland:A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt. Geosciences, 7(1):1-23. https://doi.org/10.3390/geosciences7010002 [10] Cunningham, D., Zhang, J., Li, Y.F., 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687:111-128.http://doi.org/10.1016/j.techo.2016.09.010 doi: 10.1016/j.tecto.2016.09.010 [11] Dai, S., Fang, X.M, Song, C.H., et al., 2005. Early Tectonic Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(15):1642. https://doi.org/10.1360/03wd0255 [12] Dan, W., Li, X.H., Guo, J.H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China:Evidence from in Situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4):838-864. https://doi.org/10.1016/j.gr.2011.09.004 [13] Dan, W., Li, X.H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications:In Situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1):110-153. https://doi.org/10.2475/01.2014.04 [14] Dan, W., Li, X.H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32:105-121. doi: 10.1016/j.gr.2015.02.011 [15] Darby, B.J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage:The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1-2):13-24. https://doi.org/10.1016/s0012-821x(02)01026-9 doi: 10.1016/S0012-821X(02)01026-9 [16] Darby, B.J., Ritts, B.D., 2007. Mesozoic Structural Architecture of the Lang Shan, North-Central China:Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29(12):2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011 [17] Darby, B., Ritts, B., Yue, Y., et al., 2005. Did the Altyn Tagh Fault Extend beyond the Tibetan Plateau?. Earth and Planetary Science Letters, 240(2):425-435. https://doi.org/10.1016/j.epsl.2005.09.011 [18] De Grave, J., Buslov, M.M., van den haute, P., 2007. Distant Effects of India-Eurasia Convergence and Mesozoic Intracontinental Deformation in Central Asia:Constraints from Apatite Fission-Track Thermochronology. Journal of Asian Earth Sciences, 29(2-3):188-204. https://doi.org/10.1016/j.jseaes.2006.03.001 [19] Deng, Q.D., Sung, F., Zhu, S.L., et al., 1984. Active Faulting and Tectonics of the Ningxia-Hui Autonomous Region, China. Journal of Geophysical Research:Solid Earth, 89(B6):4427-4445. https://doi.org/10.1029/jb089ib06p04427 doi: 10.1029/JB089iB06p04427 [20] Deng, J.F., Xiao, Q.H., Qiu, R.Z., et al., 2006.Cenozoic Lithospheric Extension and Thinning of North China:Mechanism and Process.Geology in China, 33(4):751-761(in Chinese with English abstract). [21] Deng, Q.D., Cheng, S.P., Min, W., et al., 1999.Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3):13-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb199903003 [22] Duvall, A.R., Clark, M.K., Kirby, E., et al., 2013. Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for Kinematic Change during Late-Stage Orogenesis. Tectonics, 32(5):1190-1211. https://doi.org/10.1002/tect.20072 [23] Fan, L.G., Meng, Q.R., Wu, G.L., et al., 2019. Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau. Earth and Planetary Science Letters, 514:62-74. https://doi.org/10.1016/j.epsl.2019.02.036 [24] Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2):293-306. https://doi.org/10.1016/j.epsl.2007.03.042 [25] Faure, M., Lin, W., Chen, Y., 2012. Is the Jurassic (Yanshanian) Intraplate Tectonics of North China Due to Westward Indentation of the North China Block?. Terra Nova, 24(6):456-466. https://doi.org/10.1111/ter.12002 [26] Fu, S.T., Fu, J.H., Yu, J., et al., 2018. Petroleum Geological Features and Exploration Prospect of Linhe Depression in Hetao Basin, China. Petroleum Exploration and Development, 45(5):803-817. https://doi.org/10.1016/s1876-3804(18)30084-3 doi: 10.1016/S1876-3804(18)30084-3 [27] Geng, Y.S., Zhou, X.W., 2010.Early Neoproterozoic Granite Events in Alax Area of Inner Mongolia and Their Geological Significance:Evidence from Geochronology. Acta Petrologica et Mineralogica, 29(6):779-795(in Chinese with English abstract). [28] George, A.D., Marshallsea, S.J., Wyrwoll, K. H., et al., 2001. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology, 29(10):939-942. https://doi.org/10.1130/0091-7613(2001)029<0939:mcitnq>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2 [29] Gong, J.H., Zhang, J.X., Yu, S.Y., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Chinese Science Bulletin, 57(31):4064-4076. https://doi.org/10.1007/s11434-012-5315-8 [30] He, J.K., Cai, D.S., Li, Y.X., et al., 2004. Active Extension of the Shanxi Rift, North China:Does It Result from Anticlockwise Block Rotations?. Terra Nova, 16(1):38-42. https://doi.org/10.1046/j.1365-3121.2003.00523.x [31] He, J.K., Liu, M., Li, Y.X., 2003. Is the Shanxi Rift of Northern China Extending?. Geophysical Research Letters, 30(23):2213. https://doi.org/10.1029/2003gl018764 [32] Hendrix, M.S., Dumitru, T.A., Graham, S.A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan:An Early Effect of the India-Asia Collision. Geology, 22(6):487-490. https://doi.org/10.1130/0091-7613(1994)022<0487:loemui>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2 [33] Heumann, M.J., Johnson, C.L., Webb, L.E., 2018. Plate Interior Polyphase Fault Systems and Sedimentary Basin Evolution:A Case Study of the East Gobi Basin and East Gobi Fault Zone, Southeastern Mongolia. Journal of Asian Earth Sciences, 151:343-358. https://doi.org/10.1016/j.jseaes.2017.05.017 [34] Houseman, G., England, P.H., 1996. A Lithospheric-Thickening Model for the Indo-Asian Collision. World and Regional Geology, 1(8), 1-17. [35] Hu, J.M., Gong, W.B., Wu, S.J., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Northeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 255:756-770. https://doi.org/10.1016/j.precamres.2014.08.013 [36] Huang, B.C., Piper, J., Peng, S., et al., 2006. Magnetostratigraphic Study of the Kuche Depression, Tarim Basin, and Cenozoic Uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters, 251(3-4):346-364. https://doi.org/10.1016/j.epsl.2006.09.020 [37] Huang, X.F., Feng, S.Y., Gao, R., et al., 2016. High-Resolution Crustal Structure of the Yinchuan Basin Revealed by Deep Seismic Reflection Profiling:Implications for Deep Processes of Basin. Earthquake Science, 29(2):83-92. https://doi.org/10.1007/s11589-016-0148-1 [38] Huang, T.K., 1945. On Major Tectonic Forms of China. The Journal of Geology, 55(1):59-60. https://doi.org/10.1086/625397 [39] Jolivet, L., Tamaki, K., Fournier, M., 1994. Japan Sea, Opening History and Mechanism:A Synthesis. Journal of Geophysical Research:Solid Earth, 99(B11):22237-22259. https://doi.org/10.1029/93jb03463 doi: 10.1029/93JB03463 [40] Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau:Fission-Track Constraints. Tectonophysics, 343(1-2):111-134. https://doi.org/10.1016/s0040-1951(01)00196-2 doi: 10.1016/S0040-1951(01)00196-2 [41] Kusky, T.M., Li, J.H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. https://doi.org/10.1016/s1367-9120(03)00071-3 doi: 10.1016/S1367-9120(03)00071-3 [42] Lease, R.O., Burbank, D.W., Clark, M.K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4):359-362. https://doi.org/10.1130/g31356.1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4c5a920fa5e95115a8ee8c61bb11076 [43] Lei, Q., Zhang, P., Zheng, W., et al., 2016. Dextral Strike-Slip of Sanguankou-Niushoushan Fault Zone and Extension of Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau. Science China Earth Sciences, 59(5):1025-1040. doi: 10.1007/s11430-016-5272-1 [44] Lei, Q.Y., Zhang, P.Z., Zheng, W.J., et al., 2017.Geological and Geomorphic Evidence for Dextral Strike Slip of the Helan Shan West-Piedmont Fault and Its Tectonic Implications. Seismology and Geology, 39(6):1297-1315(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201706014 [45] Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001. New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322 doi: 10.1029/2000JB900322 [46] Li, T., Xie, G, A., Zhang, J., et al., 2020. Characteristics of the Tectonic Stress Field of the South-North Oriented Fault of the Langshan Mountain Region of Inner Mongolia and Its Relationship with Regional Tectonic Evolution. Earth Science, 45(1):211-225(in Chinese with English abstract). [47] Li, B., Chen, X.H., Zuza, A.V., et al., 2019. Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault:Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 751:109-124. https://doi.org/10.1016/j.tecto.2018.12.005 [48] Lin, X.B., Chen, H.L., Wyrwoll, K.H., et al., 2011.The Uplift History of the Haiyuan-Liupan Shan Region Northeast of the Present Tibetan Plateau:Integrated Constraint from Stratigraphy and Thermochronology. The Journal of Geology, 119(4):372-393. https://doi.org/10.1086/660190 [49] Liu, B.J., Feng, S.Y., Ji, J.F., et al., 2017a. Lithospheric Structure and Faulting Characteristics of the Helan Mountains and Yinchuan Basin:Results of Deep Seismic Reflection Profiling. Science China Earth Sciences, 60(3):589-601. https://doi.org/10.1007/s11430-016-5069-4 [50] Liu, D.L., Fang, X.M., Gao, J.P., et al., 2009. Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and Its Implication. Acta Geologica Sinica, 83(2):359-371. https://doi.org/10.1111/j.1755-6724.2009.00024.x [51] Liu, D.L., Li, H.B., Sun, Z.M., et al., 2017b. AFT Dating Constrains the Cenozoic Uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, Comparison with LA-ICPMS Zircon U-Pb Ages. Gondwana Research, 41:438-450. https://doi.org/10.1016/j.gr.2015.10.008 [52] Liu, M., Cui, X.J., Liu, F.T., 2004. Cenozoic Rifting and Volcanism in Eastern China:A Mantle Dynamic Link to the Indo-Asian Collision?. Tectonophysics, 393(1-4):29-42. https://doi.org/10.1016/j.tecto.2004.07.029 [53] Liu, S.F., 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4):369-383. https://doi.org/10.1016/s0743-9547(98)00020-8 doi: 10.1016/S0743-9547(98)00020-8 [54] Liu, X.B., Hu, J.M., Shi, W., et al., 2019b. Palaeogene-Neogene Sedimentary and Tectonic Evolution of the Yinchuan Basin, Western North China Craton. International Geology Review, 62(1):53-71. https://doi.org/10.1080/00206814.2019.1591309 [55] Liu, X.B., Shi, W., Hu, J.M., et al., 2019a. Magnetostratigraphy and Tectonic Implications of Paleogene-Neogene Sediments in the Yinchuan Basin, Western North China Craton. Journal of Asian Earth Sciences, 173:61-69. https://doi.org/10.1016/j.jseaes.2019.01.016 [56] Lu, H.J., Fu, B.H., Shi, P.L., et al., 2016. Constraints on the Uplift Mechanism of Northern Tibet. Earth and Planetary Science Letters, 453:108-118. https://doi.org/10.1016/j.epsl.2016.08.010 [57] Ma, X.Y., Wu, D.N., 1987. Cenozoic Extensional Tectonics in China. Tectonophysics, 133(3-4):243-255. https://doi.org/10.1016/0040-1951(87)90268-x doi: 10.1016/0040-1951(87)90268-X [58] Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1):1-47. https://doi.org/10.1046/j.1365-246x.1998.00567.x doi: 10.1046/j.1365-246X.1998.00567.x [59] Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4):357-396. https://doi.org/10.1029/93rg02030 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/93RG02030 [60] Molnar, P., Stock, J.M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics, 28(3):1-11. https://doi.org/10.1029/2008tc002271 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008TC002271 [61] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419 [62] Peltzer, G., Tapponnier, P., 1988. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach. Journal of Geophysical Research:Solid Earth, 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085 doi: 10.1029/JB093iB12p15085 [63] Peng, R.M., Zhai, Y.S., Wang, J.P., et al., 2010. Discovery of Neoproterozoic Acid Volcanic Rock in the Western Section of Langshan, Inner Mongolia, and Its Geological Significance. Chinese Science Bulletin, 55:2611-2620(in Chinese). doi: 10.1360/972010-266 [64] Rao, G., Chen, P., Hu, J.M., et al., 2016. Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China:Implications for Seismic Risk. Tectonophysics, 677-678:115-124. https://doi.org/10.1016/j.tecto.2016.03.035 [65] Research Group of Active Fault System around the Ordos Massif, 1988. Active Fault System around Ordos Massif. Seismological Press, Beijing, 39-65(in Chinese). [66] Ritts, B.D., Yue, Y., Graham, S.A., et al., 2008. From Sea Level to High Elevation in 15 Million Years:Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan. American Journal of Science, 308(5):657-678. https://doi.org/10.2475/05.2008.01 [67] Sengör, A.M.C., Natal'in, B.A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337. https://doi.org/10.1146/annurev.earth.24.1.263 [68] Seno, T., Maruyama, S., 1984. Paleogeographic Reconstruction and Origin of the Philippine Sea. Tectonophysics, 102(1-4):53-84. https://doi.org/10.1016/0040-1951(84)90008-8 [69] Shi, W., Dong, S.W., Liu, Y., et al., 2015. Cenozoic Tectonic Evolution of the South Ningxia Region, Northeastern Tibetan Plateau Inferred from New Structural Investigations and Fault Kinematic Analyses. Tectonophysics, 649:139-164. https://doi.org/10.1016/j.tecto.2015.02.024 [70] Shi, W., Liu, Y., Liu, Y., et al., 2013.Cenozoic Evolution of the Haiyuan Fault Zone in the Northeast Margin of the Tibetan Plateau. Earth Science Frontiers, 20(4):1-17(in Chinese with English abstract). [71] Shi, W.B., Wang, F., Yang, L., et al., 2018. Diachronous Growth of the Altyn Tagh Mountains:Constraints on Propagation of the Northern Tibetan Margin from (U-Th)/He Dating. Journal of Geophysical Research:Solid Earth, 123(7):6000-6018. https://doi.org/10.1029/2017jb014844 doi: 10.1029/2017JB014844 [72] Sobel, E., Chen, J., Heermance, R., 2006. Late Oligocene-Early Miocene Initiation of Shortening in the Southwestern Chinese Tian Shan:Implications for Neogene Shortening Rate Variations. Earth and Planetary Science Letters, 247(1-2):70-81. https://doi.org/10.1016/j.epsl.2006.03.048 [73] Sobel, E.R., Arnaud, N., Jolivet, M., et al., 2001. Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. In: Hendrix, M.S., Davis, G.A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia. Geological Society of America, 194: 247-267. [74] Sun, J.M., Zhu, R.X., An, Z.S., 2005. Tectonic Uplift in the Northern Tibetan Plateau since 13.7 Ma Ago Inferred from Molasse Deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 235(3-4):641-653. https://doi.org/10.1016/j.epsl.2005.04.034 [75] Sun, L.Y., Pu, R.H., Ma.Z.R., et al., 2018. Source Rock Distribution and Exploration Prospect of Jilantai Sag in Hetao Basin, China. Journal of Earth Sciences and Environment, 40(5):612-626(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201805009 [76] Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating Extrusion Tectonics in Asia:New Insights from Simple Experiments with Plasticine. Geology, 10(12):611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [77] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547):1671-1677. https://doi.org/10.1126/science.105978 [78] Tian, R.S., Xie, G.A., Zhang, J., et al., 2017.Deformation Characteristics of the Neoproterozoic Langshan Group in Langshan Region and Their Tectonic Implications. Geological Review, 63(5):1180-1192(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705005 [79] Wang, C.S., Dai, J.G., Zhao, X.X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic:A Review. Tectonophysics, 621:1-43. https://doi.org/10.1016/j.tecto.2014.01.036 [80] Wang, C.S., Zhao, X.X., Liu, Z.F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13):4987-4992. https://doi.org/10.1073/pnas.0703595105 [81] Wang, J.P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608:929-946. https://doi.org/10.1016/j.tecto.2013.07.025 [82] Wang, J.P., Kusky, T., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1-2):59-75. https://doi.org/10.1130/b31479.1 doi: 10.1130/B31479.1 [83] Wang, T. Y., Zhang, Wang, J. R.M. J., et al., 1998. The Characteristics and Tectonic Implications of the Thrust Belt in Eu Gerwusu, China. Chinese Journal of Geology, 33(4):385-394(in Chinese with English abstract). [84] Wang, W.T., Zhang, P.Z., Kirby, E., et al., 2011. A Revised Chronology for Tertiary Sedimentation in the Sikouzi Basin:Implications for the Tectonic Evolution of the Northeastern Corner of the Tibetan Plateau. Tectonophysics, 505(1-4):100-114. https://doi.org/10.1016/j.tecto.2011.04.006 [85] Wang, W.T., Zhang, P.Z., Yu, J.X., et al., 2016a. Constraints on Mountain Building in the Northeastern Tibet:Detrital Zircon Records from Synorogenic Deposits in the Yumen Basin. Scientific Reports, 6(1):27604. https://doi.org/10.1038/srep27604 [86] Wang, X.X., Song, C.H., Zattin, M., et al., 2016b. Cenozoic Pulsed Deformation History of Northeastern Tibetan Plateau Reconstructed from Fission-Track Thermochronology. Tectonophysics, 672-673:212-227. https://doi.org/10.1016/j.tecto.2016.02.006 [87] Wang, W.T., Zhang, P.Z., Zheng, D.W., et al., 2014.Late Cenozoic Tectonic Deformation of the Haiyuan Fault Zone in the Northeastern Margin of the Tibetan Plateau.Earth Science Frontiers, 21(4):266-274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201404027 [88] Webb, L.E., Johnson, C.L., 2006. Tertiary Strike-Slip Faulting in Southeastern Mongolia and Implications for Asian Tectonics. Earth and Planetary Science Letters, 241(1-2):323-335. https://doi.org/10.1016/j.epsl.2005.10.033 [89] Wu, L., Gong, Q.L., Qin, S.H., et al., 2013.When did Cenozoic Left-Slip along the Altyn Tagh Fault Initiate? A Comprehensive Approach. Acta Petrologica Sinica, 29(8):2837-2850(in Chinese with English abstract). [90] Wu, T.R., He, G.Q. 1993. Tectonic Units and There Fundamental Characteristiics on the Northern Margin of the Alxa Block. Acta Geologica Sincia, 67(2):97-108(in Chinese with English abstract). [91] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [92] Xu, J., Ji, F.J., Zhou, B.G., et al., 2012.On the Lower Chronological Boundary of the Neotectonic Period in China. Earth Science Frontiers, 19(5):284-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201205027 [93] Yang, J.J., Li, K.Q., Zhang, D.S., et al., 1992. Petroleum Geology of China, Changqing Oil Field(Vol. 12). Petroleum Geology of China. Petroleum Industry Press, Beijing, 333-340(in Chinese). [94] Yang, W., Jolivet, M., Dupont-Nivet, G., et al., 2014. Mesozoic-Cenozoic Tectonic Evolution of Southwestern Tian Shan:Evidence from Detrital Zircon U/Pb and Apatite Fission Track Ages of the Ulugqat Area, Northwest China. Gondwana Research, 26(3-4):986-1008. https://doi.org/10.1016/j.gr.2013.07.020 [95] Yeh, Y.C., Sibuet, J. C., Hsu, S. K., et al., 2010. Tectonic Evolution of the Northeastern South China Sea from Seismic Interpretation. Journal of Geophysical Research:Solid Earth, 115(B6):B06103. https://doi.org/10.1029/2009jb006354 [96] Yin, A., Rumelhart, P.E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10):1257-1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2 [97] Yin, A., 2010.Cenozoic Tectonic Evolution of Asia:A Preliminary Synthesis. Tectonophysics, 488(1-4):293-325. https://doi.org/10.1016/j.tecto.2009.06.002 [98] Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27(9):787. https://doi.org/10.1130/0091-7613(1999)0270787:slnewe>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 [99] Yin, A., Harrison, T. M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 [100] Yu, J.X., Zheng, W.J., Zhang, P.Z., et al., 2017. Late Quaternary Strike-Slip along the Taohuala Shan-Ayouqi Fault Zone and Its Tectonic Implications in the Hexi Corridor and the Southern Gobi Alashan, China. Tectonophysics, 721:28-44. https://doi.org/10.1016/j.tecto.2017.09.014 [101] Yu, J.X., Zheng, W.J., Kirby, E., et al., 2016. Kinematics of Late Quaternary Slip along the Yabrai Fault:Implications for Cenozoic Tectonics across the Gobi Alashan Block, China. Lithosphere, 8(3):199-218. https://doi.org/10.1130/l509.1 doi: 10.1130/L509.1 [102] Yuan, W., Yang, Z., 2015a. The Alashan Terrane did not Amalgamate with North China Block by the Late Permian:Evidence from Carboniferous and Permian Paleomagnetic Results. Journal of Asian Earth Sciences, 104:145-159. doi: 10.1016/j.jseaes.2014.02.010 [103] Yuan, D.Y., Ge, W.P., Chen, Z.W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics:A Review of Recent Studies. Tectonics, 32(5):1358-1370. https://doi.org/10.1002/tect.20081 [104] Yuan, W., Yang, Z.Y., 2015b. The Alashan Terrane was not Part of North China by the Late Devonian:Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3):1270-1282. https://doi.org/10.1016/j.gr.2013.12.009 [105] Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6):847-856. https://doi.org/10.1016/j.jseaes.2005.09.002 [106] Yue, Y.J., Liou, J.G., 1999. Two-Stage Evolution Model for the Altyn Tagh Fault, China. Geology, 27(3):227-230. https://doi.org/10.1130/0091-7613(1999)027<0227:tsemft>2.3.co;2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f0134a34a264c52555924ef0f6da201 [107] Yue, Y.J., Ritts, B.D., Graham, S.A., et al., 2004. Slowing Extrusion Tectonics:Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault. Earth and Planetary Science Letters, 217(1-2):111-122. https://doi.org/10.1016/s0012-821x(03)00544-2 doi: 10.1016/S0012-821X(03)00544-2 [108] Yue, Y.J., Ritts, B.D., Graham, S.A., 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12):1087-1093. https://doi.org/10.1080/00206810109465062 [109] Zhai, M.G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [110] Zhang, B. H., Zhang, J., Wang, Y. N., et al., 2017. Late Mesozoic-Cenozoic Exhumation of the Northern Hexi Corridor:Constrained by Apatite Fission Track Ages of the Longshoushan. Acta Geologica Sinica-English Edition, 91(5):1624-1643. https://doi.org/10.1111/1755-6724.13402 [111] Zhang, J., Cunningham, D., Cheng, H.Y., 2010. Sedimentary Characteristics of Cenozoic Strata in Central-Southern Ningxia, NW China:Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 39(6):740-759. https://doi.org/10.1016/j.jseaes.2010.05.008 [112] Zhang, J., Li, J.Y., Li, Y.F., et al., 2009. How did the Alxa Block Respond to the Indo-Eurasian Collision?. International Journal of Earth Sciences, 98(6):1511-1527. https://doi.org/10.1007/s00531-008-0404-2 [113] Zhang, J., Li, J. Y., Li, Y. F., et al., 2014. Mesozoic-Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and Their Tectonic Implications. Acta Geologica Sinica-English Edition, 88(1):78-102. https://doi.org/10.1111/1755-6724.12184 [114] Zhang, J., Li, J.Y., Liu, J.F., et al., 2011. Detrital Zircon U-Pb Ages of Middle Ordovician Flysch Sandstones in the Western Ordos Margin:New Constraints on Their Provenances, and Tectonic Implications. Journal of Asian Earth Sciences, 42(5):1030-1047. https://doi.org/10.1016/j.jseaes.2011.03.009 [115] Zhang, J., Li, J.Y., Xiao, W.X., et al., 2013a. Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China:New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 57:38-57. https://doi.org/10.1016/j.jsg.2013.10.002 [116] Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2015b. Evolution of the NE Qinghai-Tibetan Plateau, Constrained by the Apatite Fission Track Ages of the Mountain Ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 97:10-23. https://doi.org/10.1016/j.jseaes.2014.10.002 [117] Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2016b. Tectonics of the Xining Basin in NW China and its Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Basin Research, 28(2):159-182. https://doi.org/10.1111/bre.12104 [118] Zhang, J., Zhang, B.H., Zhao, H., 2016a. Timing of Amalgamation of the Alxa Block and the North China Block:Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tectonophysics, 668-669:65-81. https://doi.org/10.1016/j.tecto.2015.12.006 [119] Zhang, J., Zhang, Y.P., Xiao, W.X., et al., 2015a. Linking the Alxa Terrane to the Eastern Gondwana during the Early Paleozoic:Constraints from Detrital Zircon U-Pb Ages and Cambrian Sedimentary Records. Gondwana Research, 28(3):1168-1182. https://doi.org/10.1016/j.gr.2014.09.012 [120] Zhang, J. X., Gong, J, H. 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4):940-962(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804006 [121] Zhang, J.X., Gong, J.H., Yu, S.Y., et al., 2013b. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication:Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235:36-57. https://doi.org/10.1016/j.precamres.2013.05.002 [122] Zhang, P.Z., Shen, Z.K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9):809. https://doi.org/10.1130/g20554.1 doi: 10.1130/G20554.1 [123] Zhang, Y.Q., Mercier, J.L., Vergély, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1-2):41-75. https://doi.org/10.1016/s0040-1951(97)00170-4 doi: 10.1016/S0040-1951(97)00170-4 [124] Zhang, J.S., He, Z.X., Fei, A.Q., et al., 2008.Epicontinental Mega Thrust and Nappe System at North Segment of the Western Rim of the Ordos Block. Chinese Journal of Geology(Scientia Geologica Sinica), 43(2):251-281(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200802004 [125] Zhang, Y.Q., Liao, C.Z., Shi, W., et al., 2006.Neotectonic Evolution of the Peripheral Zones of the Ordos Basin and Geodynamic Setting. Geological Journal of China Universities, 12(3):285-297(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200603001 [126] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8):706-721. https://doi.org/10.1080/00206819809465233 [127] Zhao, H.G., Liu, C.Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science in China Series D:Earth Sciences, 50(S2):217-226. https://doi.org/10.1007/s11430-007-6010-5 [128] Zhao, G., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002 [129] Zheng, D., Zhang, P.Z., Wan, J., 2006. Rapid Exhumation at~8 Ma on the Liupanshan Thrust Fault from Apatite Fission-Track Thermochronology:Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2):198-208. doi: 10.1016/j.epsl.2006.05.023 [130] Zheng, D.W., Wang, W.T., Wan, J.L., et al., 2017. Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic. Lithosphere, 9(3):408-416. https://doi.org/10.1130/l587.1 doi: 10.1130/L587.1 [131] Zheng, R., Wu, T., Zhang, W., Xu, C., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids:Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011 [132] Zheng, W, J., Yuan, D, Y., Zhang, P, Z., et al., 2016. Tectonic Geometry and Kinematic Dissipation of the Active Faults in the Northeastern Tibetan Plateau and Their Implications for Understanding Northeastward Growth of the Plateau. Quaternary Sciences, 36(4):775-788(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201604001 [133] Zhou, J., Xu, F., Wang, T., et al., 2006. Cenozoic Deformation History of the Qaidam Basin, NW China:Results from Cross-Section Restoration and Implications for Qinghai-Tibet Plateau Tectonics. Earth and Planetary Science Letters, 243(1-2):195-210. https://doi.org/10.1016/j.epsl.2005.11.033