Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block
-
摘要: 在阿拉善地块东缘发现新生代中新世挤压构造,形成近SN或NE-SW走向的逆冲断层及卷入新生代地层的褶皱.其形成背景关系到阿拉善地块新生代的变形特征以及与青藏高原扩展的关系.为了进一步探讨阿拉善地块东缘的挤压构造是否受青藏高原扩展控制,为青藏高原北缘新生代扩展过程的研究提供资料,通过详细地质填图、区域地质调查与对比方法,确定了这些挤压构造的几何样式以及运动学特征,结合断层滑动矢量,恢复出变形时的古应力场.室内外的分析表明,形成这些挤压构造的最大主应力方位为NW-SE或近EW向,结合盆地地震反射资料、卷入构造的地层,推测变形的时代是中新世中晚期.这期变形的动力可能是阿拉善地块受到青藏高原北缘的挤压向东运动所致.同时在阿拉善地块向东运动的过程中,其内部发育的早期东西向构造带发生右行走滑,和阿拉善东缘的挤压构造一同调节地块的变形.晚中新世之后,高原东北缘最大主应力方位发生顺时针旋转,阿拉善东缘挤压构造被后期构造叠加.Abstract: A Cenozoic compressive belt, which is manifested by near SN or NE-SW trending thrust faults or folds, was observed in the eastern margin of the Alxa block. The compressive belt is vital to the understanding of the deformation pattern of the Alxa block as well as its relationship with the propagation of the northeast Tibetan plateau. To better understand how these compressive structures were controlled by the growth of Tibetan plateau, field mapping and regional comparison along the eastern margin of the Alxa block were carried out. By analyzing the geometric and kinematic characteristics of these structures in the Cenozoic strata, the paleo-stress field which shows that these structures were governed by the NW-SE or near EW compression regime was rebuilt by us. Together with seismic profile and the strata involved in the compressive zone, it tentatively interprets the formation of the compressive belt was formed in the Middle-Late Miocene. The dynamics of this event could be attributed to the eastward extrusion of the Alxa block caused by the intense push from the Tibetan plateau during Miocene, which indicates the northeastward Tibetan plateau growth. Meanwhile, dextral slip faults are accommodation faults developed on the pre-existing basement foliations, together with the eastern compressive belt, to adjust the eastward movement of the Alxa block. During the Middle to Late Miocene, the northeastern plateau was subjected to intense NE-oriented compression, after which the maximum principal stress demonstrated a clockwise rotation. The compressive structures along the eastern margin of Alxa were replaced by later structures.
-
Key words:
- Alxa block /
- Miocene /
- intraplate deformation /
- India-Eurasia collision /
- Qinghai-Tibetan plateau /
- tectonics
-
0. 引言
阿拉善地块位于中亚造山带中段南侧、青藏高原北侧,经历了中新生代以来多期次构造演化,记录了包括古亚洲洋向南俯冲增生、大洋闭合、陆内调整、印度欧亚大陆碰撞在内的多期次变形,是亚洲大陆内部一个特殊和重要的构造单元(吴泰然和何国琦,1993;王廷印等,1998;Zhang et al., 2013a, 2015a;Zheng et al., 2014;张建新和宫江华,2018).其北侧的中亚造山带是全球显生宙以来规模最大的增生型造山带(Xiao et al., 2015;Sengör and Nata΄lin, 1996),该造山带形成于新元古代至早三叠世,其后该造山带完全进入了陆内演化阶段.虽然增生造山作用已经停止,但是中、新生代以来该造山带仍然经历了强烈的变形改造,这些不同阶段变形的构造背景一直是争论的热点问题(Darby and Ritts, 2002;Zhang et al., 2013a;Cunningham, 2017;Heumann et al., 2018).同时,新生代初期的印度-欧亚板块不仅导致了喜马拉雅造山带和青藏高原的诞生(Yin and Harrison, 2000),也导致了欧亚板块内部广泛的弥散变形(Molnar and Tapponnier, 1975;Cunningham, 2005, 2013).近几十年来对青藏高原的大量研究中,关于印度-欧亚碰撞影响范围的认识,一些学者认为阿尔金断裂新生代早期活动影响到了蒙古甚至远东地区(Yue and Liou, 1999; Yue et al., 2001;Darby et al., 2005;Webb and Johnson, 2006;Peltzer and Tapponnier, 1988;Yin, 2010),其方式是通过阿拉善地块内部的断层来调节.阿拉善地块处于青藏高原和中亚造山带的过渡部位,其内部是否发育相应的构造对认识青藏高原以及印度-欧亚碰撞的远程效应非常重要.关于阿拉善地块新生代的演化近来也逐渐引起了关注(Yue and Liou, 1999;Darby et al., 2005;Zhang et al., 2009;Yu et al., 2016, 2017;Cunningham et al., 2016;Lei et al., 2016;Zhang et al., 2017).
新生代期间,鄂尔多斯高原周缘陆续发育了一系列盆地(北缘的河套-吉兰泰盆地、西缘的银川盆地以及东缘和南缘的汾渭盆地).对于这些伸展盆地的成因目前看法不一,多数学者认为它们是走滑断层尾端的张破裂控制形成的盆地,是印度-欧亚碰撞的远程效应(Tapponnier et al., 1982;Ma and Wu, 1987;Zhang et al., 1998; 邓起东等,1999;张岳桥等,2006);而一部分学者认为这些地堑的形成可能与东亚大陆深部的软流圈物质向东运动并带动上覆岩石圈有关,这种向东的运动可能与印度-欧亚碰撞也有密不可分地联系(Liu et al., 2004;邓晋福等,2006).还有学者认为环鄂尔多斯周缘地堑系并非受板块边界作用的主导,而是大陆岩石圈因厚度差异,在岩石圈内部弱化导致的变形(He et al., 2003, 2004).目前阿拉善地块与鄂尔多斯西缘之间的吉兰泰-河套盆地和银川盆地,是活动的正断层系统,虽然关于以上地堑系统的成因存在争议,但不论是从地震震源机制解还是从古地震恢复的结果来看,阿拉善东缘目前整体处于伸展是明确的(Rao et al., 2016;Huang et al., 2016).但新生代期间是否仅仅存在伸展?是否存在其他阶段的构造事件?本文将报道阿拉善地块东北缘地区最近发现的一系列新生代构造,同时综合已有资料,讨论阿拉善地块东缘新生代构造变形的构造背景.
1. 区域地质背景
阿拉善地块传统上被认为是华北克拉通的一部分(图 1)(Huang,1945), 作为中国最古老的大陆基底,华北克拉通由多个古老陆块组成(Zhao et al., 2005; Zhai and Santosh, 2011).主流观点认为华北由东部陆块和西部陆块构成,两者被中部造山带分隔(Zhao et al., 1998),目前学者对两个陆块的俯冲极性以及碰撞时代存在争议,一种观点认为两个陆块于2.5 Ga碰撞拼合(Kusky and Li, 2003; Wang et al., 2013, 2017), 另一种观点认为两个陆块在1.8 Ga碰撞拼合(Zhao et al., 2005).前人把阿拉善地块归属到西部陆块里面的阴山地块(Zhao et al., 2005)或者是古元古代孔兹岩带的一部分(耿元生和周喜文,2010;Zhang et al., 2013b),并经历了1.9~1.8 Ga的强烈构造热事件.但是也有研究认为阿拉善地块是一个独立的构造单元,在早古生代晚期或中生代早期才最终与华北克拉通拼合(Zhang et al., 2011, 2013b, 2014, 2016a;Yuan and Yang, 2015a, 2015b;Dan et al., 2016).新的研究表明,阿拉善地块具有新太古代变质基底(Gong et al., 2012;Zhang et al., 2013b),发育新元古代岩浆岩(Geng and Zhou, 2010;Dan et al., 2014),阿拉善地块在古生代与华北地块拼合(Zhang et al., 2016b).阿拉善地块东缘边界不确定,有学者认为是自北向南沿着狼山山前断裂-巴彦乌拉山断裂-贺兰山西麓-鄂尔多斯西缘延伸(图 1)(Zhang et al., 2013a, 2015a).研究区位于阿拉善地块东北缘的狼山地区、贺兰山西缘以及卫宁北山东侧的新生代盆地边缘(图 2).
2. 阿拉善东缘逆冲变形
2.1 狼山地区
位于阿拉善地块东北缘的狼山山脉走向北东,传统上认为狼山是阴山山脉的西南延伸段.构成狼山的主要为古元古代叠布斯格岩群,包括高角闪岩相-麻粒岩相的大理岩、磁铁石英岩、斜长角闪岩以及变质深成岩(TTG)(Dan et al., 2012),新元古代狼山群变质沉积-火山沉积(如灰岩、石英岩、基性火山等)(彭润民等,2010;Hu et al., 2014),古生代(石炭纪-二叠纪)花岗岩和中、新生代陆相碎屑岩(图 3).古生代晚期受到古亚洲洋关闭的影响,新元古代狼山群地层强烈褶皱,中生代期间则经历了复杂的多期变形(Darby and Ritts, 2007;Zhang et al., 2013a, 2014;田荣松等,2017;李甜等,2020),包括三叠纪的左行韧性剪切、晚侏罗世脆性逆冲推覆以及白垩纪的低角度拆离等等(Zhang et al., 2013a, 2014).新生代晚期研究区经历了强烈伸展,成为鄂尔多斯地块西缘地堑系的一部分.地震资料显示,河套盆地的基底深度达10~13 km,沿着山前分布有高角度的活动正断层(Rao et al., 2016).
在花岗糜棱岩和变质岩之上沉积了一套棕红色的厚层砾岩-渐新统乌兰布拉格组(图 4),地层厚度大于70 m,产状稳定并朝SE方向微倾斜,倾角10°左右.剖面显示由底部的粗砾岩到中部的含砾粗砂岩再到上部砾岩夹含砾砂岩,地层由下向上粒度逐渐变粗,下部层位以厚层中细粒含砾砂岩为主,局部夹薄层砾岩.地层内部层理表明乌兰布拉格组向西超覆(图 4c),其古水流指示物源位于西侧(图 4a,4b).地层内砾石磨圆度差,呈叠瓦状堆积,成分主要为不整合面下部的黄白色花岗糜棱岩、叠布斯格岩群片麻岩和西侧狼山群灰岩,表明乌兰布拉格组为近源沉积(图 4b).
狼山地区的乌兰布拉格组地层整体稳定沉积在前中生代基岩之上,并覆盖早期基岩内部断层,但在多处地点见到地层内部发育逆冲断层,同时在狼山东麓见到花岗岩逆冲于不同时代的砾岩之上,并发育醒目的双冲、叠瓦状逆冲构造.虽然这些逆冲构造被后来的左行走滑断层或者是山前正断层所破坏,但不同地点观察到的逆冲断层指示了同一期挤压事件.
2.1.1 乌兰塔它勒地区
位于狼山山脉与临河盆地交界处(图 3,图 5),发育多条逆冲断层,被逆冲断层错断的地层有石炭纪糜棱花岗岩、三叠纪青灰色砾岩、白垩纪灰紫色厚层砾岩、渐新世紫色-桔红色砾岩夹砂岩.剖面显示存在多条逆冲断层,断层朝SE倾斜(图 5).Zhang et al. (2014)在该区西侧的白垩纪盆地边缘识别出一期早白垩世拆离构造,拆离断层控制白垩纪砾岩沉积,形成同沉积地层.拆离断层面在乌兰塔它勒地区零星出露,断层下盘是石炭纪花岗糜棱岩,上盘是白垩纪砾岩.根据断层之间的切割关系,依次发育早白垩世的拆离断层、SE向NW的逆冲断层、NE走向的左行走滑断层以及晚新生代狼山山前正断层(图 5).其中拆离断层面朝东缓倾,倾角小于30°,断层被山前逆冲断层切断,表明冲断层时代发生在拆离断层活动,即白垩纪之后.
在该地区见到花岗岩逆冲到白垩纪砾岩之上,同时白垩纪砾岩又逆冲到花岗岩之上(图 6a),断层带内卷入白垩纪砾岩以及黄褐色花岗岩,构成厚度约1 m的断层角砾岩,角砾里面的砾石和断层带内次级破裂面指示断层性质为低角度逆冲(图 6b).后期的左行走滑以及山前正断层切断逆冲断层,在山前可见到残余的逆冲成因断层角砾岩(图 6c).虽然逆冲断层被后来的断层改造破坏,但仍可以恢复出该地区发育的是一套逆冲叠瓦状断层(图 5b, 图 5c).逆冲断层面产状基本一致,白垩纪砾岩和花岗岩断夹块的重复出现表明该区可能存在一个残留的双冲构造,由东向西交替出现的砾岩和花岗岩代表双冲构造顶板逆冲断层和底板逆冲断层之间的断夹块和连接断层.与此同时,见到渐新世地层内同样发育该方向的逆冲断层,表明逆冲断层在渐新世之后活动.断层面上的擦痕指示由南东向北西的逆冲,同一应力场下形成的断层具有相近的三维应力轴,通过Angelier(1979)的方法,利用多条断层的滑动矢量限定出最可能的主应力方位,σ1产状302°∠6°,σ2产状34°∠12°,σ3产状188°∠77°,表明该逆冲推覆构造最大主压应力方位为NW-SE.此外,该方向的挤压还产生NE走向的褶皱,白垩纪砾岩和渐新世砾岩都被褶皱,通过π图解法得出褶皱枢纽走向38°,垂直于轴面的最大主压应力方位为308°(图 6d),最大挤压应力方向是SE-NW向,与逆冲断层反演得出的古应力轴方位一致,为同一构造应力场下的产物.
2.1.2 叠布斯格盆地
在狼山内部的叠布斯格地区(图 3),渐新世砾岩产状近水平,沉积在叠布斯格岩群斜长角闪片麻岩之上,见到逆冲断层顺着叠布斯格岩群面理发育并切入到上部的渐新世砾岩中(图 7a).逆冲断层的产状受到基底内部面理的控制,叠布斯格岩群角闪斜长片麻岩向东逆冲到紫红色砾岩之上,逆冲断层下部的地层受到断层影响产状陡立,远离断层产状趋于平缓(图 7b).断层面上的擦痕反演得出的古应力轴方位为:σ1产状305°∠17°,σ2产状213°∠5°,σ3产状107°∠72°,3个主应力轴与乌兰塔它勒地区的应力方位吻合,属于同一期构造挤压事件.
图 7 叠布斯格盆地、骆驼瀑以及带日根高勒沟口处新生代逆冲断层露头(位置见图 3)叠布斯格盆地新生代逆冲断层,赤平投影为断层产状; b.叠布斯格盆地新生代逆冲断层及其断层面解; c.骆驼瀑南侧石炭纪花岗岩向西逆冲于渐新统乌兰布拉格组之上,断层下盘地层发生倒转; d.骆驼瀑南侧逆冲断层带内石英脉被逆冲断层剪断; e.代日根高勒沟口处花岗岩逆冲到渐新统乌兰布拉格组之上Fig. 7. Cenozoic thrust fault in Diebusige basin, Luotuopu and the mouth of Dairigengaole gully(see locations in Fig.3)2.1.3 骆驼瀑南侧
在狼山山前骆驼瀑南侧发育醒目的逆冲构造,黄白色的花岗糜棱岩逆冲到渐新世砾岩之上,断层面平直,其上发育了一层厚约20~40 cm的青灰色断层角砾岩.逆冲断层被山前正断层切断,仅残留逆冲前锋和上盘花岗糜棱岩.断层面下部的近水平砾岩因受断层逆冲拖曳影响发生弯曲,指示上盘的逆冲(图 7c),同时,在断层带内见到良好指示标志(图 7d):石英脉发生塑性变形,并被一系列前展式断层错断,基质成分以黑云母为主,通过塑性变形(褶劈理)的方式调节位移而不发育明显的脆性断裂,石英脉的塑性弯曲以及前展式断裂的发育指示上盘向上的逆冲活动(图 7d).该处断层反演得出的古应力轴方位为:σ1产状304°∠17°,σ2产状211°∠9°,σ3产状96°∠71°.
2.1.4 代日根高勒沟口
在代日根沟口位置见到低角度的逆冲断层,花岗岩逆冲到渐新世砾岩之上,同时砾岩逆冲到花岗糜棱岩之上(图 7e).两条断层构成一个叠瓦,砾岩夹在逆冲断层之间.东侧逆冲断层产状135°∠25°,断层面上发育厚约5 mm的白色断层泥,其上发育倾向南东的擦痕(图 7e),古应力反演指示断层由南东向北西的逆冲,3个主应力轴产状为:σ1产状320°∠9°,σ2产状51°∠4°,σ3产状165°∠79°.
综合狼山地区逆冲构造,不论是在狼山山前还是在叠布斯格盆地内,断层运动学得出的最大主应力方位基本一致.统计全区内所有逆冲断层滑动矢量,断层动力学P轴在赤平投影上显示NW方向的极密(图 8a),最大得到狼山地区的该期挤压事件的主应力方位:σ1产状307°∠11°,σ2产状37°∠1°,σ3产状132°∠80°(图 8b),指示了NW-SE方向的挤压.
2.2 贺兰山西缘及南缘
阿拉善地块东缘的贺兰山西部及西南部发育新生代陆缘碎屑岩,属于新生代沉积盆地的一部分,由下向上依次为寺口子组、清水营组、红柳沟组、干河沟组,沉积时代从29 Ma到2.5 Ma(Wang et al., 2011).地层不整合沉积在下白垩统和前白垩纪基岩之上,地层侧向沉积厚度和岩性变化较大,其中寺口子组沉积中心位于宁夏南部的同心-海原一带,岩性以洪积扇相砾岩和河流相砂岩为主,在贺兰山一带不发育.上部的清水营组角度不整合于寺口子组之上,整体为一套粒度变细的泥岩、粉砂岩,夹有中到薄层石膏,含有大量哺乳类和介形类化石,并发育多层钙质古土壤层(Zhang et al., 2010).红柳沟组下部分布面积广,岩性为砂岩夹泥岩,而红柳沟组上部粒度逐渐变粗,岩性为砾岩夹砂岩,上下地层岩性差异反映出不同的沉积背景.从贺兰山西缘向南到卫宁北山一带分布有清水营组和红柳沟组,其中吉井子地区红柳沟组整体为砾岩夹砂岩,属于红柳沟组上部.本研究选取贺兰山西缘苏木图地区、贺兰山南缘的吉井子地区以及中宁北侧的四眼井地区,针对以上出露的地层,开展地层变形的研究.
表 1 狼山地区逆冲断层观测点及古应力场方位Table Supplementary Table Faults measured in Langshan region and their paleo-stress field编号 纬度 经度 断层两盘岩性 数目 σ1 σ2 σ3 NC1 40°34′13.4″ 106°19′50.2″ 白垩纪砾岩与石炭纪花岗岩 3 302/13 35/16 174/70 NC2 40°34′21.6″ 106°19′55.3″ 白垩纪砾岩与石炭纪花岗岩 6 292/9 7月23日 149/79 NC3 40°34′55.4″ 106°20′14.2″ 白垩纪砾岩与石炭纪花岗岩 3 121/27 216/10 325/61 NC4 40°34′44.4″ 106°19′47.3″ 白垩纪砾岩与石炭纪花岗岩 3 306/10 41/31 200/58 NC5 40°34′49.1″ 106°19′45.1″ 白垩纪砾岩与石炭纪花岗岩 5 121/0 31/19 211/71 NC6 40°35′27.9″ 106°20′09.6″ 渐新世乌兰布拉格组砾岩 4 317/6 227/2 120/83 NC7 40°33′42.7″ 106°15′52.1″ 渐新世乌兰布拉格组砾岩 3 137/16 233/19 9/64 NC8 40°30′34.7″ 106°15′47.8″ 渐新世乌兰布拉格组砾岩与花岗岩 5 304/17 211/9 96/71 NC9 40°28′57.3″ 106°14′44.7″ 渐新世乌兰布拉格组砾岩与花岗岩 4 319/11 Apr-50 159/78 NC10 40°33′01.7″ 106°13′11.1″ 叠布斯格岩群斜长角闪片麻岩和渐新世乌兰布拉格组砾岩 3 303/17 210/9 94/71 2.2.1 苏木图背斜
贺兰山西缘发育一条近南北向的断裂,称为贺兰山西麓断裂,该断裂南北笔直延伸近90 km,错断多期冲洪积扇,全新世以来还有活动,性质为右行断裂(雷启云等,2017).苏木图背斜位于贺兰山西缘断裂的北段,卫星影像上该背斜形态清晰,呈一枢纽向北微倾伏的宽缓背斜(图 9).组成背斜的地层为中新世的清水营组和上部的红柳沟组,清水营组岩性为砖红色砂岩夹同色砾岩或薄层粉砂岩(图 9b),上部的红柳沟组粒度变粗,为灰白色-砖红色固结较好的砾岩.背斜两翼缓倾(图 9a),因该地区覆盖严重,推测形成苏木图背斜是源于背斜西侧的一条逆冲断层(图 9a),背斜是逆冲断层相关褶皱.地表线性构造明显的贺兰山西缘断裂切过苏木图背斜的西翼,最新的研究表明贺兰山西缘断裂性质为右行走滑断层,褶皱的形成早于最新活动的走滑断层(雷启云等,2017).同时在贺兰山西缘断裂中段的红山地区,白垩系同样发生褶皱,形成走向近南北的向斜(图 9c),该向斜被贺兰山西缘断裂切断(雷启云等,2017),与苏木图背斜地层变形协调,可能反映了同一期近东西向缩短事件.
图 9 苏木图地区NNE向背斜a.背斜卫星影像,两翼产状和褶皱枢纽走向,指示NWW-SEE向的挤压(产状数据雷启云等,2017); b.清水营组砖红色砾岩; c.巴彦浩特北侧白垩系倾斜地层Fig. 9. NNE trending anticline in Sumutu region2.2.2 吉井子盆地
贺兰山南部吉井子盆地内充填了中新世红柳沟组(图 10a),红柳沟组整体为一套由下向上变粗的序列(图 11).在盆地西缘发育一条走向近南北的逆冲断层,早古生代奥陶系白云质灰岩向东逆冲于中新统红柳河组之上(图 10c~10e),并造成了红柳沟组的变形,靠近断层红柳沟组地层受断层影响产状发生变化,指示上盘的逆冲(图 10c).盆地中间剖面为一个走向近南北的宽缓褶皱(图 10b中CD剖面),向南侧EF剖面(图 10b),逆冲断层下盘为一个轴面向东倒伏的紧闭背斜,向东紧邻向斜,之后过渡为单斜地层,内部有发育局部褶皱.靠近逆冲断层处砾石分选磨圆差,岩性以逆冲断层上盘的古生代灰岩为主,由西向东粒度逐渐变细,砾石出现磨圆,同时砾石成分逐渐变复杂,由以灰岩为主的粗砾岩到出现砂岩砾石的细砾岩再到砖红色的泥质砂岩.沉积相的变化以及岩性粒度变化反映出红柳沟组上部层位为近源快速堆积,其上部地层为近源堆积的同沉积地层,逆冲断层的活动时代与地层沉积时代一致(图 11,Zhang et al., 2010).
2.2.3 中卫四眼井沟
位于青铜峡峡口西南的黄河西岸发育大面积的新生代地层,包括清水营组和红柳沟组.下部的清水营组主要分布在卫宁北山周缘,颜色为紫红色泥岩夹砂岩,厚度薄,上部的红柳沟组为厚层橘红色砂岩夹砾岩、泥岩,局部见薄层石膏.两组地层朝东微倾斜,倾角约10°.在四眼井沟内见到切穿红柳沟砾岩的逆断层,断层朝东倾,上盘的砂岩以及杂色泥岩逆冲到下盘的厚层砾岩之上,断层面被第四系冲洪积砾石覆盖(图 12a).反演得出的最大主应力产状为124°∠8°,指示了NW-SE向的挤压.同时在红柳沟组粉砂质泥岩中见到大量沿着节理面充填的石膏脉体,脉体呈共轭状,为后期石膏脉顺早期共轭节理填充沉淀形成(图 12b),两组共轭节理的锐夹角平分面近水平,最大主压应力方位为130°∠3°,与前面的逆冲断层得出的最大主压应力方位一致.
3. 深部构造特征
贺兰山及其东侧的银川盆地是鄂尔多斯地块和阿拉善地块之间的一条重要构造带,该构造带经历了复杂的演化历史.中生代侏罗纪晚期发育了NNE走向的褶皱和逆冲断层,使中生代地层发生褶皱、冲断,奠定了目前构造带的基本格局.始新世至渐新世开始进入陆内伸展阶段,在早期NNE向构造薄弱带的基础上,银川盆地开始发育,晚新生代是其伸展构造变形的主要时期,且这种伸展构造变形现今仍在继续(Deng et al., 1984).高精度深地震反射剖面揭示出,在银川盆地内部存在多条隐伏断裂,其中NNE向的芦花台断裂及贺兰山东麓分支断裂之间,新生代地层反射界面紊乱,并且有被断层错断现象(图 13a)(Huang et al., 2016).笔者推测这些弯曲的地层是受逆冲断层控制的断层相关褶皱,断层发育双冲构造以及对冲构造(图 13b).逆冲断层被晚期的高角度正断层切断.芦花台断裂以西晚第三纪地层直接覆盖在古生界或更老地层之上,逆冲断层向上消失在中新世中,没有错断浅部更新地层,断层之上的地层趋于水平说明断层活动未影响到中新世上部的地层.从图 13b可以看出,芦花台断裂向上终止于中新世地层内部,而断层下盘的中新世地层发生褶皱,其地层不具有滚动背斜特征,而更有可能受芦花台断裂和贺兰山东麓分支断裂之间的一系列密集逆冲断层控制.
图 13 银川盆地西缘深地震反射剖面及解释a.银川盆地内部地震反射剖面(地震剖面图引自Huang et al., 2016); b.新生代地层内部逆冲断层及断层相关褶皱,后期被高角度正断层错断.底图引自Huang et al.(2016)Fig. 13. Deep seismic reflection profile of east Yinchuan basin and its interpretation与贺兰山东麓的银川盆地不同,贺兰山西麓并没有发育明显的伸展构造,阿拉善地块东缘新生代的沉积厚度小于1 000 m,而银川盆地新生代的沉积厚度达到了7 200 m,显然贺兰山东西两侧有不同的构造样式.横跨贺兰山的深地震反射/折射剖面揭示出在贺兰山西缘深部存在着3条向东倾的铲式逆冲断层(图 14,Liu et al., 2017a),其中最东侧一条出露到地表,即为南北走向的贺兰山西缘断裂,中间一条为隐伏的巴彦浩特断裂,最西侧也为一条隐伏逆冲断层,两条隐伏断裂均切入到新生代地层.逆冲断层上盘的古生代-中生代地层发生褶皱和冲断,贺兰山西麓断裂被解释为中生代晚期形成的上地壳断裂,结合地表新生代红柳沟地层的褶皱来看,逆冲断层在中新世存在活动.目前贺兰山西麓断裂为一条挤压性质的右行走滑断裂,而右行走滑断裂切穿了早期的NEE向褶皱(雷启云等,2017),即贺兰山以西的逆冲断裂被后期断裂切割,同样在银川盆地内部也见到早期逆冲断裂被晚期高角度正断层切断(图 13b).
图 14 贺兰山及邻区深地震剖面解释图及新生代断裂分布修改自Liu et al.(2017a). F1.巴彦浩特断裂; F2.贺兰山西缘断裂; F3.贺兰山东麓断裂; F4.芦花台断裂; F5.银川断裂; F6.黄河断裂Fig. 14. Interpretation of the deep seismic reflection profile4. 讨论
4.1 变形时代
目前阿拉善地块东缘处于伸展背景,巴彦乌拉山-狼山东侧的吉兰泰-河套盆地以及贺兰山东侧的银川盆地都是受控于NNE或NE走向的正断层,盆地内沉积了始新世以来的河湖相沉积.狼山地区逆冲断层切过白垩纪灰紫色砾岩和渐新世乌兰布拉格组,后者岩性整体为一套紫红色粗粒近源碎屑岩夹砂岩,狼山山前乌兰布拉格组可以与千里山西北缘的渐新世地层对比,岩性为紫红色砂岩夹泥岩,上部变为中粗粒砂岩夹砾岩,产有Desmatolagus gobiensis, Cyclomylus lohensis, C. minutus等哺乳类化石以及Paracandona aff. Sanmenxiaensis, Eucypris sp.等介形类化石.区域上可以和蒙古国内的三达河组、宁夏南部的清水营组对比,时代为渐新世中晚期(宁夏回族自治区地质局区域地质测量队, 1980, 1:20万磴口县幅).狼山地区卷入逆冲断层的最新地层为渐新统乌兰布拉格组,因此限定逆冲断层活动时代晚于渐新世.
贺兰山西缘断裂附近的中新统红柳沟组地层发生褶皱,古生代地层逆冲到中新世红柳沟组之上.吉井子盆地内红柳沟组由东部的紫红色粉砂岩、泥岩到中部的含砾砂岩,到西部靠近逆冲断层的近源堆积砾岩,砾石成分主要是逆冲断层上盘的古生代灰岩,反映了同构造沉积特征.最近Liu et al. (2019a)在在银川盆地西南缘地区钻孔研究表明,中新世地层是一个向上粒度逐渐变粗序列,在红柳沟组和上部干河沟组之间存在一个不整合面,依据磁性地层对比研究把该不整合面的时代限定在10~9 Ma.不整合面上部的干河沟组地层含有红柳沟组砾石的粗碎屑岩,说明红柳沟组沉积的晚期地层已经隆升剥露到地表遭受剥蚀.红柳沟组下部地层分布广泛,地表露头从南部的六盘山西麓向北可延伸到贺兰山西缘,但是上部地层厚度、岩性变化大,存在多个侵蚀和沉降中心;贺兰山南缘红柳沟组以粗粒沉积为主,而宁夏中南部则以细粒的河湖相沉积为主(Zhang et al., 2010; Wang et al., 2013),贺兰山南缘和宁夏中南部在红柳沟组沉积晚期处于不同的构造环境.
银川盆地的地震反射剖面显示银川盆地内部的新生代地层并非是水平的,存在地层的弯曲,中新世对应的地层及下部地层卷入逆冲断层(图 13).此外河套盆地的地震剖面也揭示了中新世地层内存在逆冲构造,中新世地层逆冲到上新世地层之上(杨俊杰等,1992),靠近鄂尔多斯地块发育向北西的逆冲构造(图 15).上新世期间阿拉善地块东缘处于强烈断陷期,河套盆地最大沉积厚度约6 000 m,银川盆地该时期沉积厚度达到1 000 m,两个盆地在该时期内沉降速率快速加大,阿拉善东缘进入强烈沉陷期(国家地震局鄂尔多斯周缘活动断裂系课题组,1988;Zhao et al., 2007;Fu et al., 2018),因此该时期不太可能存在显著的逆冲活动,阿拉善东缘的挤压构造发生的时间老于上新世.
最近河套盆地西缘石油勘探取得新的突破,在新生界地层以及下覆基岩裂隙中采出工业油流(Fu et al., 2018).盆地边界地震反射剖面(图 16,中石油华北油田内部资料)显示,中新世及下部的地层被逆冲断层错断,同一时代的地层厚度靠近主断层并没有加厚现象,说明地层并非生长地层,地层的褶皱不是正断层导致的,更有可能是正反转构造.地震剖面位置紧邻狼山山前逆冲断裂带,剖面揭示的地层褶皱很可能与该期挤压事件有关,逆冲断层及上部中新世的地层形成一个背斜.中新世之上的地层逐渐变缓,并未受到逆冲断层的影响.最近在狼山地区南侧吉兰泰盆地内部,地震剖面揭示出渐新世与中新世之间存在一个不整合界面, 记录了中新世期间构造事件(孙六一等,2018).综上所述,根据野外地质证据、横跨贺兰山-银川盆地的地震反射剖面以及狼山南侧盆地边缘高精度二维地震反射剖面,笔者认为中新世中晚期阿拉善东缘存在一期近东西向的挤压事件.
4.2 青藏高原北缘中新世构造特征
新生代印度-欧亚板块的碰撞对亚洲大陆内部构造格局影响深远(Yue and Liou, 1999;Tapponnier et al., 2001;Darby et al., 2005;De Grave et al., 2007).目前关于高原生长已有众多模式(Liu et al., 2017b),包括向北东阶段性生长(Meyer et al., 1998;Tapponnier et al., 2001;De Grave et al., 2007)、从南向北连续生长(Molnar et al., 1993;Houseman and England, 1996)、高原从中间向南北两侧逐渐扩展(Wang et al., 2008, 2014),还有学者认为在印欧碰撞初期高原北缘就已经有活动(Jolivet et al., 2001;Yin et al., 2002;Dai et al., 2005;Zhou et al., 2006;Liu et al., 2009, 2017b;Clark et al., 2010;Zhang et al., 2010, 2015b, 2016b).
高原东北缘目前由阿尔金断裂、昆仑断裂以及北缘的祁连山-海原断裂围限,作为青藏高原北缘的北西边界,阿尔金断裂在调节高原内部变形过程中起到重要作用.尽管阿尔金起始活动的时间存在争议(Yue et al., 2001, 吴磊等,2013),但大量研究表明阿尔金断裂在渐新世晚期到中新世中期这段时间内强烈活动.Lu et al. (2016)通过对比阿尔金断裂带两侧盆地的磁性地层内磁偏角的变化,认为阿尔金断裂在22~15 Ma强烈左行走滑,15 Ma之后阿尔金活动活动减弱,高原北缘的地壳缩短变形取代早期的侧向挤出,在20±2 Ma阿尔金断裂中段和北段山脉经历了快速抬升,阿尔金山发生强烈缩短(Yue et al., 2004;陈正乐等,2006;Ritts et al., 2008;Shi et al., 2018).柴达木盆地、塔里木盆地的东南缘在23~19 Ma期间,盆地内沉积环境改变,沉积了巨厚的粗砾岩,沉积速率增大(Sun et al., 2005;Fang et al., 2007;Wang et al., 2016b),河西走廊西部玉门盆地内碎屑岩物源在16 Ma指示了祁连山快速隆升(Wang et al., 2016a).低温热年代学表明阿尔金山东侧的北祁连山中西段也记录了17~10 Ma的构造隆升事件(Sobel et al., 2001;George et al., 2001;Yuan et al., 2006;Bovet et al., 2009;Zheng et al., 2017;Li et al., 2019),昆仑断裂以及海原断裂西段显著挤压走滑活动(Duvall et al., 2013),以上研究从不同角度证实中新世时期高原北缘地壳发生强烈缩短.
研究表明印度-欧亚的碰撞不仅对塑造青藏高原,还对高原周围的地区产生深远影响,影响范围可以到达中亚造山带以北的贝加尔裂谷以及中国东部的鄂尔多斯地堑系(Molnar and Tapponnier 1975;Peltzer and Tapponnier, 1988;De Grave et al., 2007).不仅高原北缘在中新世期间活动强烈,在北侧的天山地区也记录了中新世该期事件.天山造山带自古亚洲洋闭合后一直处于陆内变形阶段,新生代期间受到印度-欧亚板块碰撞影响,天山山脉北侧的中生代地层于24±4 Ma剥露(Hendrix et al., 1994),同时天山山脉南侧的盆地内记录了该期挤压事件的沉积记录(Huang et al., 2006;Sobel et al., 2006;Yang et al., 2014).与塔里木北缘的天山造山带相比,阿拉善地块直接与高原北缘直接接触,中新世期间天山造山带强烈隆升,而阿拉善在该段时间是否也处于活动阶段便成为认识高原扩展对周围地块影响的关键,因此阿拉善东缘的挤压构造很可能记录了中新世的这期活动.
4.3 阿拉善东缘中新世构造事件构造背景
中新世我国构造面貌发生重大变革,无论是西部(Ritts et al., 2008;Yue and Liou, 1999;Zhang et al., 2010)还是东部(Jolivet et al., 1994),均表现出一定的活动性.此段时间内,红河断层发生构造反转(Leloup et al., 2001)、中国南海(Briais et al., 1993;Yeh et al., 2010)以及日本海打开(Jolivet et al., 1994).部分学者甚至认为我国的新构造运动开始于中新世(徐杰等,2012).前人认为,青藏高原中新世阶段内地壳开始增厚(De Grave et al., 2007),高原北部边缘逆冲楔顶角超过临界角,开始向北逆冲挤压(Yue and Liou, 1999;Zhang et al., 2010, 2009),阿拉善地块在这次挤压中向东运动,受到鄂尔多斯地块的阻挡,在其东缘形成了逆冲构造.
产生这期构造事件的动力学背景既有可能来自东部,也有可能来自西部.中新世(17 Ma)以来欧亚大陆东南部的菲律宾海板块向欧亚板块之下俯冲(Seno and Maruyama, 1984),但同时期日本海的NE-SW向扩张引起中国华北地区NE-SW向的伸展(张岳桥等,2006),因此我们认为菲律宾海板块向欧亚板块的俯冲并没有影响到鄂尔多斯地块西缘地区.在西部地区,中新世青藏高原北缘因印度大陆向欧亚大陆的持续碰撞发生了重要的构造事件.前面所述,中新世青藏高原北缘挤压构造大量发育,不论从浅地表的逆冲缩短还是从岩石圈尺度上,这种挤压应力场势必会影响到北侧的阿拉善地块(Zhang et al., 2010).阿拉善地块北靠古生代中亚造山带,东邻鄂尔多斯地块,此时阿拉善南侧受到来自青藏高原北侧的挤压,而阿拉善地块与鄂尔多斯地块之间是中生代形成的逆冲构造带(Liu, 1998;Darby and Ritts, 2002;张家声等,2008;Faure et al., 2012),呈倒三角形的阿拉善地块会在青藏高原北缘的挤压下向东侧挤出.在此基础上阿拉善地块与鄂尔多斯地块之间为挤压环境,形成沿阿拉善地块东边界发育的逆冲构造或褶皱.部分地区得出的最大主压应力为NW-SE向(如狼山),该应力场方向受早期基底构造的影响,阿拉善东缘边界走向为NE向,在东西向挤压下形成NW-SE向的次级应力场.
前人研究表明宁夏南部的新生代盆地在10 Ma之前处于NW-SE拉张的环境(施炜等,2013;Wang et al., 2013;Shi et al., 2015;Fan et al., 2019),Wang et al.(2013)把宁夏南部新生代盆地早期的构造背景解释为东西向大型走滑断裂之间右行走滑形成的拉分盆地,北侧的古天景山断裂和古海原断裂以及南侧的古西秦岭断裂同时右行走滑,南北主控断裂之间的拉分盆地沉积了渐新世寺口子组到上新世干河沟组.如果这种认识是正确的话,阿拉善地块相对于南侧的地块向东运动.笔者在民勤县西北侧莱菔山地区调查发现,中新统砖红色砾岩夹砂岩地层中发育右行走滑断层,断层带走向近东西向(图 17a),宽约50~70 cm,上部被全新世冲洪积扇覆盖(图 17b),断裂向东被腾格里沙漠覆盖,延伸方向不明.擦痕指示断层性质为右行,并有下滑分量(图 17c),与不整合面的右行错动一致(图 17a).3个主应力轴分别为:σ1产状120°∠55°,σ2产状301°∠35,σ3产状31°∠1°,最大主应力轴方位和贺兰山西缘褶皱最大主应力轴方位一致.中新统角度不整合于前寒武片麻岩基底之上,片麻岩基底面理发育产状与走滑断层产状一致,右行走滑断层是在面理面基础上发育来的.该右行断层的发育说明至少中新世之后阿拉善地块已经发生向东的运动,即阿拉善地块受到南西侧高原的挤压,在向东运移的过程中,地块内部早期的面理活动,发展为右行断层,阿拉善已经不是一个完整的地块.结合阿拉善东缘中新世的挤压构造,笔者推测莱菔山地区的右行走滑启动时代与阿拉善东缘的挤压构造是同时期的.右行走滑作为调节断层,与东缘的挤压构造一同响应青藏高原北缘对阿拉善地块的强烈推挤作用(图 18a).
图 17 莱菔山右行走滑断裂a.莱菔山地质图; b.断层露头; c.断层面擦痕及断层机制解指示右行斜滑.区域位置见图 1Fig. 17. Dextral slip fault in Laifushan图 18 中新世以来青藏高原扩展对阿拉善块体和鄂尔多斯块体作用示意图修改自郑文俊等(2016);Lei et al.(2016); Duvall et al.(2013);王伟涛等(2014);Bovet et al.(2009); Yuan et al.(2013)Fig. 18. Schematic maps show how northern or northeastern Tibetan plateau exerts influence on the Ordos/ Alxa block from Miocene to present阿拉善地块东缘的逆冲事件并非一直持续,晚新生代阿拉善地块和鄂尔多斯地块之间是伸展背景且仍处在这一阶段.目前的工作仅仅表明中新世期间阿拉善东缘存在一期挤压事件,而且这期挤压事件很可能与青藏高原北缘中新世地壳强烈缩短,向北挤压阿拉善地块有关.Wang et al.(2014)通过总结青藏高原新生代以来的变形特征,认为高原的演化是分阶段的,不同构造阶段受控于不同的深部动力学特征:中晚中新世期,高原处于变形机制的转换期,高原内部发育南北向裂谷系、藏南拆离系等伸展构造(Yin et al., 1999),而高原周缘表现为强烈挤压变形.高原变形机制的转变(Lease et al., 2011; Wang et al., 2014; Lu et al., 2016)可能与深部物质拆离,上地幔物质对流有关(Chung et al., 2005; Molnar and Stock, 2009; Wang et al., 2014).
青藏高原的这期构造体质转换,在高原东北缘表现为阶段性变形(Lin et al., 2011;Wang et al., 2016b).在宁夏南部的新生代盆地内部,新生代地层沉积序列、低温热年代学揭示的宁夏南部山脉冷却事件反映了区域上的一次构造挤压事件(Zhang et al., 2010; Wang et al., 2013; 王伟涛等,2014; Shi et al., 2015; Liu et al., 2019b),同时海原断裂以大规模逆冲为特征(Zheng et al., 2006;王伟涛等, 2014, 图 18b),地层变形、断层活动具有准同时性(~10~8 Ma),高原东北缘在中新世晚期强烈活动(图 18b).中新世中晚期高原东北缘最大主压应力方位从NNE向变为NEE向(Lease et al., 2011; Yuan et al., 2013),主压应力方向顺时针旋转,上新世期间,高原东北缘的最大挤压应力近东西向,形成前缘一系列近南北走向的逆冲断层(图 18c).目前GPS速度场表明青藏高原东北缘地区地壳物质向NEE甚至SEE方向运移(Zhang et al., 2004),高原北缘主要断裂以左行走滑为主,前缘断层已经扩展到牛首山-三关口断裂(Lei et al., 2016, 图 18c).在阿拉善东北缘狼山地区见到晚新生代以来3期构造(图 18):早期的逆冲断层是阿拉善块体向东挤出产生,而NE向的左行走滑断层,很可能是在晚中新世高原东北缘挤压背景下活动,上新世以来伸展构造对应高原东北缘应力轴顺时针旋转阶段,这3期断层活动很可能是阿拉善东缘对高原东北缘应力场转变的响应,而应力场的转变受控于高原整体应力状态的调整.
5. 结论
(1)阿拉善地块东缘发育新生代的挤压构造,挤压构造的走向受到中生代先存构造的控制,走向近NE或近SN,形成该构造带的最大主压应力方位为NW-SE向或近EW向.地表地质填图、地震反射剖面研究表明该期挤压构造事件发生在中新世中晚期.
(2)阿拉善东缘挤压构造是受青藏高原中新世对阿拉善地块强烈的挤压作用、阿拉善地块向东运动所致.阿拉善地块内部发育的近东西向的右行走滑也是同期挤压所致,属于阿拉善地块向东运动过程中的调节构造.
(3)晚中新世之后高原东北缘的应力场方位改变,阿拉善东缘挤压构造被随后的构造叠加.
致谢: 特别感谢中石油华北油田提供狼山地区地震剖面,中山大学黄兴富博士提供银川盆地地震剖面.南京大学张庆龙教授和笔者针对基底构造做了大量有益讨论,兰州大学程弘毅教授在成文过程中给出建设性意见.两位审稿专家给出具宝贵修改意见,兰州乐途汽车租赁公司张新义在野外给予大量帮助,在此一并表示感谢. -
图 7 叠布斯格盆地、骆驼瀑以及带日根高勒沟口处新生代逆冲断层露头(位置见图 3)
叠布斯格盆地新生代逆冲断层,赤平投影为断层产状; b.叠布斯格盆地新生代逆冲断层及其断层面解; c.骆驼瀑南侧石炭纪花岗岩向西逆冲于渐新统乌兰布拉格组之上,断层下盘地层发生倒转; d.骆驼瀑南侧逆冲断层带内石英脉被逆冲断层剪断; e.代日根高勒沟口处花岗岩逆冲到渐新统乌兰布拉格组之上
Fig. 7. Cenozoic thrust fault in Diebusige basin, Luotuopu and the mouth of Dairigengaole gully(see locations in Fig.3)
图 9 苏木图地区NNE向背斜
a.背斜卫星影像,两翼产状和褶皱枢纽走向,指示NWW-SEE向的挤压(产状数据雷启云等,2017); b.清水营组砖红色砾岩; c.巴彦浩特北侧白垩系倾斜地层
Fig. 9. NNE trending anticline in Sumutu region
图 13 银川盆地西缘深地震反射剖面及解释
a.银川盆地内部地震反射剖面(地震剖面图引自Huang et al., 2016); b.新生代地层内部逆冲断层及断层相关褶皱,后期被高角度正断层错断.底图引自Huang et al.(2016)
Fig. 13. Deep seismic reflection profile of east Yinchuan basin and its interpretation
图 14 贺兰山及邻区深地震剖面解释图及新生代断裂分布
修改自Liu et al.(2017a). F1.巴彦浩特断裂; F2.贺兰山西缘断裂; F3.贺兰山东麓断裂; F4.芦花台断裂; F5.银川断裂; F6.黄河断裂
Fig. 14. Interpretation of the deep seismic reflection profile
图 17 莱菔山右行走滑断裂
a.莱菔山地质图; b.断层露头; c.断层面擦痕及断层机制解指示右行斜滑.区域位置见图 1
Fig. 17. Dextral slip fault in Laifushan
图 18 中新世以来青藏高原扩展对阿拉善块体和鄂尔多斯块体作用示意图
修改自郑文俊等(2016);Lei et al.(2016); Duvall et al.(2013);王伟涛等(2014);Bovet et al.(2009); Yuan et al.(2013)
Fig. 18. Schematic maps show how northern or northeastern Tibetan plateau exerts influence on the Ordos/ Alxa block from Miocene to present
表 1 狼山地区逆冲断层观测点及古应力场方位
Table 1. Faults measured in Langshan region and their paleo-stress field
编号 纬度 经度 断层两盘岩性 数目 σ1 σ2 σ3 NC1 40°34′13.4″ 106°19′50.2″ 白垩纪砾岩与石炭纪花岗岩 3 302/13 35/16 174/70 NC2 40°34′21.6″ 106°19′55.3″ 白垩纪砾岩与石炭纪花岗岩 6 292/9 7月23日 149/79 NC3 40°34′55.4″ 106°20′14.2″ 白垩纪砾岩与石炭纪花岗岩 3 121/27 216/10 325/61 NC4 40°34′44.4″ 106°19′47.3″ 白垩纪砾岩与石炭纪花岗岩 3 306/10 41/31 200/58 NC5 40°34′49.1″ 106°19′45.1″ 白垩纪砾岩与石炭纪花岗岩 5 121/0 31/19 211/71 NC6 40°35′27.9″ 106°20′09.6″ 渐新世乌兰布拉格组砾岩 4 317/6 227/2 120/83 NC7 40°33′42.7″ 106°15′52.1″ 渐新世乌兰布拉格组砾岩 3 137/16 233/19 9/64 NC8 40°30′34.7″ 106°15′47.8″ 渐新世乌兰布拉格组砾岩与花岗岩 5 304/17 211/9 96/71 NC9 40°28′57.3″ 106°14′44.7″ 渐新世乌兰布拉格组砾岩与花岗岩 4 319/11 Apr-50 159/78 NC10 40°33′01.7″ 106°13′11.1″ 叠布斯格岩群斜长角闪片麻岩和渐新世乌兰布拉格组砾岩 3 303/17 210/9 94/71 -
[1] Angelier, J., 1979. Determination of the Mean Principal Directions of Stresses for a Given Fault Population. Tectonophysics, 56(3-4):T17-T26. https://doi.org/10.1016/0040-1951(79)90081-7 [2] Bovet, P.M., Ritts, B.D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4):290-329. https://doi.org/10.2475/00.4009.02 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20a7a77d09f74e13f78e87e2cad1d1a9 [3] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 doi: 10.1029/92JB02280 [4] Chen, Z.L., Gong, H.L., Li, L., et al., 2006.Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4):91-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604008 [5] Chung, S.L., Chu, M.F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edd81f21a4b046d1678a4727beb6f78a [6] Clark, M.K., Farley, K.A., Zheng, D.W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1-2):78-88. https://doi.org/10.1016/j.epsl.2010.04.051 [7] Cunningham, D., 2005. Active Intracontinental Transpressional Mountain Building in the Mongolian Altai:Defining a New Class of Orogen. Earth and Planetary Science Letters, 240(2):436-444. https://doi.org/10.1016/j.epsl.2005.09.013 [8] Cunningham, D., 2013. Mountain Building Processes in Intracontinental Oblique Deformation Belts:Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology, 46:255-282. https://doi.org/10.1016/j.jsg.2012.08.010 [9] Cunningham, D., 2017. Folded Basinal Compartments of the Southern Mongolian Borderland:A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt. Geosciences, 7(1):1-23. https://doi.org/10.3390/geosciences7010002 [10] Cunningham, D., Zhang, J., Li, Y.F., 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687:111-128.http://doi.org/10.1016/j.techo.2016.09.010 doi: 10.1016/j.tecto.2016.09.010 [11] Dai, S., Fang, X.M, Song, C.H., et al., 2005. Early Tectonic Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(15):1642. https://doi.org/10.1360/03wd0255 [12] Dan, W., Li, X.H., Guo, J.H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China:Evidence from in Situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4):838-864. https://doi.org/10.1016/j.gr.2011.09.004 [13] Dan, W., Li, X.H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications:In Situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1):110-153. https://doi.org/10.2475/01.2014.04 [14] Dan, W., Li, X.H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32:105-121. doi: 10.1016/j.gr.2015.02.011 [15] Darby, B.J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage:The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1-2):13-24. https://doi.org/10.1016/s0012-821x(02)01026-9 doi: 10.1016/S0012-821X(02)01026-9 [16] Darby, B.J., Ritts, B.D., 2007. Mesozoic Structural Architecture of the Lang Shan, North-Central China:Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29(12):2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011 [17] Darby, B., Ritts, B., Yue, Y., et al., 2005. Did the Altyn Tagh Fault Extend beyond the Tibetan Plateau?. Earth and Planetary Science Letters, 240(2):425-435. https://doi.org/10.1016/j.epsl.2005.09.011 [18] De Grave, J., Buslov, M.M., van den haute, P., 2007. Distant Effects of India-Eurasia Convergence and Mesozoic Intracontinental Deformation in Central Asia:Constraints from Apatite Fission-Track Thermochronology. Journal of Asian Earth Sciences, 29(2-3):188-204. https://doi.org/10.1016/j.jseaes.2006.03.001 [19] Deng, Q.D., Sung, F., Zhu, S.L., et al., 1984. Active Faulting and Tectonics of the Ningxia-Hui Autonomous Region, China. Journal of Geophysical Research:Solid Earth, 89(B6):4427-4445. https://doi.org/10.1029/jb089ib06p04427 doi: 10.1029/JB089iB06p04427 [20] Deng, J.F., Xiao, Q.H., Qiu, R.Z., et al., 2006.Cenozoic Lithospheric Extension and Thinning of North China:Mechanism and Process.Geology in China, 33(4):751-761(in Chinese with English abstract). [21] Deng, Q.D., Cheng, S.P., Min, W., et al., 1999.Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3):13-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb199903003 [22] Duvall, A.R., Clark, M.K., Kirby, E., et al., 2013. Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for Kinematic Change during Late-Stage Orogenesis. Tectonics, 32(5):1190-1211. https://doi.org/10.1002/tect.20072 [23] Fan, L.G., Meng, Q.R., Wu, G.L., et al., 2019. Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau. Earth and Planetary Science Letters, 514:62-74. https://doi.org/10.1016/j.epsl.2019.02.036 [24] Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2):293-306. https://doi.org/10.1016/j.epsl.2007.03.042 [25] Faure, M., Lin, W., Chen, Y., 2012. Is the Jurassic (Yanshanian) Intraplate Tectonics of North China Due to Westward Indentation of the North China Block?. Terra Nova, 24(6):456-466. https://doi.org/10.1111/ter.12002 [26] Fu, S.T., Fu, J.H., Yu, J., et al., 2018. Petroleum Geological Features and Exploration Prospect of Linhe Depression in Hetao Basin, China. Petroleum Exploration and Development, 45(5):803-817. https://doi.org/10.1016/s1876-3804(18)30084-3 doi: 10.1016/S1876-3804(18)30084-3 [27] Geng, Y.S., Zhou, X.W., 2010.Early Neoproterozoic Granite Events in Alax Area of Inner Mongolia and Their Geological Significance:Evidence from Geochronology. Acta Petrologica et Mineralogica, 29(6):779-795(in Chinese with English abstract). [28] George, A.D., Marshallsea, S.J., Wyrwoll, K. H., et al., 2001. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology, 29(10):939-942. https://doi.org/10.1130/0091-7613(2001)029<0939:mcitnq>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2 [29] Gong, J.H., Zhang, J.X., Yu, S.Y., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Chinese Science Bulletin, 57(31):4064-4076. https://doi.org/10.1007/s11434-012-5315-8 [30] He, J.K., Cai, D.S., Li, Y.X., et al., 2004. Active Extension of the Shanxi Rift, North China:Does It Result from Anticlockwise Block Rotations?. Terra Nova, 16(1):38-42. https://doi.org/10.1046/j.1365-3121.2003.00523.x [31] He, J.K., Liu, M., Li, Y.X., 2003. Is the Shanxi Rift of Northern China Extending?. Geophysical Research Letters, 30(23):2213. https://doi.org/10.1029/2003gl018764 [32] Hendrix, M.S., Dumitru, T.A., Graham, S.A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan:An Early Effect of the India-Asia Collision. Geology, 22(6):487-490. https://doi.org/10.1130/0091-7613(1994)022<0487:loemui>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2 [33] Heumann, M.J., Johnson, C.L., Webb, L.E., 2018. Plate Interior Polyphase Fault Systems and Sedimentary Basin Evolution:A Case Study of the East Gobi Basin and East Gobi Fault Zone, Southeastern Mongolia. Journal of Asian Earth Sciences, 151:343-358. https://doi.org/10.1016/j.jseaes.2017.05.017 [34] Houseman, G., England, P.H., 1996. A Lithospheric-Thickening Model for the Indo-Asian Collision. World and Regional Geology, 1(8), 1-17. [35] Hu, J.M., Gong, W.B., Wu, S.J., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Northeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 255:756-770. https://doi.org/10.1016/j.precamres.2014.08.013 [36] Huang, B.C., Piper, J., Peng, S., et al., 2006. Magnetostratigraphic Study of the Kuche Depression, Tarim Basin, and Cenozoic Uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters, 251(3-4):346-364. https://doi.org/10.1016/j.epsl.2006.09.020 [37] Huang, X.F., Feng, S.Y., Gao, R., et al., 2016. High-Resolution Crustal Structure of the Yinchuan Basin Revealed by Deep Seismic Reflection Profiling:Implications for Deep Processes of Basin. Earthquake Science, 29(2):83-92. https://doi.org/10.1007/s11589-016-0148-1 [38] Huang, T.K., 1945. On Major Tectonic Forms of China. The Journal of Geology, 55(1):59-60. https://doi.org/10.1086/625397 [39] Jolivet, L., Tamaki, K., Fournier, M., 1994. Japan Sea, Opening History and Mechanism:A Synthesis. Journal of Geophysical Research:Solid Earth, 99(B11):22237-22259. https://doi.org/10.1029/93jb03463 doi: 10.1029/93JB03463 [40] Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau:Fission-Track Constraints. Tectonophysics, 343(1-2):111-134. https://doi.org/10.1016/s0040-1951(01)00196-2 doi: 10.1016/S0040-1951(01)00196-2 [41] Kusky, T.M., Li, J.H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. https://doi.org/10.1016/s1367-9120(03)00071-3 doi: 10.1016/S1367-9120(03)00071-3 [42] Lease, R.O., Burbank, D.W., Clark, M.K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4):359-362. https://doi.org/10.1130/g31356.1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4c5a920fa5e95115a8ee8c61bb11076 [43] Lei, Q., Zhang, P., Zheng, W., et al., 2016. Dextral Strike-Slip of Sanguankou-Niushoushan Fault Zone and Extension of Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau. Science China Earth Sciences, 59(5):1025-1040. doi: 10.1007/s11430-016-5272-1 [44] Lei, Q.Y., Zhang, P.Z., Zheng, W.J., et al., 2017.Geological and Geomorphic Evidence for Dextral Strike Slip of the Helan Shan West-Piedmont Fault and Its Tectonic Implications. Seismology and Geology, 39(6):1297-1315(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201706014 [45] Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001. New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322 doi: 10.1029/2000JB900322 [46] Li, T., Xie, G, A., Zhang, J., et al., 2020. Characteristics of the Tectonic Stress Field of the South-North Oriented Fault of the Langshan Mountain Region of Inner Mongolia and Its Relationship with Regional Tectonic Evolution. Earth Science, 45(1):211-225(in Chinese with English abstract). [47] Li, B., Chen, X.H., Zuza, A.V., et al., 2019. Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault:Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 751:109-124. https://doi.org/10.1016/j.tecto.2018.12.005 [48] Lin, X.B., Chen, H.L., Wyrwoll, K.H., et al., 2011.The Uplift History of the Haiyuan-Liupan Shan Region Northeast of the Present Tibetan Plateau:Integrated Constraint from Stratigraphy and Thermochronology. The Journal of Geology, 119(4):372-393. https://doi.org/10.1086/660190 [49] Liu, B.J., Feng, S.Y., Ji, J.F., et al., 2017a. Lithospheric Structure and Faulting Characteristics of the Helan Mountains and Yinchuan Basin:Results of Deep Seismic Reflection Profiling. Science China Earth Sciences, 60(3):589-601. https://doi.org/10.1007/s11430-016-5069-4 [50] Liu, D.L., Fang, X.M., Gao, J.P., et al., 2009. Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and Its Implication. Acta Geologica Sinica, 83(2):359-371. https://doi.org/10.1111/j.1755-6724.2009.00024.x [51] Liu, D.L., Li, H.B., Sun, Z.M., et al., 2017b. AFT Dating Constrains the Cenozoic Uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, Comparison with LA-ICPMS Zircon U-Pb Ages. Gondwana Research, 41:438-450. https://doi.org/10.1016/j.gr.2015.10.008 [52] Liu, M., Cui, X.J., Liu, F.T., 2004. Cenozoic Rifting and Volcanism in Eastern China:A Mantle Dynamic Link to the Indo-Asian Collision?. Tectonophysics, 393(1-4):29-42. https://doi.org/10.1016/j.tecto.2004.07.029 [53] Liu, S.F., 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4):369-383. https://doi.org/10.1016/s0743-9547(98)00020-8 doi: 10.1016/S0743-9547(98)00020-8 [54] Liu, X.B., Hu, J.M., Shi, W., et al., 2019b. Palaeogene-Neogene Sedimentary and Tectonic Evolution of the Yinchuan Basin, Western North China Craton. International Geology Review, 62(1):53-71. https://doi.org/10.1080/00206814.2019.1591309 [55] Liu, X.B., Shi, W., Hu, J.M., et al., 2019a. Magnetostratigraphy and Tectonic Implications of Paleogene-Neogene Sediments in the Yinchuan Basin, Western North China Craton. Journal of Asian Earth Sciences, 173:61-69. https://doi.org/10.1016/j.jseaes.2019.01.016 [56] Lu, H.J., Fu, B.H., Shi, P.L., et al., 2016. Constraints on the Uplift Mechanism of Northern Tibet. Earth and Planetary Science Letters, 453:108-118. https://doi.org/10.1016/j.epsl.2016.08.010 [57] Ma, X.Y., Wu, D.N., 1987. Cenozoic Extensional Tectonics in China. Tectonophysics, 133(3-4):243-255. https://doi.org/10.1016/0040-1951(87)90268-x doi: 10.1016/0040-1951(87)90268-X [58] Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1):1-47. https://doi.org/10.1046/j.1365-246x.1998.00567.x doi: 10.1046/j.1365-246X.1998.00567.x [59] Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4):357-396. https://doi.org/10.1029/93rg02030 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/93RG02030 [60] Molnar, P., Stock, J.M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics, 28(3):1-11. https://doi.org/10.1029/2008tc002271 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008TC002271 [61] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419 [62] Peltzer, G., Tapponnier, P., 1988. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach. Journal of Geophysical Research:Solid Earth, 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085 doi: 10.1029/JB093iB12p15085 [63] Peng, R.M., Zhai, Y.S., Wang, J.P., et al., 2010. Discovery of Neoproterozoic Acid Volcanic Rock in the Western Section of Langshan, Inner Mongolia, and Its Geological Significance. Chinese Science Bulletin, 55:2611-2620(in Chinese). doi: 10.1360/972010-266 [64] Rao, G., Chen, P., Hu, J.M., et al., 2016. Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China:Implications for Seismic Risk. Tectonophysics, 677-678:115-124. https://doi.org/10.1016/j.tecto.2016.03.035 [65] Research Group of Active Fault System around the Ordos Massif, 1988. Active Fault System around Ordos Massif. Seismological Press, Beijing, 39-65(in Chinese). [66] Ritts, B.D., Yue, Y., Graham, S.A., et al., 2008. From Sea Level to High Elevation in 15 Million Years:Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan. American Journal of Science, 308(5):657-678. https://doi.org/10.2475/05.2008.01 [67] Sengör, A.M.C., Natal'in, B.A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337. https://doi.org/10.1146/annurev.earth.24.1.263 [68] Seno, T., Maruyama, S., 1984. Paleogeographic Reconstruction and Origin of the Philippine Sea. Tectonophysics, 102(1-4):53-84. https://doi.org/10.1016/0040-1951(84)90008-8 [69] Shi, W., Dong, S.W., Liu, Y., et al., 2015. Cenozoic Tectonic Evolution of the South Ningxia Region, Northeastern Tibetan Plateau Inferred from New Structural Investigations and Fault Kinematic Analyses. Tectonophysics, 649:139-164. https://doi.org/10.1016/j.tecto.2015.02.024 [70] Shi, W., Liu, Y., Liu, Y., et al., 2013.Cenozoic Evolution of the Haiyuan Fault Zone in the Northeast Margin of the Tibetan Plateau. Earth Science Frontiers, 20(4):1-17(in Chinese with English abstract). [71] Shi, W.B., Wang, F., Yang, L., et al., 2018. Diachronous Growth of the Altyn Tagh Mountains:Constraints on Propagation of the Northern Tibetan Margin from (U-Th)/He Dating. Journal of Geophysical Research:Solid Earth, 123(7):6000-6018. https://doi.org/10.1029/2017jb014844 doi: 10.1029/2017JB014844 [72] Sobel, E., Chen, J., Heermance, R., 2006. Late Oligocene-Early Miocene Initiation of Shortening in the Southwestern Chinese Tian Shan:Implications for Neogene Shortening Rate Variations. Earth and Planetary Science Letters, 247(1-2):70-81. https://doi.org/10.1016/j.epsl.2006.03.048 [73] Sobel, E.R., Arnaud, N., Jolivet, M., et al., 2001. Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. In: Hendrix, M.S., Davis, G.A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia. Geological Society of America, 194: 247-267. [74] Sun, J.M., Zhu, R.X., An, Z.S., 2005. Tectonic Uplift in the Northern Tibetan Plateau since 13.7 Ma Ago Inferred from Molasse Deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 235(3-4):641-653. https://doi.org/10.1016/j.epsl.2005.04.034 [75] Sun, L.Y., Pu, R.H., Ma.Z.R., et al., 2018. Source Rock Distribution and Exploration Prospect of Jilantai Sag in Hetao Basin, China. Journal of Earth Sciences and Environment, 40(5):612-626(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201805009 [76] Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating Extrusion Tectonics in Asia:New Insights from Simple Experiments with Plasticine. Geology, 10(12):611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [77] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547):1671-1677. https://doi.org/10.1126/science.105978 [78] Tian, R.S., Xie, G.A., Zhang, J., et al., 2017.Deformation Characteristics of the Neoproterozoic Langshan Group in Langshan Region and Their Tectonic Implications. Geological Review, 63(5):1180-1192(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705005 [79] Wang, C.S., Dai, J.G., Zhao, X.X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic:A Review. Tectonophysics, 621:1-43. https://doi.org/10.1016/j.tecto.2014.01.036 [80] Wang, C.S., Zhao, X.X., Liu, Z.F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13):4987-4992. https://doi.org/10.1073/pnas.0703595105 [81] Wang, J.P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608:929-946. https://doi.org/10.1016/j.tecto.2013.07.025 [82] Wang, J.P., Kusky, T., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1-2):59-75. https://doi.org/10.1130/b31479.1 doi: 10.1130/B31479.1 [83] Wang, T. Y., Zhang, Wang, J. R.M. J., et al., 1998. The Characteristics and Tectonic Implications of the Thrust Belt in Eu Gerwusu, China. Chinese Journal of Geology, 33(4):385-394(in Chinese with English abstract). [84] Wang, W.T., Zhang, P.Z., Kirby, E., et al., 2011. A Revised Chronology for Tertiary Sedimentation in the Sikouzi Basin:Implications for the Tectonic Evolution of the Northeastern Corner of the Tibetan Plateau. Tectonophysics, 505(1-4):100-114. https://doi.org/10.1016/j.tecto.2011.04.006 [85] Wang, W.T., Zhang, P.Z., Yu, J.X., et al., 2016a. Constraints on Mountain Building in the Northeastern Tibet:Detrital Zircon Records from Synorogenic Deposits in the Yumen Basin. Scientific Reports, 6(1):27604. https://doi.org/10.1038/srep27604 [86] Wang, X.X., Song, C.H., Zattin, M., et al., 2016b. Cenozoic Pulsed Deformation History of Northeastern Tibetan Plateau Reconstructed from Fission-Track Thermochronology. Tectonophysics, 672-673:212-227. https://doi.org/10.1016/j.tecto.2016.02.006 [87] Wang, W.T., Zhang, P.Z., Zheng, D.W., et al., 2014.Late Cenozoic Tectonic Deformation of the Haiyuan Fault Zone in the Northeastern Margin of the Tibetan Plateau.Earth Science Frontiers, 21(4):266-274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201404027 [88] Webb, L.E., Johnson, C.L., 2006. Tertiary Strike-Slip Faulting in Southeastern Mongolia and Implications for Asian Tectonics. Earth and Planetary Science Letters, 241(1-2):323-335. https://doi.org/10.1016/j.epsl.2005.10.033 [89] Wu, L., Gong, Q.L., Qin, S.H., et al., 2013.When did Cenozoic Left-Slip along the Altyn Tagh Fault Initiate? A Comprehensive Approach. Acta Petrologica Sinica, 29(8):2837-2850(in Chinese with English abstract). [90] Wu, T.R., He, G.Q. 1993. Tectonic Units and There Fundamental Characteristiics on the Northern Margin of the Alxa Block. Acta Geologica Sincia, 67(2):97-108(in Chinese with English abstract). [91] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [92] Xu, J., Ji, F.J., Zhou, B.G., et al., 2012.On the Lower Chronological Boundary of the Neotectonic Period in China. Earth Science Frontiers, 19(5):284-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201205027 [93] Yang, J.J., Li, K.Q., Zhang, D.S., et al., 1992. Petroleum Geology of China, Changqing Oil Field(Vol. 12). Petroleum Geology of China. Petroleum Industry Press, Beijing, 333-340(in Chinese). [94] Yang, W., Jolivet, M., Dupont-Nivet, G., et al., 2014. Mesozoic-Cenozoic Tectonic Evolution of Southwestern Tian Shan:Evidence from Detrital Zircon U/Pb and Apatite Fission Track Ages of the Ulugqat Area, Northwest China. Gondwana Research, 26(3-4):986-1008. https://doi.org/10.1016/j.gr.2013.07.020 [95] Yeh, Y.C., Sibuet, J. C., Hsu, S. K., et al., 2010. Tectonic Evolution of the Northeastern South China Sea from Seismic Interpretation. Journal of Geophysical Research:Solid Earth, 115(B6):B06103. https://doi.org/10.1029/2009jb006354 [96] Yin, A., Rumelhart, P.E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10):1257-1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2 [97] Yin, A., 2010.Cenozoic Tectonic Evolution of Asia:A Preliminary Synthesis. Tectonophysics, 488(1-4):293-325. https://doi.org/10.1016/j.tecto.2009.06.002 [98] Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27(9):787. https://doi.org/10.1130/0091-7613(1999)0270787:slnewe>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 [99] Yin, A., Harrison, T. M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 [100] Yu, J.X., Zheng, W.J., Zhang, P.Z., et al., 2017. Late Quaternary Strike-Slip along the Taohuala Shan-Ayouqi Fault Zone and Its Tectonic Implications in the Hexi Corridor and the Southern Gobi Alashan, China. Tectonophysics, 721:28-44. https://doi.org/10.1016/j.tecto.2017.09.014 [101] Yu, J.X., Zheng, W.J., Kirby, E., et al., 2016. Kinematics of Late Quaternary Slip along the Yabrai Fault:Implications for Cenozoic Tectonics across the Gobi Alashan Block, China. Lithosphere, 8(3):199-218. https://doi.org/10.1130/l509.1 doi: 10.1130/L509.1 [102] Yuan, W., Yang, Z., 2015a. The Alashan Terrane did not Amalgamate with North China Block by the Late Permian:Evidence from Carboniferous and Permian Paleomagnetic Results. Journal of Asian Earth Sciences, 104:145-159. doi: 10.1016/j.jseaes.2014.02.010 [103] Yuan, D.Y., Ge, W.P., Chen, Z.W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics:A Review of Recent Studies. Tectonics, 32(5):1358-1370. https://doi.org/10.1002/tect.20081 [104] Yuan, W., Yang, Z.Y., 2015b. The Alashan Terrane was not Part of North China by the Late Devonian:Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3):1270-1282. https://doi.org/10.1016/j.gr.2013.12.009 [105] Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6):847-856. https://doi.org/10.1016/j.jseaes.2005.09.002 [106] Yue, Y.J., Liou, J.G., 1999. Two-Stage Evolution Model for the Altyn Tagh Fault, China. Geology, 27(3):227-230. https://doi.org/10.1130/0091-7613(1999)027<0227:tsemft>2.3.co;2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f0134a34a264c52555924ef0f6da201 [107] Yue, Y.J., Ritts, B.D., Graham, S.A., et al., 2004. Slowing Extrusion Tectonics:Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault. Earth and Planetary Science Letters, 217(1-2):111-122. https://doi.org/10.1016/s0012-821x(03)00544-2 doi: 10.1016/S0012-821X(03)00544-2 [108] Yue, Y.J., Ritts, B.D., Graham, S.A., 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12):1087-1093. https://doi.org/10.1080/00206810109465062 [109] Zhai, M.G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [110] Zhang, B. H., Zhang, J., Wang, Y. N., et al., 2017. Late Mesozoic-Cenozoic Exhumation of the Northern Hexi Corridor:Constrained by Apatite Fission Track Ages of the Longshoushan. Acta Geologica Sinica-English Edition, 91(5):1624-1643. https://doi.org/10.1111/1755-6724.13402 [111] Zhang, J., Cunningham, D., Cheng, H.Y., 2010. Sedimentary Characteristics of Cenozoic Strata in Central-Southern Ningxia, NW China:Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 39(6):740-759. https://doi.org/10.1016/j.jseaes.2010.05.008 [112] Zhang, J., Li, J.Y., Li, Y.F., et al., 2009. How did the Alxa Block Respond to the Indo-Eurasian Collision?. International Journal of Earth Sciences, 98(6):1511-1527. https://doi.org/10.1007/s00531-008-0404-2 [113] Zhang, J., Li, J. Y., Li, Y. F., et al., 2014. Mesozoic-Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and Their Tectonic Implications. Acta Geologica Sinica-English Edition, 88(1):78-102. https://doi.org/10.1111/1755-6724.12184 [114] Zhang, J., Li, J.Y., Liu, J.F., et al., 2011. Detrital Zircon U-Pb Ages of Middle Ordovician Flysch Sandstones in the Western Ordos Margin:New Constraints on Their Provenances, and Tectonic Implications. Journal of Asian Earth Sciences, 42(5):1030-1047. https://doi.org/10.1016/j.jseaes.2011.03.009 [115] Zhang, J., Li, J.Y., Xiao, W.X., et al., 2013a. Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China:New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 57:38-57. https://doi.org/10.1016/j.jsg.2013.10.002 [116] Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2015b. Evolution of the NE Qinghai-Tibetan Plateau, Constrained by the Apatite Fission Track Ages of the Mountain Ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 97:10-23. https://doi.org/10.1016/j.jseaes.2014.10.002 [117] Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2016b. Tectonics of the Xining Basin in NW China and its Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Basin Research, 28(2):159-182. https://doi.org/10.1111/bre.12104 [118] Zhang, J., Zhang, B.H., Zhao, H., 2016a. Timing of Amalgamation of the Alxa Block and the North China Block:Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tectonophysics, 668-669:65-81. https://doi.org/10.1016/j.tecto.2015.12.006 [119] Zhang, J., Zhang, Y.P., Xiao, W.X., et al., 2015a. Linking the Alxa Terrane to the Eastern Gondwana during the Early Paleozoic:Constraints from Detrital Zircon U-Pb Ages and Cambrian Sedimentary Records. Gondwana Research, 28(3):1168-1182. https://doi.org/10.1016/j.gr.2014.09.012 [120] Zhang, J. X., Gong, J, H. 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4):940-962(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804006 [121] Zhang, J.X., Gong, J.H., Yu, S.Y., et al., 2013b. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication:Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235:36-57. https://doi.org/10.1016/j.precamres.2013.05.002 [122] Zhang, P.Z., Shen, Z.K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9):809. https://doi.org/10.1130/g20554.1 doi: 10.1130/G20554.1 [123] Zhang, Y.Q., Mercier, J.L., Vergély, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1-2):41-75. https://doi.org/10.1016/s0040-1951(97)00170-4 doi: 10.1016/S0040-1951(97)00170-4 [124] Zhang, J.S., He, Z.X., Fei, A.Q., et al., 2008.Epicontinental Mega Thrust and Nappe System at North Segment of the Western Rim of the Ordos Block. Chinese Journal of Geology(Scientia Geologica Sinica), 43(2):251-281(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200802004 [125] Zhang, Y.Q., Liao, C.Z., Shi, W., et al., 2006.Neotectonic Evolution of the Peripheral Zones of the Ordos Basin and Geodynamic Setting. Geological Journal of China Universities, 12(3):285-297(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200603001 [126] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8):706-721. https://doi.org/10.1080/00206819809465233 [127] Zhao, H.G., Liu, C.Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science in China Series D:Earth Sciences, 50(S2):217-226. https://doi.org/10.1007/s11430-007-6010-5 [128] Zhao, G., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002 [129] Zheng, D., Zhang, P.Z., Wan, J., 2006. Rapid Exhumation at~8 Ma on the Liupanshan Thrust Fault from Apatite Fission-Track Thermochronology:Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2):198-208. doi: 10.1016/j.epsl.2006.05.023 [130] Zheng, D.W., Wang, W.T., Wan, J.L., et al., 2017. Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic. Lithosphere, 9(3):408-416. https://doi.org/10.1130/l587.1 doi: 10.1130/L587.1 [131] Zheng, R., Wu, T., Zhang, W., Xu, C., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids:Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011 [132] Zheng, W, J., Yuan, D, Y., Zhang, P, Z., et al., 2016. Tectonic Geometry and Kinematic Dissipation of the Active Faults in the Northeastern Tibetan Plateau and Their Implications for Understanding Northeastward Growth of the Plateau. Quaternary Sciences, 36(4):775-788(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201604001 [133] Zhou, J., Xu, F., Wang, T., et al., 2006. Cenozoic Deformation History of the Qaidam Basin, NW China:Results from Cross-Section Restoration and Implications for Qinghai-Tibet Plateau Tectonics. Earth and Planetary Science Letters, 243(1-2):195-210. https://doi.org/10.1016/j.epsl.2005.11.033 期刊类型引用(5)
1. 张帆,崔丰智,郝美仙,杨彦明,李娟,杨晓忠. 基于贝叶斯方法的内蒙古地区应力场研究. 大地测量与地球动力学. 2025(03): 252-259 . 百度学术
2. 陆鹿,陈树光,李壮福,秦勇,屈争辉,沈玉林. 河套盆地临河坳陷白垩纪—古近纪沉积环境演化及油气地质意义. 古地理学报. 2022(02): 308-331 . 百度学术
3. 张北航,张进,曲军峰,赵衡,牛鹏飞,惠洁. 阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景. 地质通报. 2021(01): 110-124 . 百度学术
4. 张北航,张文龙,张进,曲军峰,赵衡,牛鹏飞. 内蒙古巴彦哈拉幅1:50000地质图数据库. 中国地质. 2021(S2): 1-11 . 百度学术
5. 刘兴旺,吴赵,梁明剑,何文贵. 嘉峪关断裂古地震活动特征及其强震危险性影响. 地球科学. 2021(10): 3796-3806 . 本站查看
其他类型引用(1)
-