• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源

    谢玉玲 杨科君 李应栩 李光明 曲云伟 董磊

    谢玉玲, 杨科君, 李应栩, 李光明, 曲云伟, 董磊, 2019. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源. 地球科学, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    引用本文: 谢玉玲, 杨科君, 李应栩, 李光明, 曲云伟, 董磊, 2019. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源. 地球科学, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    Citation: Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122

    藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源

    doi: 10.3799/dqkx.2019.122
    基金项目: 

    国家重大基础研究项目 2011CB403100

    中国地质调查局地质调查项目 DD20190147

    国家重点研发计划项目 2016YFC0600308

    详细信息
      作者简介:

      谢玉玲(1963-), 女, 博士, 教授, 主要从事矿床学和矿床地球化学方面的研究

    • 中图分类号: P611

    Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony

    • 摘要: 马扎拉金-锑矿床是藏南巨型金-锑成矿带的重要组成部分,其矿床成因目前仍存在不同认识.通过主要矿石和蚀变围岩的岩相学、矿相学、流体包裹体和稳定同位素分析,探讨了马扎拉金-锑矿床的成矿流体性质、矿质迁移和沉淀机制.结果表明,马扎拉金-锑矿床成矿流体主要来自岩浆水,主成矿期流体为中温(约255℃)、低盐度(2.8%~3.5% NaCleqv)、富CO2流体,成矿压力约150 MPa,流体演化过程中的CO2与水的不混溶是造成矿质沉淀的主要原因,成矿金属主要来源于地层,特别是区域广泛分布的海相火山岩地层.

       

    • 图  1  喜马拉雅造山带构造简图及藏南淡色花岗岩分布

      据Zhang et al.(2012)修改

      Fig.  1.  Sketch geological map of Himalaya orogeny and the distribution of leucogranites

      图  2  区域地质图及矿床(点)分布

      李应栩等(2018)修改;1.第四系;2.下白垩统拉康组;3.下侏罗统日当组、陆热组;4.中侏罗统遮拉组;5.上侏罗统桑秀组、唯美组;6.三叠统聂如组;7.二叠统曲德贡组;8.淡色花岗岩;9.花岗岩脉;10.断层;11.W-Sn矿点;12. Au-Sb矿点;13.Pb-Zn矿点;14.闪长岩;15.辉绿岩脉;16.遥感解译推测的环形构造;THS:特提斯喜马拉雅;GHS:高喜马拉雅;LHS:低喜马拉雅;SG:北印度沉积岩系;IYS:雅鲁藏布江缝合带;STDS:藏南拆离系;MCT.主中央逆冲断裂;MBT.边界逆冲断裂;MFT.前锋逆冲断裂

      Fig.  2.  Regional geological map and the distribution of deposits

      图  3  马扎拉金锑矿区地质简图

      李应栩等(2018)修改

      Fig.  3.  Sketch geological map of Mazhala gold-antimony deposit

      图  4  马扎拉矿区两期石英脉的显微镜下照片

      a.早期石英脉的重结晶;b.石英碳酸盐脉切穿早期石英脉,并造成早期石英脉的重结晶;c.石英-碳酸盐-辉锑矿脉;d.石英-碳酸盐-辉锑矿脉中的粘土矿物和铁白云石;Ank.铁白云石;Q.石英;Cly.粘土矿物;Sb.辉锑矿;透射光,正交偏光

      Fig.  4.  The microscopic photos of two stage' s quartz vein in Mazhala deposit

      图  5  辉锑矿和自然金的反射光下照片

      a.辉锑矿中不规则状自然金;b.辉锑矿与铁白云石粒间的自然金;Au.自然金;Sb.辉锑矿;Ank.铁白云石;Q.石英;Cly.粘土矿物

      Fig.  5.  Microscopic photos of stibnite and gold by reflected light

      图  6  马扎拉金矿主要金属矿物BSE图像

      a.辉锑矿中包裹自然金和辉砷镍矿;b.辉砷镍矿与铁白云石产于黄铁矿粒间;Au.自然金;Py.黄铁矿;Ank.铁白云石;Ges.辉砷镍矿;Sb.辉锑矿

      Fig.  6.  BSE photos of typical metal minerals in Mahala deposit

      图  7  矿区主要蚀变的显微镜下照片

      a.蚀变围岩中的石英-铁白云石脉及边部的碳酸盐化蚀变;b.石英-绢云母化蚀变;c.围岩中的浸染状绢云母和铁白云石;d.围岩中浸染状绢云母、石墨和铁白云石;e.图 7d的透射光下照片;f.围岩中石英-粘土矿物团块;a~c、e为透射光正交偏光,d为反射光单偏光,f为透射光单偏光;Q.石英;Ser.绢云母;Ank.铁白云石;Gph.石墨;Cly.粘土矿物;Slt.板岩

      Fig.  7.  Microscopic photos of typical alterations in Mazhala deposits

      图  8  石英-铁白云石脉中和蚀变围岩中的草霉状黄铁矿显微镜下照片

      a.产于石英-铁白云石脉边部的草霉状黄铁矿(透射光,正交偏光);b.图 8a的局部放大照片;c.图 8b反射光下照片;d.图 8c的局部放大照片

      Fig.  8.  Microscopic photos of framboid-pyrites from altered country rock and quartz-ankerite vein

      图  9  围岩中黄铁矿和毒砂的显微镜下照片

      a.蚀变围岩中具环带的自形黄铁矿和自形毒砂;b.葵花状黄铁矿,中部为草霉状黄铁矿群;c.图 9b的局部放大照片;d.黄铁矿中包裹自形毒砂;Py.黄铁矿;Apy.毒砂;反射光,单偏光

      Fig.  9.  Microscopic photos of pyrite and arsenopyrite in altered country rock

      图  10  石英-铁白云石脉中和蚀变围岩中的草霉状黄铁矿显微镜下照片

      a.铁白云石中的草霉状黄铁矿;b.图a的反射光下照片;c.图b的局部放大照片;d.蚀变地层中的草霉状黄铁矿群(反射光,单偏光);e.图d的局部放大照片(透射光,正交偏光);f.图e反射光下照片

      Fig.  10.  Microscopic photos of framboid-pyrite inside quartz-ankerite vein and altered country rock

      图  11  草霉状黄铁矿(a)和葵花状黄铁矿(b)的BSE图像

      Fig.  11.  BSE photos of framboid-pyrites and sunflower-like pyrite

      图  12  草霉状黄铁矿中Sb与As随元素总量的变化

      a.As随总含量的变化;b.Sb随总含量的变化

      Fig.  12.  Correlation diagram between Sb and As contents in framboid-pyrite

      图  13  马扎拉矿区石英中流体包裹体室温下的显微镜下照片

      a、b.AC类包裹体;c.不同CO2相充填度的AC类包裹体;d.含针状子晶的AC类包裹体;e.AV类包裹体;f.不同CO2相充填度的AC类包裹体与C类包裹体共存;LCO2.液相CO2;VCO2.气相CO2;LH2O.液相H2O;S.针状子矿物;Q.石英

      Fig.  13.  Photomicrographs of fluid inclusions in quartz of the Mazhala Au-Sb deposit at room temperature

      图  14  马扎拉金锑矿床主成矿阶段流体包裹体温度-盐度图解

      错那洞和扎西康数据引自Xie et al.(2017)

      Fig.  14.  The temperature-salinity diagram of fluid inclusions for main ore-forming stage in Mazhala Au-Sb deposit

      图  15  马扎拉Au-Sb矿床流体包裹体的LRM谱图及显微照片

      a.AC类包裹体中CO2相;b.Ac类包裹体中水溶液相;c.AV类包裹体中的气相;d.Av类包裹体中的液相

      Fig.  15.  LRM spectrum of fluid inclusions in quartz from the Mazhala Au-Sb deposit

      图  16  马扎拉矿区H-O同位素图解

      底图据Taylor(1974)修绘

      Fig.  16.  H-O isotope diagram of Mazhala Au-Sb deposit

      图  17  马扎拉金矿铁白云石和石英流体包裹体中CO2的C-O同位素图解

      沉积碳酸盐C-O同位素范围引自Baker and Fallick(1989);原生碳酸岩的C-O同位素范围引自Deines and Gold(1973);沉积有机碳的C-O同位素范围引自Anderson and Arthur(1983)

      Fig.  17.  C-O isotopic diagram of ankerite and CO2 in fluid inclusions hosted in quartz

      图  18  石英AC、AV类流体包裹体均一温度与CO2相充填度关系

      红色虚线为趋势线

      Fig.  18.  The correlation diagram between homogenization temperature and CO2 bubble volume percentage in AC and AV fluid inclusions

      表  1  藏南马扎拉金锑矿床碳酸盐矿物和石英中流体包裹体中CO2碳同位素测试结果

      Table  1.   Carbon isotope results of CO2 in fluid inclusion hosted in quartz for Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ13CV-PDB
      (‰)
      δ18OV-SMOW
      (‰)
      MZL-2025 石英 石英碳酸盐 -5.0 20.1
      MZL-1039-2 石英 石英碳酸盐脉 -3.7 19.6
      MZL-1008 石英 石英脉 -7.1 19.6
      MZL-B127 石英 石英晶簇 -13.8 22.5
      下载: 导出CSV

      表  2  藏南马扎拉金锑矿床铁白云石的碳同位素测试结果

      Table  2.   Carbon isotope results of ankerite in Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ13CV-PDB
      (‰)
      δ18OV-SMOW
      (‰)
      MZL-2025 铁白云石 石英碳酸盐脉 -7.7 18.3
      MZL-1039 铁白云石 石英碳酸盐脉 -3.5 20
      MZL-1008 铁白云石 石英碳酸盐脉 -5.0 19.5
      下载: 导出CSV

      表  3  藏南马扎拉金锑矿床硫同位素测试值

      Table  3.   Result of sulfur isotope assay in Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ34SV-CDT(%)
      MZL-B124 黄铁矿 地层 -26.9
      MZL-B112 黄铁矿 地层 -34.4
      MZL-1008 辉锑矿 石英辉锑矿脉 0.7
      MZL-B127 辉锑矿 石英辉锑矿脉 1.9
      下载: 导出CSV
    • [1] Aikman, A.B., Harrison, T.M., Lin, D., 2008.Preliminary Results from the Yala-Xiangbo Leucogranite Dome, SE Tibet.Himalayan Journal of Sciences, 2(4):91. doi: 10.3126/hjs.v2i4.809
      [2] Anderson, T.F., Arthur, M.A., 1983.Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. In: Anderson, T. F., Arthur, M.A., eds., Stable Isotopes in Sedimentary Geology.Society for Sedimentary Geology, Tulsa, Oklahoma.
      [3] Baker, A.J., Fallick, A.E., 1989.Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water.Nature, 337:352-354. doi: 10.1038/337352a0
      [4] Boyle, R.W., Jonasson, I.R., 1984. The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting.Journal of Geochemical Exploration, 20(3):223-302. doi: 10.1016/0375-6742(84)90071-2
      [5] Burg, J.P., Chen, G.M., 1984.Tectonics and Structural Zonation of Southern Tibet, China.Nature, 311:219-223. doi: 10.1038/311219a0
      [6] Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702
      [7] Deines, P., Gold, D. P., 1973. The Isotopic Composition of Carbonatite and Kimberlite Carbonates and Their Bearing on the Isotopic Composition of Deep-Seated Carbon.Geochimica et Cosmochimica Acta, 37(7):1709-1733. doi: 10.1016/0016-7037(73)90158-0
      [8] Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome.Lithosphere, 8(5):480-504. doi: 10.1130/L506.1
      [9] Dong, L., Li, G. M., Li, Y. X., et al., 2016. Basalts from the Mazhala Area in Southern Xizang:Geochemistry, Petrogenesis and Geological Implications.Sedimentary Geology and Tethyan Geology, 36(3):16-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201603003.htm
      [10] Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2
      [11] Gehrels, G.E., Yin, A., Wang, X.F., 2003.Magmatic History of the Northeastern Tibetan Plateau.Journal of Geophysical Research:Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001876
      [12] Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2):360-376. doi: 10.1016/j.gr.2011.07.027
      [13] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.
      [14] Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. doi: 10.1029/94TC01611
      [15] Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74(1):391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
      [16] Harrison, M.T., Grove, M., Mckeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3
      [17] Hou, Z. Q., Cook, N. J., Zaw, K., 2009. Metallogenesis of the Tibetan Collisional Orogen. Ore Geology Reviews, 36(1-3):1. doi: 10.1016/j.oregeorev.2009.07.002
      [18] Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm
      [19] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract).
      [20] Hou, Z.Q, Qu, X.M, Yang, Z.S, et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
      [21] Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026
      [22] Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. doi: 10.1016/j.epsl.2012.06.030
      [23] Jeffrey, L., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      [24] Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. doi: 10.1016/j.oregeorev.2009.03.006
      [25] Jochum, K. P., Hofmann, A. W., 1997. Constraints on Earth Evolution from Antimony in Mantle-Derived Rocks. Chemical Geology, 139(1-4):39-49. doi: 10.1016/S0009-2541(97)00032-6
      [26] Jochum, K.P., Verma, S.P., 1996.Extreme Enrichment of Sb, Tl and Other Trace Elements in Altered MORB.Chemical Geology, 130(3-4):289-299. doi: 10.1016/0009-2541(96)00014-9
      [27] Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2): https://doi.org/10.1029/2009tc002551
      [28] Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200402008
      [29] Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6):595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
      [30] Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      [31] Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu Universityof Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011
      [32] Li, Y.X., Li, G.M., Dong, L., et al., 2018.Geology and Exploration Potential of the Mazhala Gold Deposit, Cuomei, Xizang:An Approach. Sedimentary Geology and Tethyan Geology, 38(3):90-100(in Chinese with English abstract).
      [33] Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      [34] Liu, H.B., Jin, G.S., Li, J.J., et al., 2013.Determination of Stable Isotope Composition in Uranium Geological Samples.World Nuclear Geoscience, 30(3):174-179(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201303009
      [35] Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1
      [36] Mo, R. W., Sun, X. M., Zhai, W., et al., 2013. Ore-Forming Fluid Geochemistry and Metallogenic Mechanism from Mazhala Gold-Antimony Deposit in Southern Tibet, China. Acta Petrologica Sinica, 29(4):1427-1438(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      [37] Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits(Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
      [38] Pearson, O.N., DeCelles, P.G., 2005.Structural Geology and Regional Tectonic Significance of the Ramgarh Thrust, Himalayan Fold-Thrust Belt of Nepal. Tectonics, 24(4). https://doi.org/10.1029/2003tc001617
      [39] Qing, C.S., Ding, J., Li, Y.X., et al., 2014.Element Combination Anomalies and Prospecting Direction in Mazhala Gold-Antimony Deposit. Metal Mine, (12):134-137(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201412029
      [40] Raymond, J., Williams-Jones, A.E., Clark, J.R., 2005.Mineralization Associated with Scale and Altered Rock and Pipe Fragments from the Berlín Geothermal Field, El Salvador; Implications for Metal Transport in Natural Systems.Journal of Volcanology and Geothermal Research, 145(1-2):81-96. doi: 10.1016/j.jvolgeores.2005.01.003
      [41] Reyes, A.G., Trompetter, W.J., Britten, K., et al., 2003.Mineral Deposits in the Rotokawa Geothermal Pipelines, New Zealand. Journal of Volcanology and Geothermal Research, 119(1-4):215-239. doi: 10.1016/S0377-0273(02)00355-4
      [42] Robb, L., 2007.Introduction to Ore-Forming Processes. Blackwell Publishing, England.
      [43] Spycher, N.F., Reed, M.H., 1989.As (Ⅲ) and Sb (Ⅲ) Sulfide Complexes:An Evaluation of Stoichiometry and Stability from Existing Experimental Data.Geochimica et Cosmochimica Acta, 53(9):2185-2194. doi: 10.1016/0016-7037(89)90342-6
      [44] Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China.Ore Geology Reviews, 36(1-3):235-249. doi: 10.1016/j.oregeorev.2009.05.002
      [45] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. doi: 10.2113/gsecongeo.69.6.843
      [46] Visonà, D, Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating? Lithos, 62(3-4):125-150. doi: 10.1016/S0024-4937(02)00112-3
      [47] Wagner, T., Lee, J., Hacker, B.R., et al., 2010.Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya.Tectonics, 29(6). https://doi.org/10.1029/2010tc002746
      [48] Wang, J.H., Yin, A., Harrison, T.M., et al., 2001.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2):123-133. https://doi.org/10.1016/s0012-821x(01)00315-6
      [49] Wilson, N., Webster-Brown, J., Brown, K., 2007.Controls on Stibnite Precipitation at Two New Zealand Geothermal Power Stations.Geothermics, 36(4):330-347. doi: 10.1016/j.geothermics.2007.04.001
      [50] Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      [51] Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan belt. Geological Bulletin of China, 33(5):595-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001
      [52] Xie, Y.L., Hou, Z., Goldfarb, R.J., et al., 2016.Rare Earth Element Deposits in China.Society of Economic Geologists, 18:115-136.
      [53] Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007
      [54] Xie, Y. L., Wang, B. G., Guo, X., et al., 2014. Fluid Inclusion Study of Pegmatite in Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China. Acta Geologica Sinica(English Edition), 88(Suppl.2):1183-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WFHYXW592465
      [55] Yang, Z. M., Cook, D. R., 2019. Porphyry Copper Deposits in China.Economic Geology, Special Publication(in press).
      [56] Yang, Z. S., Hou, Z. Q., Gao, W., et al., 2006. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013
      [57] Yang, Z. S., Hou, Z. Q., Meng, X. J., et al., 2009. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016/j.oregeorev.2009.03.005
      [58] Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. doi: 10.1016/j.earscirev.2005.05.004
      [59] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      [60] Zakaznova-Iakovleva, V. P., Migdisov, A. A., Zakaznova-Iakovlevaa, V. P., et al., 2001. An Experimental Study of Stibnite Solubility in Gaseous Hydrogen Sulphide from 200 to 320℃.Geochimica et Cosmochimica Acta, 65(2):289-298. doi: 10.1016/S0016-7037(00)00523-8
      [61] Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. doi: 10.1016/j.oregeorev.2013.11.001
      [62] Zhai, W., Zheng, S.Q., Sun, X.M., et al., 2018.He-Ar Isotope Compositions of Orogenic Mazhala Au-Sb and Shalagang Sb Deposits in Himalayan Orogeny, Southern Tibet:Constrains to Ore-Forming Fluid Origin.Acta Petrologica Sinica, 34(12):3525-3538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812005.htm
      [63] Zhang, H. F., Harris, N., Parrish, R., et al., 2005. Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3):275-288(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200503003.htm
      [64] Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2011.Geologic Characteristic and Mineralization of Mazhala Gold-Antimony Deposit in Northern Himalaya.Gold, 32(1):20-24(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201101005
      [65] Zhang, J. Y., Liao, Q. A., Li, D. W., et al., 2003. Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
      [66] Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018. Rock Assem-blage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract).
      [67] Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011
      [68] 董磊, 李光明, 李应栩, 等, 2016.藏南马扎拉地区玄武岩地球化学特征、成因及其地质意义.沉积与特提斯地质, 36(3):16-24. doi: 10.3969/j.issn.1009-3850.2016.03.003
      [69] 侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
      [70] 侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [71] 侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [72] 李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008
      [73] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      [74] 李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义:以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
      [75] 李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. doi: 10.3969/j.issn.1671-9727.2002.05.011
      [76] 李应栩, 李光明, 董磊, 等, 2018.西藏马扎拉金矿区外围地质特征与找矿方向.沉积与特提斯地质, 38(3):90-100. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201803010
      [77] 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      [78] 刘汉彬, 金贵善, 李军杰, 等, 2013.铀矿地质样品的稳定同位素组成测试方法.世界核地质科学, 30(3):174-179. doi: 10.3969/j.issn.1672-0636.2013.03.009
      [79] 莫儒伟, 孙晓明, 翟伟, 等, 2013.藏南马扎拉金锑矿床成矿流体地球化学和成矿机制.岩石学报, 29(4):1427-1438. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      [80] 聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
      [81] 卿成实, 丁俊, 李应栩, 等, 2014.马扎拉金锑矿元素组合异常及找矿方向.金属矿山, (12):134-137. http://d.old.wanfangdata.com.cn/Periodical/jsks201412029
      [82] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      [83] 杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
      [84] 翟伟, 郑思琦, 孙晓明, 等, 2018.藏南喜马拉雅造山带造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床流体包裹体He-Ar同位素组成:对成矿流体来源的制约.岩石学报, 34(12):3525-3538. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201812005
      [85] 张宏飞, Harris, N., Parrish, R., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      [86] 张建芳, 郑有业, 张刚阳, 等, 2011.西藏北喜马拉雅马扎拉金锑矿床地质特征及成矿作用.黄金, 32(1):20-24. doi: 10.3969/j.issn.1001-1277.2011.01.005
      [87] 张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
      [88] 张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
      [89] 郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
    • dqkx-44-6-1998-Table.pdf
    • 加载中
    图(18) / 表(3)
    计量
    • 文章访问数:  4497
    • HTML全文浏览量:  1233
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-16
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回