Deep-Water Contour Currents Deposits of Upper Ordovician Lashizhong Formation in Western Margin of Ordos Basin
-
摘要: 为缩小等深流沉积研究中的现代海洋研究与地层记录研究之间的不平衡和探索中-晚奥陶世鄂尔多斯盆地西缘大洋环流体系在海相深水油气勘探中的意义,在详细的野外观测的基础上,对有关沉积构造进行了古水流和流体动力学分析.结果表明:(1)非水道环境下约有1/3的小型交错层理古水流方向与区域斜坡方向垂直;(2)水道环境下普遍发育双向递变沉积构造,包括平行层(沙纹层)-均匀层-平行层(沙纹层)、条纹条带和双向粒序层3种类型.上述特征可解释为深水斜坡环境下的等深流沉积,并识别出非水道型和水道型2类,后者又分为部分改造型和完全改造型2亚类.Abstract: In order to reduce the gap between contemporary oceanographic studies and geological records in the study area of deep-water contour currents deposits, and to explore the significance of ocean circulation system on marine deep water oil and gas exploration in Middle to Upper Ordovician of western margin of Ordos basin, it was perform paleo-currents-analyses and hydrodynamics using sedimentary structures based on detailed field observations. The results show that:(1)There are 1/3 small cross beddings with paleo-currents directions perpendicular to the regional slope direction; (2)sedimentary structures with bi-directional progressive grain-size change are ubiquitous in deep-water turbidity currents channel, which include parallel (ripple laminae)-homogeneous-parallel (ripple laminae) sequence, stripped-and-banded structures and inverse to normal grading sequence (grain size). All these sedimentary characteristics maybe suggest the deep-water contour currents deposits according to the perpendicular flow direction and the rhythmic lithologic properties which coincide with the period of contour currents. Here it was also recognized two contourites types:deep-water non-channel contourites and turbidity currents channel contourites, and the latter includes two subtypes with partial reaction and entire reaction.
-
Key words:
- contour currents deposit /
- sedimentary structure /
- paleo-current /
- Upper Ordovician /
- Ordos basin /
- sedimentology
-
图 1 鄂尔多斯盆地西缘晚奥陶世艾家山早期(胡乐期)古地理略图
Fig. 1. Sketch showing paleogeography of Early Aijiashan Age (Hulean Age) in Late Ordovician, western Ordos basin
图 2 桌子山地区拉什仲北山剖面上奥陶统拉什仲组岩性柱状图
据肖彬等(2014)修改
Fig. 2. Lithologic column of Upper Ordovician of Lashizhong north hill section in Zhuozishan area
图 3 桌子山地区拉什仲组沉积特征
a.由灰绿色细砂岩、粉砂岩和黏土岩组成的近源浊流水道沉积序列, 拉什仲组第1段; b.由灰绿色(风化为黄绿色)中-薄层细砂岩、粉砂岩和黏土岩组成的远源浊流水道沉积序列, 拉什仲组第3段; c.灰绿色黏土岩夹有灰绿色(风化呈灰黄色)中-薄层钙质细砂岩、粉砂岩, 拉什仲组第1段; d.灰绿色黏土岩夹薄层至极薄层粉砂岩, 拉什仲组第2~3段; 图a和图b属于拉什仲北山剖面; 图c和图d属于石峡谷剖面, 为非浊流水道沉积
Fig. 3. Sedimentary characteristics of Lashizhong Formation, Zhuozishan area
图 4 桌子山地区拉什仲组的指向沉积构造
a.灰绿色细砂岩底部槽模, 大小不一, 分布不均; b.灰绿色细砂岩底部的单一槽模, 形态规则; c.垂向叠置透镜体中的单向交错层理; d.侧向叠置透镜体中的平行层理(短箭头)和单向交错层理(长箭头); e.侧向叠置透镜体中的单向交错层理; f.交错层理, 局部出现"人"字型(箭头); 图a~b位于拉什仲北山剖面; 图c~f位于石峡谷剖面, 岩性为灰绿色薄层细砂岩, 其古水流玫瑰花图分别对应于图 5中的图e~h
Fig. 4. Directional sedimentary structures in Lashizhong Formation, Zhuozishan area
图 5 桌子山地区拉什仲组古水流玫瑰花图
a.所有槽模, 拉什仲北山剖面; b.石峡谷所有交错层理; c.石峡谷拉什仲组下部交错层理; d.石峡谷拉什仲组上部交错层理; e~h.为单个交错层理古水流玫瑰花图, 分别对应图 4中的c~f
Fig. 5. Rose diagram of paleocurrents in the Lashizhong Formation, Zhuozishan area
图 6 拉什仲组下部的粒度双向递变沉积构造
a.灰绿色厚层中砂岩中的平行层-均匀层-沙纹层序列, 完全改造型; b.灰绿色厚层砂岩中的平行层-均匀层-平行层序列, 不完全改造型, 下部为正粒序(单三角), 底部含有细砾级颗粒(箭头); c.灰绿色厚层细砂岩中的条纹条带构造, 底面发育槽模(箭头); d.灰绿色厚层砂岩中的复合型条纹条带构造, 由条纹条带(窄条带)-宽条带(粗砂岩)-条纹条带(窄条带, 略呈透镜体状)构成; e.灰绿色厚层细砂岩中的细砂岩-粗砂岩-细砂岩序列; f.灰绿色中层泥质细砂岩中的泥质粉砂岩-细砂岩-泥质粉砂岩序列; 图a~f在垂向上显示细-粗-细的粒度变化(双三角)
Fig. 6. Reverse to normal-graded sedimentary structures in the lower part of Lashizhong Formation
表 1 桌子山地区拉什仲组古水流数据统计
Table 1. Paleocurrent data of Lashizhong Formation in Zhuozishan area
地点 点号 地层产状(°) 原始古水流产状(°) 复原后古水流产状(°) 石峡谷剖面交错层理 1 196∠12 181∠13, 185∠13, 165∠20, 199∠12, 191∠15, 185∠16, 146∠20, 137∠19, 126∠21, 140∠17, 135∠15, 153∠17, 152∠18, 180∠17, 206∠13, 174∠14, 155∠35, 152∠34, 150∠34. 119∠3, 135∠2, 131∠11.5, 203∠2, 174∠4, 166∠5, 108∠15, 98.5∠16, 92∠20, 98∠14, 86∠14, 109∠11, 105∠12, 146∠6, 252∠3, 114∠6, 140∠27, 135∠26, 133∠27. 2 196∠12 186∠9, 180∠13, 188∠11, 194∠16, 240∠17, 240∠17, 238∠16, 242∠15, 240∠13, 217∠12, 215∠11, 211∠8, 186∠12, 187∠13, 177∠18, 141∠22, 145∠21, 151∠21, 151∠21, 155∠23 159∠22. 41∠4, 58∠4, 52∠2, 193∠4, 282∠12, 282∠12, 284∠10, 294∠12, 301∠10, 302∠4 312∠4, 345∠6, 90∠2, 110∠2, 146∠8, 110∠18, 114∠8, 120∠16, 120∠16, 130∠14 131∠14. 3 196∠12 220∠12, 227∠14, 235∠10, 252∠9, 242∠7, 176∠12, 185∠13, 177∠16, 174∠16. 309∠6, 290∠8, 324∠8, 332∠10, 341∠10, 275∠4, 250∠2, 138∠6, 129∠7. 4 196∠12 175∠23, 180∠21, 165∠23, 176∠22, 175∠22, 176∠22, 179∠19, 190∠10, 207∠7, 240∠8, 225∠11. 154∠12, 166∠10, 140∠14, 154∠11, 153∠11, 154∠11, 164∠8, 48∠2, 357∠6, 333∠9, 305∠6. 5 196∠12 220∠17, 228∠16, 206∠15, 200∠19, 180∠26, 190∠22, 192∠26, 195∠25, 154∠27, 168∠27, 172∠29, 170∠27, 186∠12, 204∠9. 274∠8, 275∠9, 232∠4, 207∠8, 168∠15, 184∠10, 189∠14, 193∠13, 130∠19, 149∠17, 155∠18, 151∠17, 120∠2, 344∠4. 6 127∠16 170∠17, 171∠16, 190∠15, 167∠15, 164∠14, 162∠19, 162∠20, 145∠18. 239∠11, 240∠12, 250∠16, 238∠10, 219∠10, 209∠11, 204∠5, 278∠19. 7 102∠10 275∠9, 257∠9, 240∠12, 239∠8, 267∠9, 265∠8, 264∠9, 260∠9, 250∠8, 274∠17, 268∠18, 267∠17, 275∠18, 297∠16, 277∠15, 274∠14, 286∠14, 280∠10, 267∠12, 230∠14, 235∠15, 235∠14, 229∠16, 240∠11, 239∠11. 278∠19, 271∠19, 260∠12, 262∠17, 274∠19, 274∠18, 272∠20, 273∠18, 267∠18, 277∠28, 273∠30, 272∠28, 278∠28, 292∠26, 279∠26, 283∠22, 284∠24, 281∠20, 273∠22, 252∠22, 252∠24, 254∠22, 249∠24, 259∠20, 260∠20. 8 102∠10 5∠16, 355∠20, 4∠24, 353∠20, 0∠22, 4∠19, 4∠17, 357∠17. 37∠18, 23∠19, 26∠24, 20∠20, 26∠22, 33∠20, 36∠18, 30∠18. 9 65∠5 140∠21, 156∠25, 167∠26, 155∠27, 149∠26, 154∠26, 150∠24. 129∠23, 145∠26, 158∠26, 145∠28, 140∠27, 145∠27, 140∠25. 10 65∠5 151∠13, 155∠18, 147∠23, 147∠21, 144∠23, 144∠17, 147∠19, 179∠25, 185∠22, 184∠24, 179∠20, 167∠27, 156∠26, 155∠19. 132∠16, 141∠19, 136∠24, 137∠27, 134∠25, 138∠19, 136∠21, 168∠24, 174∠20, 173∠22, 165∠19, 157∠26, 145∠26, 142∠20. 11 123∠8 235∠16, 231∠13, 243∠19, 245∠21, 257∠22, 256∠24, 251∠22, 250∠21, 250∠20, 248∠18, 243∠19, 194∠9, 221∠13, 224∠25, 214∠19, 222∠19. 205∠16, 196∠13, 219∠16, 223∠18, 235∠18, 266∠30, 264∠28, 263∠27, 264∠26, 263∠23, 260∠24, 245∠10, 252∠17, 240∠28, 235∠20, 243∠21. 12 114∠52 136∠43, 137∠43, 133∠44, 126∠52, 118∠57, 121∠59, 120∠57, 119∠56, 120∠55, 124∠53, 128∠54, 127∠49. 239∠19, 244∠20, 247∠17, 221∠10, 155∠4, 163∠7, 169∠5, 163∠6, 175∠6, 196∠8, 196∠12, 224∠11. 13 118∠50 124∠47, 123∠45, 130∠45, 129∠43, 130∠40, 135∠39, 135∠37, 135∠39, 134∠36, 130∠40, 134∠33, 131∠41. 254∠5, 258∠6, 245∠10, 259∠10, 264∠13, 258∠16, 263∠17, 257∠16, 267∠18, 259∠13, 271∠19, 263∠13. 拉什仲北山剖面槽模 14 98∠26 S54W 245 15 63∠8 S117W, S89W, S105W 269.5, 242, 285 16 59∠62 S124W, S118W, S130W, S134W, S97W, S145W, S121W, S153W. 273, 267, 279, 282, 247, 294, 270, 302 17 39∠20 S116W, S118W 245, 247 18 45∠21 S96W, S101W, S120W 232, 237, 255 19 51∠26 S43W, S67W, S18W, S93W, S107W, S100W 182, 208, 159, 232, 248, 241 20 33∠25 S94W, S76W, S86W, S60W, S87W, S90W, S26W 218, 199, 209, 184, 210, 213, 150 21 45∠21 S91W, S103W, S56W 226, 238.5, 191 22 55∠24 S82W, S78W, S118W, S96W, S90W, S88W, S89W, S110W, S117W. 226, 223, 263, 241, 235, 233, 234, 255, 262 23 51∠24 S109W, S105W, S116W, S112W, S106W, S62W, S106W, S99W. 250, 246, 267, 263, 247, 233, 247, 240 24 45∠23 S99W, S87W, S96W, S34W, S103W, S135W, S121W, S104W. 235, 222, 232, 169.5, 239, 269.5, 256, 240 25 31∠20 S50W, S85W, S75W, S80W 171, 206, 196, 201 26 26∠21 S50W, S55W, S35W 171, 166, 151 27 62∠22 N55W, N85W 277, 248 28 52∠20 S55W 198 29 30∠18 N45W 255 30 26∠19 S70W, S70W 184, 184 31 50∠16 S70W, S60W, N70W 210, 200, 250 32 33∠18 S80W 202 注:26∠19表示倾向26°, 倾角19°; 槽模只有测量夹角和校正后方位, S70W表示从南走向方位向西测得夹角为70°, 单位为度(°). -
[1] Brackenridge, R. E., Stow, D. A. V., Hernández-Molina, F. J., et al., 2018. Textural Characteristics and Facies of Sand-Rich Contourite Depositional Systems. Sedimentology, 65(7):2223-2252. https://doi.org/10.1111/sed.12463 [2] Chen, H., Xie, X. N., Zhang, W. Y., et al., 2016. Deep-Water Sedimentary Systems and Their Relationship with Bottom Currents at the Intersection of Xisha Trough and Northwest Sub-Basin, South China Sea. Marine Geology, 378:101-113. https://doi.org/10.1016/j.margeo.2015.11.002 [3] Ding, H.J., Xu, H.H., 2009.Transformation from Turbidity Current to Contour Current. Xinjiang Petroleum Geology, 30(1):87-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200901023 [4] Faugères, J. C., Stow, D. A. V., 1993. Bottom-Current-Controlled Sedimentation:A Synthesis of the Contourite Problem. Sedimentary Geology, 82(1-4):287-297. https://doi.org/10.1016/0037-0738(93)90127-q [5] Fei, A.W., 2001.Study of Trace Fossil Assemblage and Paleoenvironment of Middle Ordovician Lashizhong Formation, Ordos Basin. Geological Journal of China Universities, 7(3):278-287(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200103004 [6] Gao, Z.Z., Luo, S.S., He, Y.B., et al., 1995. The Middle Ordovician Contourite on the West Margin of Ordos. Acta Sedimentologica Sinica, 13 (4):16-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500005875 [7] Gilbert, I. M., Pudsey, C. J., Murray, J. W., 1998. A Sediment Record of Cyclic Bottom-Current Variability from the Northwest Weddell Sea. Sedimentary Geology, 115(1-4):185-214. https://doi.org/10.1016/s0037-0738(97)00093-6 [8] Guo, Y.R., Zhao, Z.N., Xu, W.L., et al., 2014.Sequence Stratigraphy of the Ordovician System in the Ordos Basin. Acta Sedimentologica Sinica, 32(1):44-60(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=68bbd27b6c097814f78a1e74738491ae&encoded=0&v=paper_preview&mkt=zh-cn [9] Hernández-Molina, F. J., Sierro, F. J., Llave, E., et al., 2016. Evolution of the Gulf of Cadiz Margin and Southwest Portugal Contourite Depositional System:Tectonic, Sedimentary and Paleoceanographic Implications from IODP Expedition 339. Marine Geology, 377:7-39. https://doi.org/10.1016/j.margeo.2015.09.013 [10] Hernández-Molina, F. J., Stow, D. A. V., Llave, E., et al., 2011. Deep-Water Circulation:Processes & Products (16-18 June 2010, Baiona):Introduction and Future Challenges. Geo-Marine Letters, 31(5-6):285-300. https://doi.org/10.1007/s00367-011-0261-z [11] Hernández-Molina, J., Llave, E., Somoza, L., et al., 2003. Looking for Clues to Paleoceanographic Imprints:A Diagnosis of the Gulf of Cadiz Contourite Depositional Systems. Geology, 31(1):19. https://doi.org/10.1130/0091-7613(2003)031<0019:lfctpi>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0019:lfctpi>2.0.co;2 [12] Jin, H.J., Sun, M.L., Li, Y.C., et al., 2005.The "Special" Turbidite Measure of the Middle Ordovician Series in Zhuozishan Area, Inner Mongolia. Acta Sedimentologica Sinica, 23(1):34-40(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200501005 [13] Kuijpers, A., Nielsen, T., 2016. Near-Bottom Current Speed Maxima in North Atlantic Contourite Environments Inferred from Current-Induced Bedforms and Other Seabed Evidence. Marine Geology, 378:230-236. http://dx.doi.org/10.1016/j.margeo.2015.11.003 [14] Li, H., He, Y.B., 2017.Research Processes on Contourites. Acta Sedimentologica Sinica, 35(2):228-240(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201702003 [15] Li, H., He, Y.B., Feng, B., et al., 2018.Type and Evolution of Deep-Water Channel Deposits of Ordovician Lashizhong Formation in Western Margin of Ordos Basin. Earth Science, 43(6):2149-2159(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806026 [16] Li, H., He, Y.B., Huang, W., et al., 2016.Contourites of the Ordovician Pingliang Formation in Southern Margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 18(4):631-642(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201604012 [17] Li, H., Wang, Y.M., Xu, Q., et al., 2014.Interactions between Down-Slope and Along-Slope Processes on the Northern Slope of South China Sea:Products, Processes, and Depositional Model. Acta Geologica Sinica, 88(6):1120-1129(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2f4c0f4f62f0c5ebd2984e5cbf16c74d&encoded=0&v=paper_preview&mkt=zh-cn [18] Li, R.H., 1994.Identification of Contourites in Middle Ordovician Gongwushu Formation, Zhuozishan, and Depositional Environment. Oil & Gas Geology, 15(3):235-240(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT403.006.htm [19] Li, X.D., Huan, Y.Q., 2017.Origin of Deep-Water Stripped-and-Banded Mudstones Related to Contour Currents in the Ordovician, Zhuozishan Area, Western Margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(6):987-997(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201706004 [20] Li, X.D., Que, Y., Huan, Y.Q., et al., 2018a.Mixed Carbonate-Siliciclastic Sequences of Deep-Water Contour Current Overflow Origin of Kelimoli Formation in Zhuozishan Area, Western Margin of Ordos Basin. Oil & Gas Geology, 39(6):1201-1212(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201806011 [21] Li, X. D., Huan, Y. Q., Que, Y., 2018b. REE Geochemistry and Analysis of Sedimentary Aqueous Media in Lower Part of Kelimoli Formation, Middle Ordovician, Zhuozishan Area. Chinese Journal of Geology, 53 (2):547-565 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201802010 [22] Liu, J. L., Cai, S. Q., Wang, S. G., 2011. Observations of Strong Near-Bottom Current after the Passage of Typhoon Pabuk in the South China Sea. Journal of Marine Systems, 87(1):102-108. https://doi.org/10.1016/j.jmarsys.2011.02.023 [23] Lofi, J., Voelker, A. H. L., Ducassou, E., et al., 2016. Quaternary Chronostratigraphic Framework and Sedimentary Processes for the Gulf of Cadiz and Portuguese Contourite Depositional Systems Derived from Natural Gamma Ray Records. Marine Geology, 377:40-57. https://doi.org/10.1016/j.margeo.2015.12.005 [24] Luo, W.D., Zhou, J., Li, X.J., et al., 2018.Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6):2172-2183(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201806028 [25] Luo, Z.B., 2015.Formation and Evolution of Early Precambrian Continental Crust in Alxa Block. Advances in Earth Science, 30(8):878-890(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201508004 [26] Nelson, C.H., Baraza, J., Maldonado, A., 1993.Mediterranean under Current Sandy Contourites, Guff of Cadiz, Spain. Sedimentary Geology, 82(1-4):103-131. https://doi.org/10.1016/0037-0738(93)90116-M [27] Nielsen, T., Andersen, C., Knutz, P. C., et al., 2011. The Middle Miocene to Recent Davis Strait Drift Complex:Implications for Arctic-Atlantic Water Exchange. Geo-Marine Letters, 31(5-6):419-426. https://doi.org/10.1007/s00367-011-0245-z [28] Øvreb ,L. K., Haughton, P. D. W., Shannon, P. M., 2006. A Record of Fluctuating Bottom Currents on the Slopes West of the Porcupine Bank, Offshore Ireland-Implications for Late Quaternary Climate Forcing. Marine Geology, 225(1-4):279-309. https://doi.org/10.1016/j.margeo.2005.06.034 [29] Qu, H.J., Mei, Z.C., Li, W.H., et al., 2010.The Characteristics of Middle Ordovician Contour Current Deposits and Geological Implication in Fuping Region, Shaanxi Province, China. Geological Bulletin of China, 29(9):1304-1309(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201009006.htm [30] Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., et al., 2014. Contourites and Associated Sediments Controlled by Deep-Water Circulation Processes:State-of-the-Art and Future Considerations. Marine Geology, 352:111-154. https://doi.org/10.1016/j.margeo.2014.03.011 [31] Sánchez Go i, M. F., Llave, E., Oliveira, D., et al., 2016. Climate Changes in South Western Iberia and Mediterranean Outflow Variations during Two Contrasting Cycles of the last 1 Myrs:MIS 31-MIS 30 and MIS 12-MIS 11. Global and Planetary Change, 136:18-29. https://doi.org/10.1016/j.gloplacha.2015.11.006 [32] Shanmugam, G., 2017.Contourites:Physical Oceanography, Process Sedimentology, and Petroleum Geology. Petroleum Exploration and Development, 44(2):177-195(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201505005 [33] Singh, A. D., Verma, K., Jaiswal, S., et al., 2015. Planktic Foraminiferal Responses to Orbital Scale Oceanographic Changes off the Western Iberian Margin over the Last 900 kyr:Results from IODP Site U1391. Global and Planetary Change, 135:47-56. https://doi.org/10.1016/j.gloplacha.2015.10.002 [34] Stow, D. A. V., Faugères, J. C., Viana, A., et al., 1998. Fossil Contourites:A Critical Review. Sedimentary Geology, 115(1-4):3-31. https://doi.org/10.1016/s0037-0738(97)00085-7 [35] Stow, D. A. V., Hernández-Molina, F. J., Llave, E., et al., 2009. Bedform-Velocity Matrix:The Estimation of Bottom Current Velocity from Bedform Observations. Geology, 37(4):327-330. https://doi.org/10.1130/g25259a.1 [36] Sun, M.J., Gao, H.F., Li, X.J., et al., 2018.Sedimentary Characteristics and Origin of Taitung Canyon in Eastern Waters of Taiwan Island. Earth Science, 43(10):3709-3718(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810028 [37] Tallobre, C., Loncke, L., Bassetti, M. A., et al., 2016. Description of a Contourite Depositional System on the Demerara Plateau:Results from Geophysical Data and Sediment Cores. Marine Geology, 378:56-73. https://doi.org/10.1016/j.margeo.2016.01.003 [38] Tzedakis, P. C., Margari, V., Hodell, D. A., 2015. Coupled Ocean-Land Millennial-Scale Changes 1.26 MillionYears Ago, Recorded at Site U1385 off Portugal. Global and Planetary Change, 135:83-88. https://doi.org/10.1016/j.gloplacha.2015.10.008 [39] Wang, Z.T., Zhou, H.R., Wang, X.L., et al., 2015.Discovery of Deep-Water Tractive Current Deposits in Middle Ordovician Yingtaogou Formation, Helan Mountain Area, and Its Significance. Earth Science Frontiers, 22(2):221-231(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201502020 [40] Wu, X. N., Sun, L. Y., Yu, Z., et al., 2015. Lithofacies Paleogeography of Ordovician in Western Ordos Basin. Lithologic Reservoirs, 27 (6):87-96 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=54f07c68d084497dda109a7f0748c96c&encoded=0&v=paper_preview&mkt=zh-cn [41] Xiao, B., He, Y. B., Luo, J. X., et al., 2014. Submarine Channel Complex Deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan Area, Inner Mongolia. Geological Review, 60 (2):321-331 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201402007 [42] 丁海军, 徐焕华, 2009.浊流与等深流的流态转化.新疆石油地质, 30(1):87-91. http://d.old.wanfangdata.com.cn/Periodical/xjsydz200901023 [43] 费安玮, 2001.鄂尔多斯盆地拉什仲组遗迹化石组合与古环境.高校地质学报, 7(3):278-287. doi: 10.3969/j.issn.1006-7493.2001.03.004 [44] 高振中, 罗顺社, 何幼斌, 1995.鄂尔多斯地区西缘中奥陶世等深流沉积.沉积学报, 13(4):16-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500005875 [45] 郭彦如, 赵振宇, 徐旺林, 等, 2014.鄂尔多斯盆地奥陶系层序地层格架.沉积学报, 32(1):44-60. http://d.old.wanfangdata.com.cn/Periodical/cjxb201401006 [46] 晋慧娟, 孙明良, 李育慈, 等, 2005.内蒙古桌子山中奥陶统的"特殊"浊积岩系.沉积学报, 23(1):34-40. doi: 10.3969/j.issn.1000-0550.2005.01.005 [47] 李华, 何幼斌, 2017.等深流沉积研究进展.沉积学报, 35(2):228-240. http://d.old.wanfangdata.com.cn/Periodical/cjxb201702003 [48] 李华, 何幼斌, 冯斌, 等, 2018.鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化.地球科学, 43(6):2149-2159. doi: 10.3799/dqkx.2018.568 [49] 李华, 何幼斌, 黄伟, 等, 2016.鄂尔多斯盆地南缘奥陶系平凉组等深流沉积.古地理学报, 18(4):631-642. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201604012 [50] 李华, 王英民, 徐强, 等, 2014.南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式.地质学报, 88(6):1120-1129. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201406007 [51] 李日辉, 1994.桌子山中奥陶统公乌素组等积岩的确认及沉积环境.石油与天然气地质, 15(3):235-240. http://www.cnki.com.cn/Article/CJFDTotal-SYYT403.006.htm [52] 李向东, 阙易, 郇雅棋, 等, 2018a.鄂尔多斯盆地西缘中奥陶统克里摩里组深水等深流溢岸混合沉积.石油与天然气地质, 39(6):1201-1212. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201806011 [53] 李向东, 郇雅棋, 2017.鄂尔多斯盆地西缘桌子山地区奥陶系深水条纹条带状泥岩等深流成因分析.古地理学报, 19(6):987-997. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706004 [54] 李向东, 郇雅棋, 阙易, 等, 2018b.桌子山中奥陶统克里摩里组下段稀土元素特征与沉积介质分析.地质科学, 53(2):547-565. http://d.old.wanfangdata.com.cn/Periodical/dzkx201802010 [55] 罗伟东, 周娇, 李学杰, 等, 2018.南海海盆盆西峡谷的形态与结构及形成演化.地球科学, 43(6):2172-2183. doi: 10.3799/dqkx.2017.615 [56] 罗志波, 2015.阿拉善地块早前寒武纪大陆地壳的形成与演化.地球科学进展, 30(8):878-890. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201508004 [57] 屈红军, 梅志超, 李文厚, 等, 2010.陕西富平地区中奥陶统等深流沉积的特征及其地质意义.地质通报, 29(9):1304-1309. doi: 10.3969/j.issn.1671-2552.2010.09.006 [58] Shanmugam, G., 2017.等深流沉积:物理海洋学、过程沉积学和石油地质学.石油勘探与开发, 44(2):177-195. http://d.old.wanfangdata.com.cn/Periodical/syktykf201702002 [59] 孙美静, 高红芳, 李学杰, 等, 2018.台湾东部海域台东峡谷沉积特征及其成因.地球科学, 43(10):3709-3718. doi: 10.3799/dqkx.2017.515 [60] 王振涛, 周洪瑞, 王训练, 等, 2015.贺兰山地区中奥陶统樱桃沟组深水牵引流沉积的发现及其意义.地学前缘, 22(2):221-231. http://d.old.wanfangdata.com.cn/Periodical/dxqy201502020 [61] 吴兴宁, 孙六一, 于洲, 等, 2015.鄂尔多斯盆地西部奥陶纪岩相古地理特征.岩性油气藏, 27(6):87-96. doi: 10.3969/j.issn.1673-8926.2015.06.012 [62] 肖彬, 何幼斌, 罗进雄, 等, 2014.内蒙古桌子山中奥陶统拉什仲组深水水道沉积.地质论评, 60(2):321-331. http://d.old.wanfangdata.com.cn/Periodical/dzlp201402007 [63] 解习农, 陈志宏, 孙志鹏, 2012.南海西北陆缘深水沉积体系内部构成特征.地球科学, 37(4):627-634. http://www.earth-science.net/article/id/2269